addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles

This article reports the retraction of five articles published in *Acta Crystallographica Section E* between 2004 and 2011.

After further thorough investigation (see Harrison *et al.*, 2010), five articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
Ammonium 2,6-dicarboxy-4-nitrophenolate Triaqua(1,10-phenanthroline)sulfatocopper(II) monohydrate	Sun & Nie (2004) An <i>et al.</i> (2007)	10.1107/S1600536804022135 10.1107/S1600536807000591	PAHDUY HEWQUW
Diaqua-1κO,3κO-di-μ-cyanido-1:2κ ² N:C;2:3κ ² C:N-dicyanido-2κ ² C-bis[4,4'-dibromo-2,2'- [propane-1,2-diylbis(nitrilomethylidyne)]diphenolato]-1κ ⁴ O,N,N',O';3κ ⁴ O,N,N',O'-1,3- diiron(III)-2-nickel(II)	Zhang <i>et al.</i> (2008)	10.1107/S1600536808017893	SOGBOG
Bis(6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl]phenolato)copper(II) dihy- drate	Zhang et al. (2009)	10.1107/S1600536808043948	ROLPAK
Oxonium picrate	Jin et al. (2011)	10.1107/\$1600536811022574	EVILAX

References

An, Z., Wu, Y.-L., Lin, F. & Zhu, L. (2007). Acta Cryst. E63, m477-m478.

Harrison, W. T. A., Simpson, J. & Weil, M. (2010). Acta Cryst. E66, e1-e2.

Jin, S.-W., Chen, B.-X., Ge, Y.-S., Yin, H.-B. & Fang, Y.-P. (2011). Acta Cryst. E67, o1694.

Sun, Y.-X. & Nie, Y. (2004). Acta Cryst. E60, 01742-01744.

Zhang, X., Wei, P., Dou, J., Li, B. & Hu, B. (2009). Acta Cryst. E65, m151–m152.

Zhang, X., Wei, P. & Li, B. (2008). Acta Cryst. E64, m926.

metal-organic compounds

Mo $K\alpha$ radiation $\mu = 0.88 \text{ mm}^{-1}$

 $0.12 \times 0.10 \times 0.08 \text{ mm}$

T = 293 (2) K

8 restraints

 $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl}phenolato)copper(II) dihydrate

Xiutang Zhang,^{a,c}* Peihai Wei,^b Jianmin Dou,^c Bin Li^b and Bo Hu^b

^aAdvanced Materials Institute of Research, Department of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China, ^bDepartment of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: xiutangzhang@yahoo.com.cn

Received 24 December 2008; accepted 25 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.117; data-to-parameter ratio = 14.0.

In the title compound, $[Cu(C_{12}H_{16}NO_5)_2]\cdot 2H_2O$, the Cu^{II} ion adopts a *trans*-CuN₂O₄ octahedral geometry arising from two N,O,O'-tridentate 6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl}phenolate ligands. The Jahn–Teller distortion of the copper centre is unusally small. In the crystal structure, $O-H \cdots O$ hydrogen bonds, some of which are bifurcated, link the component species.

Related literature

For the ligand synthesis, see: Wang et al. (2007). For background on Schiff base complexes, see: Ward (2007).

Experimental

Crystal data $[Cu(C_{12}H_{16}NO_5)_2]\cdot 2H_2O$ $M_r = 608.09$

Monoclinic, $P2_1/c$ a = 11.9421 (9) Å b = 11.0238 (9) Åc = 20.6706 (17) Å $\beta = 97.462 (1)^{\circ}$ $V = 2698.2 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII CCD	13183 measured reflections
diffractometer	4912 independent reflections
Absorption correction: multi-scan	4397 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.061$
$T_{\min} = 0.902, \ T_{\max} = 0.933$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.117$ S = 1.014912 reflections 352 parameters

Table 1

Selected bond lengths

	0			
Cu1-N1		2.0367 (19)	Cu1-O3	2.1989 (18)
Cu1-N2		2.0185 (19)	Cu1-O7	2.0220 (16)
Cu1-O2		2.0180 (16)	Cu1-O8	2.1537 (17)

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3A\cdots O10^{i}$	0.81	1.94	2.748 (3)	176
$O4-H4A\cdots O6^{ii}$	0.82	2.08	2.681 (3)	130
$O4-H4A\cdots O7^{ii}$	0.82	2.25	2.997 (3)	152
$O5-H5A\cdots O2W$	0.82	2.21	2.649 (4)	114
$O8-H8A\cdots O1W^{iii}$	0.81	1.88	2.689 (3)	175
$O9-H9\cdots O2^{i}$	0.82	1.91	2.670 (3)	153
$O10-H10\cdots O9^{iv}$	0.82	2.04	2.685 (3)	135
$O1W - H1W \cdots O2W^{v}$	0.85	1.95	2.790 (3)	168
$O1W-H2W\cdots O4^{vi}$	0.85	2.13	2.969 (3)	170
O2W−H3W···O1 ⁱⁱ	0.85	2.02	2.866 (3)	169
$O2W-H4W\cdots O5$	0.85	1.83	2.649 (4)	159

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x, y - 1, z; (iv) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (v) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (vi) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105-07) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2887).

metal-organic compounds

References

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Wang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537.
Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.

supporting information

Acta Cryst. (2009). E65, m151-m152 [doi:10.1107/S1600536808043948]

Bis(6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl}phenolato)copper(II) dihydrate

Xiutang Zhang, Peihai Wei, Jianmin Dou, Bin Li and Bo Hu

S1. Comment

Transition metal-Schiff based complexes have been intensely focused on owing to their excellent physical and chemical properties including magnetic, optics and catalysis (Ward, 2007). Herein, we report the crystal structure of the title compound, (I), based on a Schiff base ligand, L, (E)-2-(2-hydroxy-3-methoxybenzylideneamino)-2-(hydroxymethyl)-propane-1,3-diol, (Fig. 1).

The Cu^{II} ion in (I) is surrounded by two L^{-1} ligands and hexa-coordinated by four oxygen atoms and two nitrogen atoms, with a slightly distorted octahedral coordination sphere (Table 1). The metal-ligand bond distances are similar to those in a related structure (Wang *et al.*, 2007). In the crystal, a network of O-H···O hydrogen bonds (Table 2) help to establish the packing.

S2. Experimental

The ligand (HL) was synthesized according to the literature method (Wang *et al.*, 2007). HL₁ (0.050 g, 0.2 mmol) and Cu(OAc)₂.4H₂O (0.0498 g, 0.2 mmol) were refluxed in a mixed solvent solution (CH₃OH:H₂O = 4:1 ν/ν) until all solid was dissolved. The solution was cooled to room temperature and filtrated and blue blocks of (I) slowly grew by allowing slow evaporation of the solution. Anal. Calc. for C₂₄H₃₆CuN₂O₁₂: C 47.36, H 5.92, N 4.60%; Found: C 47.25, H 5.78, N 4.54%.

S3. Refinement

The non-water H atoms were geometrically placed (C—H = 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl C})$. The water H atoms were located in a difference map and reifned with restraints of O—H = 0.82 (2)Å and H…H = 1.37 (2)Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

A view of (I) with Displacement ellipsoids drawn at the 30% probability level.

Bis(6-methoxy-2-{[tris(hydroxymethyl]methyl]iminomethyl}phenolato)copper(II) dihydrate

Crystal data

[Cu(C₁₂H₁₆NO₅)₂]·2H₂O $M_r = 608.09$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.9421 (9) Å b = 11.0238 (9) Å c = 20.6706 (17) Å $\beta = 97.462$ (1)° V = 2698.2 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans F(000) = 1276 $D_x = 1.497 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4912 reflections $\theta = 2.1-25.5^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 293 KBlock, blue $0.12 \times 0.10 \times 0.08 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{min} = 0.902$, $T_{max} = 0.933$ 13183 measured reflections 4912 independent reflections 4397 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.061$	
$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$	
$h = -14 \rightarrow 11$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.117$ S = 1.014912 reflections 352 parameters 8 restraints Primary atom site location: structure-invariant direct methods $k = -13 \rightarrow 13$ $l = -25 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.076P)^2 + 1.4852P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.010$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.48$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	y	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.76750 (2)	0.15964 (2)	0.742179 (13)	0.02060 (12)
C1	0.8354 (4)	0.4629 (4)	0.52078 (18)	0.0604 (10)
H1A	0.9090	0.4980	0.5316	0.091*
H1B	0.7847	0.5226	0.4997	0.091*
H1C	0.8400	0.3953	0.4919	0.091*
C2	0.6893 (2)	0.3686 (2)	0.57268 (13)	0.0304 (6)
C3	0.6096 (3)	0.3782 (3)	0.51893 (14)	0.0448 (8)
Н3	0.6257	0.4235	0.4833	0.054*
C4	0.5048 (3)	0.3213 (3)	0.51666 (16)	0.0490 (9)
H4	0.4504	0.3303	0.4805	0.074*
C5	0.4835 (3)	0.2521 (3)	0.56846 (14)	0.0386 (7)
Н5	0.4141	0.2132	0.5668	0.058*
C6	0.5636 (2)	0.2380 (2)	0.62432 (12)	0.0250 (5)
C7	0.6687 (2)	0.3017 (2)	0.62939 (11)	0.0212 (5)
C8	0.5359 (2)	0.1518 (2)	0.67278 (13)	0.0245 (5)
H8	0.4620	0.1230	0.6679	0.029*
C9	0.5630 (2)	0.0167 (2)	0.76438 (12)	0.0241 (5)
C10	0.4561 (2)	-0.0514 (2)	0.73731 (14)	0.0328 (6)
H10A	0.4384	-0.1111	0.7689	0.039*
H10B	0.3935	0.0052	0.7301	0.039*
C11	0.5411 (2)	0.0769 (3)	0.82836 (14)	0.0348 (6)
H11A	0.5217	0.0157	0.8587	0.042*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11B	0.6088	0.1184	0.8480	0.042*
C12	0.6611 (2)	-0.0728(2)	0.77953 (13)	0.0290 (5)
H12A	0.6453	-0.1287	0.8135	0.035*
H12B	0.6706	-0.1195	0.7408	0.035*
C13	0.6631 (3)	0.4397 (3)	0.97678 (15)	0.0459 (8)
H13A	0.5841	0.4585	0.9684	0.069*
H13B	0.7058	0.5136	0.9827	0.069*
H13C	0.6773	0.3912	1.0156	0.069*
C14	0.8076 (2)	0.3405 (2)	0.92680 (12)	0.0286 (6)
C15	0.8870 (3)	0.3615 (3)	0.97939 (13)	0.0369 (6)
H15	0.8664	0.4006	1.0159	0.044*
C16	0.9992 (3)	0.3245 (3)	0.97888 (13)	0.0362 (6)
H16	1.0529	0.3381	1.0149	0.043*
C17	1.0282 (2)	0.2683 (2)	0.92462 (12)	0.0290 (5)
H17	1.1027	0.2446	0.9240	0.035*
C18	0.9483 (2)	0.2451 (2)	0.86945 (11)	0.0211 (5)
C19	0.8334 (2)	0.2797 (2)	0.86871 (11)	0.0209 (5)
C20	0.9936 (2)	0.1931 (2)	0.81378 (11)	0.0207 (5)
H20	1.0715	0.1824	0.8180	0.025*
C21	0.9988 (2)	0.1161 (2)	0.70679 (11)	0.0205 (5)
C22	1.1144 (2)	0.0571 (2)	0.72962 (12)	0.0261 (5)
H22A	1.1434	0.0190	0.6929	0.031*
H22B	1.1679	0.1186	0.7473	0.031*
C23	1.0162 (2)	0.2241 (2)	0.66108 (11)	0.0254 (5)
H23A	1.0629	0.1980	0.6287	0.031*
H23B	0.9436	0.2487	0.6383	0.031*
C24	0.9245 (2)	0.0216 (2)	0.66761 (12)	0.0241 (5)
H24A	0.9509	0.0087	0.6257	0.029*
H24B	0.9288	-0.0549	0.6909	0.029*
N1	0.60220 (16)	0.11103 (17)	0.72146 (10)	0.0209 (4)
N2	0.93778 (16)	0.16042 (16)	0.75959 (9)	0.0176 (4)
01	0.79480 (18)	0.4224 (2)	0.57864 (10)	0.0417 (5)
O2	0.74271 (14)	0.30303 (15)	0.68132 (8)	0.0215 (3)
O3	0.76136 (14)	-0.00642 (16)	0.80055 (9)	0.0287 (4)
H3A	0.8136	-0.0541	0.8032	0.043*
O4	0.46929 (17)	-0.11041 (18)	0.67767 (11)	0.0403 (5)
H4A	0.4108	-0.1462	0.6640	0.060*
05	0.4506 (2)	0.16184 (19)	0.81536 (13)	0.0504 (6)
H5A	0.4388	0.1942	0.8496	0.076*
O6	0.69604 (17)	0.3742 (2)	0.92296 (9)	0.0424 (5)
O7	0.75320 (14)	0.26443 (15)	0.82097 (8)	0.0237 (4)
08	0.81044 (14)	0.06366 (16)	0.65805 (8)	0.0279 (4)
H8A	0.7676	0.0108	0.6433	0.042*
O9	1.10148 (16)	-0.03065 (18)	0.77788 (10)	0.0378 (5)
H9	1.1627	-0.0622	0.7901	0.057*
O10	1.06809 (16)	0.32536 (16)	0.69565 (9)	0.0316 (4)
H10	1.0280	0.3489	0.7225	0.047*
O1W	0.6645 (2)	0.8968 (2)	0.60223 (11)	0.0496 (6)

supporting information

H1W	0.6872	0.8234	0.6027	0.074*
H2W	0.6038	0.8985	0.6197	0.074*
O2W	0.2699 (2)	0.1555 (2)	0.87731 (13)	0.0553 (6)
H3W	0.2413	0.0889	0.8885	0.083*
H4W	0.3253	0.1387	0.8565	0.083*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02012 (18)	0.01953 (18)	0.02172 (18)	-0.00072 (10)	0.00112 (12)	-0.00073 (10)
C1	0.086 (3)	0.052 (2)	0.051 (2)	-0.0176 (19)	0.0366 (19)	0.0000 (16)
C2	0.0429 (15)	0.0226 (12)	0.0255 (13)	-0.0034 (11)	0.0034 (11)	0.0012 (10)
C3	0.069 (2)	0.0355 (16)	0.0269 (14)	-0.0041 (15)	-0.0042 (14)	0.0095 (12)
C4	0.062 (2)	0.0405 (17)	0.0370 (17)	-0.0055 (15)	-0.0241 (15)	0.0080 (13)
C5	0.0390 (15)	0.0282 (14)	0.0432 (16)	-0.0034 (12)	-0.0149 (13)	0.0016 (12)
C6	0.0266 (12)	0.0197 (12)	0.0268 (12)	0.0017 (10)	-0.0039 (10)	-0.0009 (9)
C7	0.0263 (12)	0.0148 (10)	0.0220 (11)	-0.0004 (9)	0.0015 (9)	-0.0013 (9)
C8	0.0208 (12)	0.0193 (12)	0.0322 (13)	-0.0017 (9)	-0.0008 (10)	-0.0027 (9)
C9	0.0240 (12)	0.0182 (11)	0.0307 (12)	-0.0052 (10)	0.0059 (9)	0.0033 (10)
C10	0.0236 (13)	0.0249 (13)	0.0496 (16)	-0.0065 (10)	0.0040 (11)	0.0050 (12)
C11	0.0392 (15)	0.0314 (14)	0.0372 (15)	-0.0034 (12)	0.0180 (12)	0.0028 (12)
C12	0.0283 (13)	0.0195 (12)	0.0387 (14)	-0.0024 (10)	0.0024 (11)	0.0053 (10)
C13	0.0513 (18)	0.0533 (19)	0.0356 (15)	0.0175 (15)	0.0151 (13)	-0.0120 (14)
C14	0.0338 (14)	0.0300 (14)	0.0223 (12)	0.0064 (11)	0.0047 (10)	-0.0028 (10)
C15	0.0461 (17)	0.0422 (16)	0.0221 (13)	0.0031 (13)	0.0032 (12)	-0.0104 (11)
C16	0.0391 (16)	0.0463 (17)	0.0207 (13)	-0.0032 (13)	-0.0056 (11)	-0.0057 (11)
C17	0.0278 (13)	0.0338 (14)	0.0240 (12)	0.0004 (11)	-0.0019 (10)	0.0005 (10)
C18	0.0243 (12)	0.0198 (11)	0.0193 (11)	-0.0007 (9)	0.0028 (9)	0.0002 (9)
C19	0.0280 (12)	0.0176 (11)	0.0168 (10)	-0.0012 (9)	0.0016 (9)	0.0009 (9)
C20	0.0192 (11)	0.0184 (11)	0.0237 (11)	-0.0006 (9)	0.0002 (9)	0.0008 (9)
C21	0.0219 (11)	0.0188(11)	0.0213 (11)	-0.0001 (9)	0.0044 (9)	-0.0028 (9)
C22	0.0234 (12)	0.0234 (12)	0.0324 (13)	0.0041 (10)	0.0065 (10)	-0.0009 (10)
C23	0.0303 (13)	0.0243 (12)	0.0230 (11)	-0.0016 (10)	0.0082 (10)	0.0010 (9)
C24	0.0275 (12)	0.0187 (11)	0.0257 (12)	0.0003 (10)	0.0022 (9)	-0.0062 (9)
N1	0.0182 (9)	0.0171 (9)	0.0274 (10)	-0.0011 (8)	0.0031 (8)	-0.0003 (8)
N2	0.0189 (9)	0.0155 (9)	0.0189 (9)	0.0008 (7)	0.0040 (7)	0.0006 (7)
01	0.0490 (12)	0.0433 (12)	0.0344 (10)	-0.0155 (10)	0.0118 (9)	0.0073 (9)
O2	0.0230 (8)	0.0178 (8)	0.0226 (8)	-0.0040 (7)	-0.0009 (6)	0.0020 (6)
O3	0.0240 (9)	0.0226 (9)	0.0384 (10)	0.0017 (7)	-0.0004 (7)	0.0041 (7)
O4	0.0328 (10)	0.0305 (10)	0.0542 (13)	-0.0085 (8)	-0.0070 (9)	-0.0069 (9)
05	0.0451 (13)	0.0364 (12)	0.0763 (17)	0.0023 (9)	0.0325 (12)	-0.0080 (11)
O6	0.0365 (11)	0.0621 (14)	0.0288 (10)	0.0173 (10)	0.0040 (8)	-0.0155 (9)
07	0.0216 (8)	0.0273 (9)	0.0217 (8)	0.0019 (7)	0.0005 (7)	-0.0058 (7)
08	0.0248 (9)	0.0262 (9)	0.0313 (9)	-0.0020 (7)	-0.0019 (7)	-0.0107 (7)
09	0.0278 (10)	0.0307 (10)	0.0543 (12)	0.0112 (8)	0.0035 (9)	0.0136 (9)
O10	0.0318 (10)	0.0247 (9)	0.0398 (11)	-0.0078 (7)	0.0103 (8)	-0.0018 (8)
O1W	0.0575 (14)	0.0423 (13)	0.0482 (13)	-0.0186 (11)	0.0043 (10)	-0.0024 (10)
O2W	0.0421 (13)	0.0466 (14)	0.0814 (18)	0.0021 (10)	0.0241 (12)	-0.0010 (12)

Geometric parameters (Å, °)

Cu1—N1	2.0367 (19)	С13—Н13В	0.9600
Cu1—N2	2.0185 (19)	C13—H13C	0.9600
Cu1—O2	2.0180 (16)	C14—C15	1.366 (4)
Cu1—O3	2.1989 (18)	C14—O6	1.376 (3)
Cu1—O7	2.0220 (16)	C14—C19	1.443 (3)
Cu1—O8	2.1537 (17)	C15—C16	1.401 (4)
C1—O1	1.419 (4)	C15—H15	0.9300
C1—H1A	0.9600	C16—C17	1.365 (4)
C1—H1B	0.9600	C16—H16	0.9300
C1—H1C	0.9600	C17—C18	1.412 (3)
C2—C3	1.370 (4)	С17—Н17	0.9300
C2—O1	1.383 (3)	C18—C19	1.422 (3)
C2—C7	1.433 (4)	C18—C20	1.452 (3)
C3—C4	1.396 (5)	C19—07	1.294 (3)
С3—Н3	0.9300	C20—N2	1.279 (3)
C4—C5	1.365 (5)	С20—Н20	0.9300
C4—H4	0.9300	C21—N2	1.472 (3)
C5—C6	1.409 (4)	C21—C24	1.530 (3)
С5—Н5	0.9300	C21—C22	1.544 (3)
C6—C7	1.430 (3)	C21—C23	1.551 (3)
C6—C8	1.450 (4)	C22—O9	1.412 (3)
C7—O2	1.299 (3)	C22—H22A	0.9700
C8—N1	1.278 (3)	С22—Н22В	0.9700
С8—Н8	0.9300	C23-010	1.423 (3)
C9—N1	1.481 (3)	С23—Н23А	0.9700
C9—C10	1.524 (3)	С23—Н23В	0.9700
C9—C12	1.533 (4)	C24—O8	1.428 (3)
C9—C11	1.532 (4)	C24—H24A	0.9700
C10—O4	1.421 (4)	C24—H24B	0.9700
C10—H10A	0.9700	O3—H3A	0.8115
C10—H10B	0.9700	O4—H4A	0.8200
C11—05	1.428 (4)	O5—H5A	0.8200
С11—Н11А	0.9700	O8—H8A	0.8085
С11—Н11В	0.9700	O9—H9	0.8200
C12—O3	1.422 (3)	O10—H10	0.8200
C12—H12A	0.9700	O1W—H1W	0.8520
C12—H12B	0.9700	O1W—H2W	0.8511
C13—O6	1.424 (3)	O2W—H3W	0.8541
C13—H13A	0.9600	O2W—H4W	0.8538
O2—Cu1—N2	99.83 (7)	H13A—C13—H13C	109.5
O2—Cu1—O7	91.93 (7)	H13B—C13—H13C	109.5
N2—Cu1—O7	92.43 (7)	C15—C14—O6	124.6 (2)
O2—Cu1—N1	90.88 (7)	C15—C14—C19	122.7 (2)
N2—Cu1—N1	164.82 (7)	O6—C14—C19	112.8 (2)
O7—Cu1—N1	97.97 (7)	C14—C15—C16	120.7 (2)

02-01-08	84 98 (7)	C14—C15—H15	119 7
N2-Cu1-08	78 82 (7)	C16-C15-H15	119.7
07-Cu1-08	170.05(7)	C_{17} C_{16} C_{15} C_{15}	119.7 118.9(2)
N1-Cu1-O8	91 54 (7)	C17 - C16 - H16	120.6
$\Omega^2 - Cu^2 = \Omega^3$	168 97 (6)	C_{15} C_{16} H_{16}	120.6
$N_2 = Cu_1 = O_3$	100.97(0)	$C_{10} = C_{10} = 110$	120.0 121.0(2)
07 Cu1 03	90.39 (7)	$C_{10} = C_{17} = C_{18}$	121.9 (2)
$N_1 = C_{11} = O_3$	78 22 (7)	$C_{10} = C_{17} = H_{17}$	119.0
0^{8} Cu1 03	78.22(7)	$C_{10} = C_{17} = C_{10}$	119.0 120.7(2)
03 - C1 - 03	95.58 (7) 100 5	C17 - C18 - C19	120.7(2) 115.4(2)
$O_1 = C_1 = H_1 P$	109.5	$C_{1}^{(1)} = C_{18}^{(1)} = C_{20}^{(2)}$	113.4(2) 123.8(2)
	109.5	$C_{19} = C_{18} = C_{20}$	125.0(2) 126.2(2)
	109.5	07 - C19 - C14	120.2(2)
	109.5	0/-019-014	110.0(2)
	109.5	10 - 19 - 14	13.2(2)
	109.5	N2_C20_L18	120.8 (2)
$C_{3} = C_{2} = C_{1}^{2}$	124.0 (3)	$N_2 = C_2 = H_2 O$	110.0
$C_{3} = C_{2} = C_{7}$	121.9 (3)	C18—C20—H20	110.0
01 - 02 - 07	113.5 (2)	N2-C21-C24	108.05 (19)
$C_2 = C_3 = C_4$	121.2 (3)	$N_2 = C_2 I = C_2 Z_2$	114.98 (19)
$C_2 = C_3 = H_3$	119.4	C24-C21-C22	108.01 (19)
C4—C3—H3	119.4	$N_2 = C_2 I_2 = C_2 I_3$	108.37 (18)
C_{3}	118.9 (3)	C_{24} C_{21} C_{23}	108.33 (19)
C3—C4—H4	120.6	$C_{22} = C_{21} = C_{23}$	108.92 (19)
C3—C4—H4	120.6	09 - C22 - C21	109.19 (19)
C4—C5—C6	121.9 (3)	09—022—H22A	109.8
C4—C5—H5	119.0	С21—С22—Н22А	109.8
C6—C5—H5	119.1	09—C22—H22B	109.8
C5—C6—C7	120.1 (2)	С21—С22—Н22В	109.8
C5-C6-C8	116.5 (2)	H22A—C22—H22B	108.3
C7—C6—C8	123.3 (2)	O10—C23—C21	112.36 (19)
02—C7—C6	124.2 (2)	O10—C23—H23A	109.1
O2—C7—C2	120.0 (2)	C21—C23—H23A	109.1
C6—C7—C2	115.8 (2)	O10—C23—H23B	109.1
N1—C8—C6	126.9 (2)	С21—С23—Н23В	109.1
N1—C8—H8	116.6	H23A—C23—H23B	107.9
С6—С8—Н8	116.6	O8—C24—C21	109.23 (18)
N1—C9—C10	116.2 (2)	08—C24—H24A	109.8
N1—C9—C12	106.37 (19)	C21—C24—H24A	109.8
C10—C9—C12	109.9 (2)	O8—C24—H24B	109.8
N1—C9—C11	108.37 (19)	C21—C24—H24B	109.8
C10—C9—C11	107.6 (2)	H24A—C24—H24B	108.3
C12—C9—C11	108.3 (2)	C8—N1—C9	120.4 (2)
O4—C10—C9	111.2 (2)	C8—N1—Cu1	123.88 (17)
O4—C10—H10A	109.4	C9—N1—Cu1	115.57 (15)
C9—C10—H10A	109.4	C20—N2—C21	119.4 (2)
O4—C10—H10B	109.4	C20—N2—Cu1	123.80 (16)
C9—C10—H10B	109.4	C21—N2—Cu1	116.77 (14)
H10A—C10—H10B	108.0	C2	117.8 (2)

O5—C11—C9	109.3 (2)	C7—O2—Cu1		122.38 (14)	
O5—C11—H11A	109.8	C12-O3-Cu1		110.35 (14)	
С9—С11—Н11А	109.8	С12—О3—НЗА		107.2	
O5—C11—H11B	109.8	Cu1—O3—H3A		119.7	
С9—С11—Н11В	109.8	C10—O4—H4A		109.5	
H11A—C11—H11B	108.3	С11—О5—Н5А		109.5	
O3—C12—C9	108.8 (2)	C14—O6—C13		117.1 (2)	
O3—C12—H12A	109.9	C19-07-Cu1		123.85 (15)	
C9—C12—H12A	109.9	C24—O8—Cu1		111.75 (13)	
O3—C12—H12B	109.9	С24—О8—Н8А		111.3	
C9—C12—H12B	109.9	Cu1—O8—H8A		117.0	
H12A—C12—H12B	108.3	С22—О9—Н9		109.5	
O6-C13-H13A	109.5	C23—O10—H10		109.5	
O6-C13-H13B	109.5	H1W—O1W—H2W		107.6	
H13A—C13—H13B	109.5	H3W—O2W—H4W		108.2	
O6-C13-H13C	109.5				
Hydrogen-bond geometry $(A, °)$					
D—H···A	<i>D</i> —Н	H…A	D····A	D—H···A	
03—H3 <i>A</i> ···O10 ⁱ	0.81	1.94	2.748 (3)	176	
O4—H4A····O6 ⁱⁱ	0.82	2.08	2.681 (3)	130	
O4—H4A····O7 ⁱⁱ	0.82	2.25	2.997 (3)	152	
O5—H5 <i>A</i> ⋯O2 <i>W</i>	0.82	2.21	2.649 (4)	114	
O8—H8 <i>A</i> …O1 <i>W</i> ⁱⁱⁱ	0.81	1.88	2.689 (3)	175	
O9—H9…O2 ⁱ	0.82	1.91	2.670 (3)	153	
O10—H10····O9 ^{iv}	0.82	2.04	2.685 (3)	135	
O1W— $H1W$ ··· $O2W$ ^v	0.85	1.95	2.790 (3)	168	
$O1W - H2W - O4^{vi}$	0.85	2.13	2.969 (3)	170	
O2 <i>W</i> —H3 <i>W</i> …O1 ⁱⁱ			. ,		
	0.85	2.02	2.866 (3)	169	
O2 <i>W</i> —H4 <i>W</i> ···O5	0.85	2.02 1.83	2.866 (3) 2.649 (4)	169 159	

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+1, y-1/2, -z+3/2; (iii) x, y-1, z; (iv) -x+2, y+1/2, -z+3/2; (v) -x+1, y+1/2, -z+3/2; (vi) x, y+1, z.