

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(11,13-Dimethyl-1,4,7,10-tetraazacyclotrideca-10,13-dienato)copper(II) perchlorate

Xiao-giang He

Chemical Technology & Medicine College, Jingchu University of Technology, Jingmen, Hubei 448000, People's Republic of China Correspondence e-mail: jclghxq@126.com

Received 12 January 2009; accepted 14 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.067; wR factor = 0.216; data-to-parameter ratio = 13.8.

The title complex, $[Cu(C_{11}H_{21}N_4)]ClO_4$, comprises $[Cu^{II}(L)]^+$ (L = 11,13-dimethyl-1,4,7,10-tetraazacyclotrideca-10,12-dienate) cations and a perchlorate anion. The Cu atom is located on a twofold crystallographic symmetry axis and is coordinated by four N atoms in a slightly distorted square-planar geometry. Intermolecular N-H···O hydrogen bonds are present.

Related literature

For macrocyclic ligands containing four N atoms in a squareplanar coordination geometry, see: Andrews et al. (1999); Kim et al. (2004); Richardson & Sievers (1972).

6834 measured reflections 1349 independent reflections

 $R_{\rm int}=0.064$

950 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$V = 1541.2 (11) \text{ Å}^3$
Z = 4
Mo Ka radiation
$\mu = 1.61 \text{ mm}^{-1}$
T = 293 (2) K
$0.15 \times 0.13 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\rm min} = 0.794, \ T_{\rm max} = 0.843$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	98 parameters
$vR(F^2) = 0.216$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 1.10 \text{ e } \text{\AA}^{-3}$
1349 reflections	$\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O1^{ii}$	0.91	2.02	2.917 (8)	168
	1 (")	. 1		

Symmetry codes: (i) x, y, z - 1; (ii) $-x, y, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2468).

References

- Andrews, P. C., Atwood, J. L., Barbour, L. J., Croucher, P. D., Nichols, P. J., Smith, N. O., Skelton, B. W., White, A. H. & Raston, C. L. (1999). J. Chem. Soc. Dalton Trans. pp. 2927-2932.
- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kim, D. I., Kim, E. H., Bae, Z. U., Na, H. G., Choi, J. H. & Park, Y. C. (2004). J. Inclus. Phenom. Macrocvcl. Chem. 49, 107-113.
- Richardson, M. F. & Sievers, R. E. (1972). J. Am. Chem. Soc. 94, 4134-4139.
- Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m205 [doi:10.1107/S1600536809001664]

(11,13-Dimethyl-1,4,7,10-tetraazacyclotrideca-10,13-dienato)copper(II) perchlorate

Xiao-qiang He

S1. Comment

Macrocyclic ligands containing four N atoms located in a square planar coordination geometry have been intensly studied during the past several decades (Richardson, *et al.*, 1972; Andrews, *et al.*, 1999; Kim, *et al.*, 2004). Here,we report a macrocycle tetraaza copper(II) complex based on the condensation of triethylenetetraamine (trien) with acetylacetone in the presence of copper(II) perchlorate.

The geometry and labelling scheme for the crystal structure of the title complex are depicted in Figure 1. The coordination sphere for the Cu^{II} ion in the title complex, which coordinates to four N atoms from triethylenetetraamine, is square planar with a mean deviation from the plane formed by the Cu atom and four N atoms of 0.0929Å. The bond lengths of Cu1—N1 and Cu1—N2 are 1.809 (4) and 1.876 (4)Å, respectively, which are slightly shorter than the corresponding distances found in another macrocycle copper complex 13,14-benzo-2,4,9,11-tetramethyl-1,5,8,12-tetra-azacyclotetradeca-1,3,9,11-tetraenato(2-)copper(II) (Kim, *et al.*, 2004).

S2. Experimental

The title complex has been synthesized by the template method used commonly for synthesize metal complexes of macrocycle ligand. After the mixture, which is formed by acetylacetone, trien and $Cu(ClO_4)_2.6H_2O$ with a molar ratio 1:1:1 in methanol/water(v:v, 1:1), has been stirred for 6 h at 323 K, it was filtered and the filtrate was allowed to partial evaporate in air for one week to produce crystals suitable for X-ray diffraction with a yield of about 45%.

S3. Refinement

All the H atoms were constrained with C—H distances of 0.93, 0.96, 0.97 Å and N—H distances of 0.91 Å, respectively, and were allowed for as riding atoms with $U_{iso}(H) = 1.2U_{eq}$ (C or N) and $1.5U_{eq}$ (C).

Figure 1

A view of the cation of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

(11,13-Dimethyl-1,4,7,10-tetraazacyclotrideca-10,13-dienato)copper(II) perchlorate

Crystal data	
$[Cu(C_{11}H_{21}N_4)]ClO_4$	$D_{\rm x} = 1.605 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 372.31$	$D_{\rm m} = 1.605 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbcn	$D_{\rm m}$ measured by not measured
Hall symbol: -P 2n 2ab	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.530 (5) Å	Cell parameters from 1838 reflections
b = 14.469 (6) Å	$\theta = 3.2 - 24.7^{\circ}$
c = 8.501 (4) Å	$\mu = 1.61 \text{ mm}^{-1}$
$V = 1541.2 (11) Å^3$	<i>T</i> = 293 K
Z = 4	Block, blue
F(000) = 772	$0.15 \times 0.13 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector	6834 measured reflections
diffractometer	1349 independent reflections
Radiation source: fine-focus sealed tube	950 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.064$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 12$
(<i>SADABS</i> ; Sheldrick, 2003)	$k = -15 \rightarrow 17$
$T_{\min} = 0.794, T_{\max} = 0.843$	$l = -9 \rightarrow 10$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from
$wR(F^2) = 0.216$	neighbouring sites
S = 1.05	H-atom parameters constrained
1349 reflections	$w = 1/[\sigma^2(F_o^2) + (0.144P)^2 + 0.9336P]$
98 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.10 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.59 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.0000	0.32069 (5)	0.2500	0.0431 (4)	
Cl1	0.0000	0.14239 (18)	0.7500	0.0660 (7)	
01	0.0525 (6)	0.2000 (6)	0.6429 (9)	0.139 (3)	
02	0.0806 (8)	0.0904 (4)	0.8238 (11)	0.160 (3)	
N1	0.0904 (3)	0.4014 (3)	0.1568 (5)	0.0481 (11)	
N2	0.0740 (3)	0.2278 (3)	0.1414 (5)	0.0476 (11)	
H2	0.0427	0.2219	0.0453	0.057*	
C1	0.0000	0.5334 (6)	0.2500	0.060 (2)	
H1	0.0000	0.5976	0.2500	0.072*	
C2	0.0803 (4)	0.4932 (3)	0.1651 (7)	0.0579 (15)	
C3	0.1590 (5)	0.5506 (4)	0.0804 (9)	0.078 (2)	
H3A	0.2298	0.5334	0.1122	0.117*	
H3B	0.1471	0.6146	0.1047	0.117*	
H3C	0.1513	0.5412	-0.0308	0.117*	
C4	0.1727 (4)	0.3589 (4)	0.0637 (7)	0.0576 (14)	
H4A	0.2396	0.3916	0.0780	0.069*	

supporting information

H4B	0.1537	0.3613	-0.0469	0.069*
C5	0.1840 (4)	0.2618 (4)	0.1151 (8)	0.0597 (14)
H5A	0.2253	0.2581	0.2114	0.072*
H5B	0.2193	0.2254	0.0347	0.072*
C6	0.0587 (5)	0.1407 (4)	0.2241 (7)	0.0574 (15)
H6A	0.1056	0.1369	0.3147	0.069*
H6B	0.0732	0.0888	0.1552	0.069*

Atomic displacement parameters $(Å^2)$

T 711					
U^{**}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0446 (7)	0.0320 (6)	0.0526 (7)	0.000	-0.0004 (3)	0.000
0.0883 (17)	0.0572 (14)	0.0526 (13)	0.000	0.0019 (10)	0.000
0.113 (5)	0.182 (6)	0.122 (6)	-0.012 (5)	-0.020 (4)	0.056 (5)
0.244 (10)	0.106 (4)	0.130 (6)	0.077 (6)	-0.015 (7)	0.003 (5)
0.045 (2)	0.039 (2)	0.060 (3)	-0.0019 (17)	-0.004 (2)	0.0077 (19)
0.055 (3)	0.038 (2)	0.049 (2)	0.0060 (18)	0.0024 (19)	0.0023 (17)
0.069 (5)	0.022 (3)	0.090 (7)	0.000	-0.026 (5)	0.000
0.058 (3)	0.041 (3)	0.075 (4)	-0.011 (3)	-0.031 (3)	0.012 (3)
0.078 (4)	0.051 (3)	0.104 (5)	-0.027 (3)	-0.026 (4)	0.020 (3)
0.048 (3)	0.057 (3)	0.068 (4)	-0.002 (2)	0.006 (3)	0.011 (3)
0.053 (3)	0.059 (3)	0.068 (4)	0.010 (2)	0.002 (3)	0.008 (3)
0.070 (4)	0.034 (3)	0.068 (4)	0.007 (3)	0.002 (3)	0.004 (2)
	0.0446 (7) 0.0883 (17) 0.113 (5) 0.244 (10) 0.045 (2) 0.055 (3) 0.069 (5) 0.058 (3) 0.078 (4) 0.048 (3) 0.053 (3) 0.070 (4)	0 0 0.0446 (7) 0.0320 (6) 0.0883 (17) 0.0572 (14) 0.113 (5) 0.182 (6) 0.244 (10) 0.106 (4) 0.045 (2) 0.039 (2) 0.055 (3) 0.038 (2) 0.069 (5) 0.022 (3) 0.058 (3) 0.041 (3) 0.078 (4) 0.057 (3) 0.053 (3) 0.059 (3) 0.070 (4) 0.034 (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0446 (7) 0.0320 (6) 0.0526 (7) 0.000 0.0883 (17) 0.0572 (14) 0.0526 (13) 0.000 0.113 (5) 0.182 (6) 0.122 (6) -0.012 (5) 0.244 (10) 0.106 (4) 0.130 (6) 0.077 (6) 0.045 (2) 0.039 (2) 0.060 (3) -0.0019 (17) 0.055 (3) 0.038 (2) 0.049 (2) 0.0060 (18) 0.069 (5) 0.022 (3) 0.090 (7) 0.000 0.058 (3) 0.041 (3) 0.104 (5) -0.027 (3) 0.048 (3) 0.057 (3) 0.068 (4) -0.002 (2) 0.053 (3) 0.059 (3) 0.068 (4) 0.010 (2) 0.070 (4) 0.034 (3) 0.068 (4) 0.007 (3)	0 0 0 0 0 0 0.0446 (7) 0.0320 (6) 0.0526 (7) 0.000 -0.0004 (3) 0.0883 (17) 0.0572 (14) 0.0526 (13) 0.000 0.0019 (10) 0.113 (5) 0.182 (6) 0.122 (6) -0.012 (5) -0.020 (4) 0.244 (10) 0.106 (4) 0.130 (6) 0.077 (6) -0.015 (7) 0.045 (2) 0.039 (2) 0.060 (3) -0.0019 (17) -0.004 (2) 0.055 (3) 0.038 (2) 0.049 (2) 0.0060 (18) 0.0024 (19) 0.069 (5) 0.022 (3) 0.090 (7) 0.000 -0.026 (5) 0.058 (3) 0.041 (3) 0.075 (4) -0.011 (3) -0.031 (3) 0.078 (4) 0.051 (3) 0.104 (5) -0.027 (3) -0.026 (4) 0.048 (3) 0.057 (3) 0.068 (4) -0.002 (2) 0.006 (3) 0.053 (3) 0.059 (3) 0.068 (4) 0.010 (2) 0.002 (3) 0.070 (4) 0.034 (3) 0.068 (4) 0.007 (3) 0.002 (3)

Geometric parameters (Å, °)

Cu1—N1 ⁱ	1.809 (4)	C1—C2 ⁱ	1.367 (7)
Cu1—N1	1.809 (4)	C1—H1	0.9300
Cu1—N2 ⁱ	1.876 (4)	C2—C3	1.477 (8)
Cu1—N2	1.876 (4)	С3—НЗА	0.9600
Cl1—O1 ⁱⁱ	1.399 (8)	С3—Н3В	0.9600
Cl101	1.399 (8)	С3—НЗС	0.9600
Cl1—O2	1.407 (8)	C4—C5	1.479 (8)
Cl1—O2 ⁱⁱ	1.407 (8)	C4—H4A	0.9700
N1—C2	1.337 (6)	C4—H4B	0.9700
N1-C4	1.438 (7)	С5—Н5А	0.9700
N2—C6	1.455 (7)	С5—Н5В	0.9700
N2—C5	1.481 (7)	C6—C6 ⁱ	1.535 (13)
N2—H2	0.9100	C6—H6A	0.9700
C1—C2	1.367 (7)	C6—H6B	0.9700
N1 ⁱ —Cu1—N1	99.6 (3)	C1—C2—C3	120.7 (5)
N1 ⁱ —Cu1—N2 ⁱ	86.43 (19)	С2—С3—НЗА	109.5
N1—Cu1—N2 ⁱ	170.85 (17)	С2—С3—Н3В	109.5
N1 ⁱ —Cu1—N2	170.85 (17)	НЗА—СЗ—НЗВ	109.5
N1—Cu1—N2	86.43 (19)	С2—С3—Н3С	109.5
N2 ⁱ —Cu1—N2	88.4 (2)	НЗА—СЗ—НЗС	109.5
01 ⁱⁱ —Cl1—O1	106.9 (7)	H3B—C3—H3C	109.5

O1 ⁱⁱ —Cl1—O2	111.4 (5)	N1—C4—C5	108.2 (4)
O1—Cl1—O2	105.8 (5)	N1—C4—H4A	110.1
O1 ⁱⁱ —Cl1—O2 ⁱⁱ	105.8 (5)	C5—C4—H4A	110.1
O1—Cl1—O2 ⁱⁱ	111.4 (5)	N1—C4—H4B	110.1
O2—Cl1—O2 ⁱⁱ	115.3 (7)	C5—C4—H4B	110.1
C2—N1—C4	121.5 (4)	H4A—C4—H4B	108.4
C2—N1—Cu1	124.0 (4)	C4—C5—N2	105.8 (4)
C4—N1—Cu1	114.5 (3)	C4—C5—H5A	110.6
C6—N2—C5	118.9 (4)	N2—C5—H5A	110.6
C6—N2—Cu1	108.5 (3)	C4—C5—H5B	110.6
C5—N2—Cu1	107.2 (3)	N2—C5—H5B	110.6
C6—N2—H2	107.2	H5A—C5—H5B	108.7
C5—N2—H2	107.2	N2-C6-C6 ⁱ	105.3 (4)
Cu1—N2—H2	107.2	N2—C6—H6A	110.7
$C2-C1-C2^{i}$	129.7 (7)	C6 ⁱ —C6—H6A	110.7
С2—С1—Н1	115.1	N2—C6—H6B	110.7
C2 ⁱ —C1—H1	115.1	C6 ⁱ —C6—H6B	110.7
N1—C2—C1	121.3 (6)	H6A—C6—H6B	108.8
N1—C2—C3	118.0 (6)		

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N2—H2····Cl1 ⁱⁱⁱ	0.91	2.81	3.668 (5)	157
N2—H2···O1 ⁱ	0.91	2.02	2.917 (8)	168

Symmetry codes: (i) –*x*, *y*, –*z*+1/2; (iii) *x*, *y*, *z*–1.