organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-Ethyl 2,4-diphenyl-3-(propylamino)but-2-enoate

Huimin Jin,* Peifan Li, Bin Liu and Xiaoqing Cheng

Department of Pharmaceuticals, Tianjin Medical College, Tianjin 300222, People's Republic of China

Correspondence e-mail: huiminjin@yahoo.cn

Received 23 December 2008; accepted 25 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.060; wR factor = 0.198; data-to-parameter ratio = 14.3.

The title compound, $C_{21}H_{25}NO_2$, adopts a Z conformation about the C=C double bond. The molecular structure is stabilized by an intramolecular $N-H\cdots O$ hydrogen bond and the dihedral angle between the aromatic ring planes is 76.04 (12)°. The atoms of the ethyl substituent are disordered over two sets of sites in a 0.60 (2):0.40 (2) ratio.

Related literature

For the synthesis, see: Du *et al.* (2006). For background, see: Xue *et al.* (2007).

Experimental

Crystal data C₂₁H₂₅NO₂

 $M_r = 323.42$

Monochnic, PZ_1/n	Z = 4
a = 12.186 (2) Å	Mo $K\alpha$ radiation
b = 8.4771 (17) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 19.080 (4) Å	T = 293 (2) K
$\beta = 106.33 \ (3)^{\circ}$	$0.28 \times 0.22 \times 0.18 \text{ mm}$
V = 1891.4 (7) Å ³	
Data collection	
Rigaku Saturn diffractometer	12325 measured reflections
Absorption correction: multi-scan	3323 independent reflections
(CrystalClear; Rigaku/MSC,	2290 reflections with $I > 2\sigma(I)$
2005)	$R_{\rm int} = 0.034$
$T_{\min} = 0.980, \ T_{\max} = 0.987$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.060$	H atoms treated by a mixture
$wR(F^2) = 0.198$	independent and constraine

$X[F > 2\sigma(F)] = 0.060$	H atoms treated by a mixture of
$vR(F^2) = 0.198$	independent and constrained
S = 1.06	refinement
3323 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
232 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
5 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

		/		
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O2$	0.905 (16)	1.925 (17)	2.653 (3)	136.3 (14)

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Technology Fund of Tianjin Bureau of Public Health (grant No. 04KY36) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2886).

References

Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919–5922.
Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Xue, J. Y., Xiao, Z. P., Shi, L., Tan, S. H., Li, H. Q. & Zhu, H. L. (2007). Aust. J. Chem. 60, 957–962.

supporting information

Acta Cryst. (2009). E65, o236 [doi:10.1107/S160053680804395X]

(Z)-Ethyl 2,4-diphenyl-3-(propylamino)but-2-enoate

Huimin Jin, Peifan Li, Bin Liu and Xiaoqing Cheng

S1. Comment

Enamine compounds have been considered to be potential antibacterial agents (Xue *et al.*, 2007) and found important application in the synthesis of N-containint heterocylcles (Du *et al.*, 2006). To further study the structure and activity relationship, we determine the crystal structure of the title compound, (I).

In the molecular structure (Fig. 1), the torsion angles of N1—C11—C7—C6 and C8—C7—C11—C12 are -177.32 (17) and -175.14 (16)°, respectively. Furthermore, the distances C7—C11 and C11—N1 are 1.381 (3), 1.348 (3)Å, respectively. Both of these features confirm the enamine structure formation. The two phenyl rings constructed an angle of 76.04 (12)°. The molecule adopts a *Z*-conformation, being stabilised by an intramolecular N—H…O hydrogen bond (Table 1).

S2. Experimental

The title compound was prepared according to the method of the literature (Du, *et al.*, 2006). Colourless blocks of (I) were grown from a mixture of ethyl actate and petroleum ether.

S3. Refinement

The non-N H atoms were positioned geometrically (C—H = 0.93-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(CH)$ and CH₂) or $1.5U_{eq}(CH_3)$. The N—H distance was refined with the restraint of 0.90 (1) Å, and the C19—C20, C20—C21, C9—C10 and C9—C10' with the restraint of 1.54 (1) Å. The ethyl radical of the ester moiety was found to be disordered, with the site occupancy ratio of 0.40 (2):0.60 (2).

Figure 1

The molecular structure of (I) with 50% probability displacement ellipsoids. The dashed line indicates the intramolecular N—H···O hydrogen bond.

(Z)-Ethyl 2,4-diphenyl-3-(propylamino)but-2-enoate

Crystal data

C₂₁H₂₅NO₂ $M_r = 323.42$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.186 (2) Å b = 8.4771 (17) Å c = 19.080 (4) Å $\beta = 106.33$ (3)° V = 1891.4 (7) Å³ Z = 4

Data collection

Rigaku Saturn diffractometer Radiation source: rotating anode Confocal monochromator Detector resolution: 7.31 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\min} = 0.980, T_{\max} = 0.987$ F(000) = 696 $D_x = 1.136 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4099 reflections $\theta = 2.2-27.1^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.28 \times 0.22 \times 0.18 \text{ mm}$

12325 measured reflections 3323 independent reflections 2290 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -9 \rightarrow 10$ $l = -21 \rightarrow 22$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H atoms treated by a mixture of independent
$wR(F^2) = 0.198$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.1207P)^2 + 0.019P]$
3323 reflections	where $P = (F_o^2 + 2F_c^2)/3$
232 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
5 restraints	$\Delta ho_{ m max} = 0.24 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.079 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.98880 (16)	0.7415 (2)	0.24987 (10)	0.0936 (6)	
02	1.07264 (14)	0.97745 (19)	0.24972 (8)	0.0791 (5)	
N1	0.95170 (17)	1.1941 (2)	0.16036 (11)	0.0710 (6)	
C1	0.7770 (2)	0.7362 (3)	0.07667 (13)	0.0723 (7)	
H1	0.8213	0.7655	0.0463	0.087*	
C2	0.6935 (2)	0.6239 (3)	0.05278 (16)	0.0864 (8)	
H2A	0.6812	0.5794	0.0067	0.104*	
C3	0.6286 (2)	0.5778 (3)	0.09719 (18)	0.0906 (8)	
H3A	0.5719	0.5018	0.0814	0.109*	
C4	0.6473 (2)	0.6434 (4)	0.16427 (18)	0.0977 (9)	
H4A	0.6038	0.6115	0.1947	0.117*	
C5	0.7302 (2)	0.7568 (3)	0.18764 (14)	0.0829 (8)	
H5A	0.7415	0.8007	0.2338	0.099*	
C6	0.79728 (17)	0.8072 (2)	0.14437 (11)	0.0591 (6)	
C7	0.88662 (17)	0.9301 (2)	0.16911 (10)	0.0572 (6)	
C8	0.99038 (19)	0.8903 (3)	0.22513 (12)	0.0654 (6)	
C9	1.0852 (3)	0.6899 (4)	0.30878 (18)	0.1159 (11)	0.60 (2)
H9A	1.1075	0.5855	0.2971	0.139*	0.60 (2)
H9B	1.1489	0.7602	0.3112	0.139*	0.60 (2)
C10	1.0665 (11)	0.684 (2)	0.3778 (4)	0.133 (4)	0.60 (2)
H10A	1.1353	0.6512	0.4133	0.199*	0.60 (2)
H10B	1.0063	0.6106	0.3770	0.199*	0.60 (2)
H10C	1.0450	0.7871	0.3904	0.199*	0.60 (2)

C9′	1.0852 (3)	0.6899 (4)	0.30878 (18)	0.1159 (11)	0.40(2)
H9'A	1.1328	0.7787	0.3306	0.139*	0.40 (2)
H9′B	1.1314	0.6146	0.2913	0.139*	0.40(2)
C10′	1.0339 (12)	0.616 (2)	0.3618 (8)	0.111 (4)	0.40 (2)
H10D	1.0935	0.5788	0.4030	0.166*	0.40(2)
H10E	0.9871	0.5285	0.3392	0.166*	0.40(2)
H10F	0.9879	0.6918	0.3779	0.166*	0.40(2)
C11	0.87065 (17)	1.0815 (2)	0.14123 (11)	0.0588 (6)	
C12	0.75990 (17)	1.1280 (2)	0.08755 (11)	0.0618 (6)	
H12A	0.7336	1.2250	0.1045	0.074*	
H12B	0.7036	1.0471	0.0876	0.074*	
C13	0.76341 (16)	1.1525 (2)	0.00975 (11)	0.0565 (5)	
C14	0.6757 (2)	1.2334 (3)	-0.03842 (14)	0.0745 (7)	
H14A	0.6150	1.2716	-0.0228	0.089*	
C15	0.6773 (3)	1.2584 (3)	-0.11014 (15)	0.0918 (8)	
H15A	0.6185	1.3148	-0.1419	0.110*	
C16	0.7651 (2)	1.2003 (3)	-0.13433 (14)	0.0849 (8)	
H16A	0.7663	1.2175	-0.1822	0.102*	
C17	0.8495 (2)	1.1182 (3)	-0.08805 (14)	0.0803 (7)	
H17A	0.9085	1.0766	-0.1045	0.096*	
C18	0.84946 (18)	1.0953 (3)	-0.01624 (12)	0.0706 (6)	
H18A	0.9093	1.0397	0.0151	0.085*	
C19	0.9397 (2)	1.3609 (3)	0.14108 (16)	0.0837 (8)	
H19A	0.9085	1.4167	0.1755	0.100*	
H19B	0.8867	1.3728	0.0928	0.100*	
C20	1.0546 (3)	1.4324 (3)	0.14196 (19)	0.1120 (11)	
H20A	1.0446	1.5452	0.1344	0.134*	
H20B	1.1070	1.4167	0.1902	0.134*	
C21	1.1081 (3)	1.3697 (4)	0.0878 (3)	0.1381 (14)	
H21A	1.1817	1.4177	0.0946	0.207*	
H21B	1.0605	1.3929	0.0396	0.207*	
H21C	1.1169	1.2576	0.0937	0.207*	
H1A	1.0180 (11)	1.163 (2)	0.1924 (9)	0.065 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0861 (12)	0.0898 (12)	0.0851 (13)	0.0094 (9)	-0.0083 (10)	0.0275 (9)
O2	0.0732 (11)	0.0914 (11)	0.0625 (10)	0.0011 (8)	0.0026 (8)	-0.0069 (8)
N1	0.0710 (13)	0.0671 (11)	0.0688 (13)	-0.0032 (9)	0.0099 (11)	0.0003 (9)
C1	0.0817 (16)	0.0716 (13)	0.0667 (15)	-0.0068 (11)	0.0257 (13)	-0.0040 (11)
C2	0.0884 (17)	0.0779 (15)	0.0873 (18)	-0.0122 (13)	0.0156 (15)	-0.0051 (13)
C3	0.0755 (16)	0.0790 (16)	0.107 (2)	-0.0092 (12)	0.0090 (16)	0.0195 (15)
C4	0.0823 (18)	0.119 (2)	0.094 (2)	-0.0134 (16)	0.0297 (17)	0.0302 (18)
C5	0.0798 (17)	0.1103 (19)	0.0628 (15)	-0.0056 (14)	0.0270 (14)	0.0115 (13)
C6	0.0591 (12)	0.0645 (12)	0.0522 (12)	0.0079 (9)	0.0132 (10)	0.0094 (10)
C7	0.0629 (12)	0.0659 (12)	0.0428 (11)	0.0084 (9)	0.0148 (9)	0.0027 (9)
C8	0.0712 (14)	0.0745 (13)	0.0487 (12)	0.0090 (11)	0.0138 (11)	-0.0020 (11)

С9	0.096 (2)	0.133 (2)	0.094 (2)	0.0225 (18)	-0.0132 (18)	0.040 (2)
C10	0.102 (6)	0.194 (10)	0.081 (5)	0.043 (6)	-0.010 (4)	-0.022 (5)
C9′	0.096 (2)	0.133 (2)	0.094 (2)	0.0225 (18)	-0.0132 (18)	0.040 (2)
C10′	0.119 (8)	0.129 (9)	0.060 (6)	-0.016 (7)	-0.015 (5)	0.041 (6)
C11	0.0645 (12)	0.0669 (12)	0.0475 (11)	0.0055 (9)	0.0197 (10)	-0.0032 (9)
C12	0.0585 (12)	0.0668 (12)	0.0617 (13)	0.0101 (9)	0.0196 (10)	0.0044 (10)
C13	0.0568 (12)	0.0509 (10)	0.0576 (12)	-0.0005 (8)	0.0092 (10)	0.0023 (9)
C14	0.0717 (15)	0.0751 (14)	0.0690 (16)	0.0136 (11)	0.0071 (12)	0.0039 (12)
C15	0.095 (2)	0.0952 (18)	0.0692 (17)	0.0136 (14)	-0.0033 (15)	0.0173 (14)
C16	0.0953 (19)	0.0984 (18)	0.0556 (14)	-0.0162 (15)	0.0123 (14)	0.0129 (13)
C17	0.0747 (16)	0.1049 (18)	0.0626 (15)	0.0008 (13)	0.0213 (13)	0.0083 (13)
C18	0.0618 (13)	0.0874 (15)	0.0608 (14)	0.0117 (11)	0.0144 (11)	0.0121 (11)
C19	0.0904 (17)	0.0636 (14)	0.099 (2)	-0.0011 (12)	0.0290 (15)	-0.0085 (13)
C20	0.129 (3)	0.0726 (16)	0.138 (3)	-0.0143 (16)	0.044 (2)	-0.0030 (17)
C21	0.136 (3)	0.100 (2)	0.205 (4)	-0.006 (2)	0.092 (3)	-0.004 (2)

Geometric parameters (Å, °)

01-C8	1.349 (3)	С10′—Н10Е	0.9600
O1—C9	1.446 (3)	C10′—H10F	0.9600
O2—C8	1.227 (3)	C11—C12	1.499 (3)
N1—C11	1.348 (3)	C12—C13	1.511 (3)
N1—C19	1.458 (3)	C12—H12A	0.9700
N1—H1A	0.905 (10)	C12—H12B	0.9700
C1—C2	1.374 (3)	C13—C18	1.369 (3)
C1—C6	1.383 (3)	C13—C14	1.381 (3)
C1—H1	0.9300	C14—C15	1.390 (4)
C2—C3	1.369 (4)	C14—H14A	0.9300
C2—H2A	0.9300	C15—C16	1.370 (4)
C3—C4	1.355 (4)	C15—H15A	0.9300
С3—НЗА	0.9300	C16—C17	1.346 (3)
C4—C5	1.375 (4)	C16—H16A	0.9300
C4—H4A	0.9300	C17—C18	1.384 (3)
C5—C6	1.383 (3)	С17—Н17А	0.9300
С5—Н5А	0.9300	C18—H18A	0.9300
C6—C7	1.485 (3)	C19—C20	1.522 (3)
C7—C11	1.381 (3)	С19—Н19А	0.9700
C7—C8	1.448 (3)	C19—H19B	0.9700
C9—C10	1.399 (7)	C20—C21	1.467 (4)
С9—Н9А	0.9700	C20—H20A	0.9700
С9—Н9В	0.9700	С20—Н20В	0.9700
C10—H10A	0.9600	C21—H21A	0.9600
C10—H10B	0.9600	C21—H21B	0.9600
C10—H10C	0.9600	C21—H21C	0.9600
C10'—H10D	0.9600		
C8—O1—C9	117.8 (2)	N1-C11-C12	116.66 (18)
C11—N1—C19	127.2 (2)	C7—C11—C12	120.63 (19)

C11—N1—H1A	114.9 (13)	C11—C12—C13	116.00 (16)
C19—N1—H1A	117.5 (13)	C11—C12—H12A	108.3
C2—C1—C6	122.2 (2)	C13—C12—H12A	108.3
C2—C1—H1	118.9	C11—C12—H12B	108.3
C6—C1—H1	118.9	C13—C12—H12B	108.3
C3—C2—C1	119.7 (3)	H12A—C12—H12B	107.4
C3—C2—H2A	120.2	C18—C13—C14	117.6 (2)
C1—C2—H2A	120.2	C18—C13—C12	122.92 (19)
C4—C3—C2	119.6 (3)	C14—C13—C12	119.44 (18)
С4—С3—Н3А	120.2	C13—C14—C15	120.5 (2)
С2—С3—НЗА	120.2	C13—C14—H14A	119.7
C3—C4—C5	120.4 (2)	C15—C14—H14A	119.7
С3—С4—Н4А	119.8	C16—C15—C14	120.4 (2)
C5—C4—H4A	119.8	C16—C15—H15A	119.8
C4—C5—C6	121.8 (2)	C14—C15—H15A	119.8
C4—C5—H5A	119.1	C17—C16—C15	119.3 (2)
С6—С5—Н5А	119.1	C17—C16—H16A	120.3
C1—C6—C5	116.3 (2)	C15—C16—H16A	120.3
C1—C6—C7	121.66 (17)	C16—C17—C18	120.6 (2)
C5—C6—C7	122.1 (2)	С16—С17—Н17А	119.7
C11—C7—C8	120.0 (2)	С18—С17—Н17А	119.7
C11—C7—C6	121.21 (19)	C13—C18—C17	121.5 (2)
C8—C7—C6	118.74 (18)	C13—C18—H18A	119.2
O2—C8—O1	121.3 (2)	C17—C18—H18A	119.2
O2—C8—C7	126.3 (2)	N1—C19—C20	110.9 (2)
O1—C8—C7	112.4 (2)	N1—C19—H19A	109.5
C10—C9—O1	115.5 (5)	С20—С19—Н19А	109.5
С10—С9—Н9А	108.4	N1—C19—H19B	109.5
О1—С9—Н9А	108.4	C20—C19—H19B	109.5
С10—С9—Н9В	108.4	H19A—C19—H19B	108.0
O1—C9—H9B	108.4	C21—C20—C19	115.9 (3)
Н9А—С9—Н9В	107.5	C21—C20—H20A	108.3
C9—C10—H10A	109.5	C19—C20—H20A	108.3
C9—C10—H10B	109.5	C21—C20—H20B	108.3
H10A—C10—H10B	109.5	C19—C20—H20B	108.3
C9—C10—H10C	109.5	H20A—C20—H20B	107.4
H10A—C10—H10C	109.5	C20—C21—H21A	109.5
H10B-C10-H10C	109.5	C20—C21—H21B	109.5
H10D—C10′—H10E	109.5	H21A—C21—H21B	109.5
H10D—C10′—H10F	109.5	C20—C21—H21C	109.5
H10E—C10′—H10F	109.5	H21A—C21—H21C	109.5
N1-C11-C7	122.7 (2)	H21B—C21—H21C	109.5
C6 $C1$ $C2$ $C3$	-0.9(4)	C10 N1 C11 C12	74(3)
$C_1 = C_2 = C_3$	$(-1)^{(-1)}$	$C_{1} = 1_{1} = 0_{11} = 0_{12}$	1.7(3)
$C_1 - C_2 - C_3 - C_4$	0.0(4)	$C_{0} = C_{1} = C_{11} = N_{11}$	-177 22 (17)
$C_2 = C_3 = C_4 = C_5$	-0.3(4)	C8 - C7 - C11 - C12	-175 14 (16)
$C_{2} = C_{1} = C_{6} = C_{5}$	1 2 (3)	C6-C7-C11-C12	29(3)
	·· (-)		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.1 (2) -0.5 (4) 179.7 (2) 74.3 (3) -105.9 (2) -107.6 (2) 72.1 (3) 2.7 (3) -176.8 (2) -3.9 (3) 178.02 (18) 175.63 (17) -2.5 (2) 103.2 (10)	$\begin{array}{c} N1 &C11 &C12 &C13 \\ C7 &C11 &C12 &C13 \\ C11 &C12 &C13 &C18 \\ C11 &C12 &C13 &C14 \\ C18 &C13 &C14 &C15 \\ C12 &C13 &C14 &C15 \\ C13 &C14 &C15 &C16 \\ C14 &C15 &C16 &C17 \\ C15 &C16 &C17 &C18 \\ C14 &C13 &C18 &C17 \\ C12 &C13 &C18 &C17 \\ C16 &C17 &C18 &C13 \\ C11 &N1 &C19 &C20 \\ N1 &C19 &C20 &C21 \\ \end{array}$	71.9 (2) -108.3 (2) 17.9 (3) -163.29 (19) -1.5 (3) 179.6 (2) 1.2 (4) 0.3 (4) -1.4 (4) 0.4 (3) 179.3 (2) 1.1 (4) -154.4 (2) 64.4 (4)
C8-01-C9-C10 C19-N1-C11-C7	$\begin{array}{c} 103.2 \\ 103.2 \\ (10) \\ -172.39 \\ (19) \end{array}$	N1—C19—C20—C21	64.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N1—H1 <i>A</i> ···O2	0.91 (2)	1.93 (2)	2.653 (3)	136 (1)