organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1',3',3'-Trimethyl-2,3-diphenyl-2,3-dihydroisoxazole-5(4*H*)-spiro-2'-indoline

Naoual Laghrib,^a Jean-Claude Daran,^b Rachid Fihi,^a Lhou Majidi^a and Mohamed Azrour^c*

^aLaboratoire des Substances Naturelles & Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, ^bLaboratoire de Chimie de Coordination, UPR–CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France, and ^cLaboratoire de Physico-Chimie des Matèriaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco Correspondence e-mail: mohamedazrour@yahoo.fr

Received 30 December 2008; accepted 15 January 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.105; data-to-parameter ratio = 7.9.

Two diastereoisomers of the title compound, $C_{25}H_{26}N_2O$, have been prepared by cycloaddition between 1,3,3-trimethyl-2methyleneindoline and *C*-phenyl-*N*-phenylnitrone. The stereochemistry of the major diastereoisomer, *viz. S*,*R*/*R*,*S*, is confirmed by the X-ray analysis. The oxazole and the pyrole rings have envelope conformations. The packing is stabilized by weak $C-H\cdots\pi$ interactions involving the phenyl ring attached to the N atom of the oxazole and the phenyl ring of the indole fragment.

Related literature

For general background, see: Alonso-Perarnau *et al.* (1997); Cacciarini *et al.* (2000); Pariera *et al.* (1993). For related studies, see: Daran *et al.* (2006); Fihi *et al.* (1995, 2004); Roussel *et al.* (2000, 2003). For the synthetic procedure, see: Brüning *et al.* (1973). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

$C_{25}H_{26}N_2O$
$M_r = 370.48$
Orthorhombic, Pna21
<i>a</i> = 18.0393 (18) Å

D = 8.9854 (7) A
c = 12.3947 (9) A
V = 2009.1 (3) Å
Z = 4

0.0054 (7)

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Stoe IPDS diffractometer Absorption correction: none 19030 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.105$ S = 1.152021 reflections 256 parameters

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

Cg1 is the centroid of the C21–C26 ring and Cg2 is the centroid of the C3–C8 ring.

T = 180 (2) K

 $R_{\rm int} = 0.059$

1 restraint

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

 $0.48 \times 0.36 \times 0.28 \text{ mm}$

2021 independent reflections 1581 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

$\begin{array}{ccccccc} C7 - H7 \cdots Cg1^{i} & 0.95 & 2.89 & 3.735 \ (3) & 149 \\ C23 - H23 \cdots Cg2^{ii} & 0.95 & 2.95 & 3.803 \ (4) & 150 \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$C7 - H7 \cdots Cg1^{i}$ $C23 - H23 \cdots Cg2^{ii}$	0.95 0.95	2.89 2.95	3.735 (3) 3.803 (4)	149 150

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, -y + 2, z - \frac{1}{2}$.

Data collection: *IPDS* (Stoe & Cie, 2000); cell refinement: *IPDS*; data reduction: *X-RED* (Stoe & Cie, 1996); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2228).

References

- Alonso-Perarnau, D., De March, P., El Arrad, M., Figueredo, M., Font, J. & Parella, T. (1997). *Tetrahedron*, **53**, 14763–14772.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brüning, I., Grashey, R., Hauck, H., Huisgen, R. & Seidel, H. (1973). Org. Synth. Coll. V, pp. 1124–1129.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cacciarini, M., Cordero, M., Faggi, C. & Goti, A. (2000). Molecules, 5, 637-647.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Daran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). *Acta Cryst.* E62, 0329–0331.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg. 104, 1, 55–62.
- Fihi, R., Majidi, L. & Zair, T. (2004). J. Mar. Chim. Heterocycl. 3, 52-56.
- Pariera, S. M., Savage, J. P., Simpson, G. W., Greenword, R. J. & Mackay, M. F. (1993). *Tetrahedron*, 6, 1401–1412.
- Roussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem. 24, 471–476.
- Roussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689–2698.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1996). X-RED. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2000). IPDS Manual. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2009). E65, o374 [doi:10.1107/S1600536809002062]

1',3',3'-Trimethyl-2,3-diphenyl-2,3-dihydroisoxazole-5(4H)-spiro-2'-indoline

Naoual Laghrib, Jean-Claude Daran, Rachid Fihi, Lhou Majidi and Mohamed Azrour

S1. Comment

Heterocyclic spirocompounds are of interest in synthetic organic chemistry (Pariera *et al.*, 1993; Alonso-Perarnau *et al.*, 1997; Cacciarini *et al.*, 2000). The cycloaddition between dipolarophiles bearing an exocyclic carbon-carbon double bond and appropriate1,3-dipoles is one of the best methods for the synthesis of bicyclic spirocompounds.

As part of our research on bicyclic spirocompounds (Fihi *et al.*, 1995; Roussel *et al.*, 2000, 2003; Daran *et al.*, 2006), we reported that methylene lactones react with 1,3-dipoles with high selectivity. In a previous article (Fihi *et al.*, 2004) we reported that 1,3-dipolar cycloaddition of arylnitriloxydes and *N*-Phenylarylnitrilimines to 5-chloro-2-methyl-ene-1,3,3-trimethylindoline is regiospecific. Arylnitriloxydes reactions lead to spiroheterocyclic compounds, whereas *N*-phenylarylnitrilimines reactions afforded evolutives products.

We report here, the cycloaddition of *C*-phenyl-*N*-phenylnitrone (2) to 2-methylene-1,3,3-trimethylindoline (1). The reaction produced a mixture of diastereoisomers (Fig. 2). The ratio (77 / 23%) of which was evaluated by ¹HNMR (performed on the crude reaction mixture). To confirm unambiguously the structure assignment of (3) and (3'), and to establish the stereochemistry of each spiroheterocycle, an X-ray structural analyses was carried out on the major spirocompound, because the ¹H and ¹³CNMR studies did not provide unambiguous information.

The stereochemistry of the major diastereoisomer, *S*,*R*/*R*,*S*, is confirmed by the X-ray analyses (Fig. 1). The oxazole and the pyrole rings have an envelope conformation with puckering parameters $Q(2)=0.399~(3)^\circ$, $\varphi(2)=218.9~(5)^\circ$ and $Q(2)=0.274~(3)^\circ$, $\varphi(2)=218.9~(7)^\circ$ (Cremer & Pople, 1975). The packing is stabilized by weak C—H··· π interactions involving the phenyl attached to the nitrogen of the oxazole and the phenyl of the indole fragment (Table 1: *Cg*1is the centroid of the C21—C26 ring and *Cg2* is the centroid of the C3—C8 ring).

S2. Experimental

2-Methylene-1,3,3-trimethylindoline (1) is a commercial product. *C*-phenyl, *N*-diphenylnitrone (2) was synthesized according to the literature procedure (Brüning *et al.*, 1973). A solution of (2) (1 g, 6 mmol), (1) (1,12 g, 6 mmol) in ethylacetate (40 ml) was stirred at reflux for 24 h. The solvent was then evaporated under reduced pressure. The residue was crystallized from ethanol, leading to a mixture of diastereiosomers (3) and (3'). They were separated and purified by chromatography on silica gel (eluant: dichloromethane / hexane: 10 / 90). The spirocompounds were finally recrystallized from dichloromethane.

S3. Refinement

All H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.98 Å (methyl), 0.99 Å (methylene), 1.0 Å (methine) and 0.95 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(aromatic, methylene and methine)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$.

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and the Friedel pairs were merged and any references to the Flack parameter were removed.

Figure 1

Molecular view of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.

Figure 2

The formation of the title compound.

1',3',3'-Trimethyl-2,3-diphenyl-2,3-dihydroisoxazole-5(4H)-spiro- 2'-indoline

Crystal data

 $C_{25}H_{26}N_{2}O$ $M_{r} = 370.48$ Orthorhombic, *Pna*2₁ Hall symbol: P 2c -2n *a* = 18.0393 (18) Å *b* = 8.9854 (7) Å *c* = 12.3947 (9) Å *V* = 2009.1 (3) Å³ *Z* = 4

Data collection

Stoe IPDS	1581 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.059$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Graphite monochromator	$h = -22 \rightarrow 22$
φ scans	$k = -11 \rightarrow 11$
19030 measured reflections	$l = -14 \rightarrow 14$
2021 independent reflections	

F(000) = 792

 $\theta = 1.7 - 26.2^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 180 K

Prism, colorless $0.48 \times 0.36 \times 0.28$ mm

 $D_{\rm x} = 1.225 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 8000 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$w R(F^2) = 0.105$	neighbouring sites
$WR(F^2) = 0.105$ S = 1.15 2021 reflections 256 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.061P)^2]$ where $P = (F_o^2 + 2F_o^2)/3$
1 restraint	$(\Delta/\sigma)_{max} = 0.007$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$

Special details

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (*IPDS*). The crystal-to-detector distance was 70 mm. 167 frames (4 min per frame) were obtained with $0 < \varphi < 250.5^{\circ}$ and with the crystals rotated through 1.5° in φ . Coverage of the unique set was over 97.4% complete to at least 26.04°. Crystal decay was monitored by measuring 200 reflections per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.43438 (17)	0.9280 (3)	0.0510(3)	0.0360 (7)	
C2	0.52004 (18)	0.9356 (3)	0.0701 (3)	0.0398 (7)	

C3	0.53941 (16)	1.0776 (3)	0.0091 (3)	0.0346 (7)
C4	0.60643 (18)	1.1346 (4)	-0.0231 (3)	0.0470 (8)
H4	0.6508	1.0802	-0.0111	0.056*
C5	0.6086 (2)	1.2734 (4)	-0.0738 (3)	0.0523 (9)
Н5	0.6547	1.3141	-0.0964	0.063*
C6	0.5439 (2)	1.3510 (4)	-0.0909(3)	0.0482 (9)
H6	0.5460	1.4452	-0.1256	0.058*
C7	0.47568 (18)	1.2952 (3)	-0.0588(3)	0.0412 (7)
H7	0.4312	1.3493	-0.0710	0.049*
C8	0.47495 (15)	1.1576 (3)	-0.0082(3)	0.0327 (7)
C9	0.34450 (16)	0.7260 (3)	0.0744 (3)	0.0363 (7)
H9	0.2955	0.7656	0.0500	0.044*
C10	0.38766 (19)	0.8462 (4)	0.1354 (3)	0.0458 (8)
H10A	0.3531	0.9161	0.1713	0.055*
H10B	0.4199	0.8006	0.1908	0.055*
C21	0.36716 (14)	0.6294 (3)	-0.1120 (2)	0.0294 (6)
C22	0.40480 (18)	0.6491 (3)	-0.2083 (3)	0.0367 (7)
H22	0.4453	0.7164	-0.2117	0.044*
C23	0.38362 (18)	0.5708 (3)	-0.2998(3)	0.0429 (7)
H23	0.4091	0.5856	-0.3660	0.051*
C24	0.32514 (17)	0.4710 (4)	-0.2943 (3)	0.0438 (8)
H24	0.3110	0.4163	-0.3565	0.053*
C25	0.28787 (18)	0.4513 (4)	-0.1993 (3)	0.0414 (8)
H25	0.2482	0.3821	-0.1959	0.050*
C26	0.30746 (15)	0.5317 (3)	-0.1074 (3)	0.0352 (7)
H26	0.2803	0.5199	-0.0423	0.042*
C91	0.33383 (16)	0.5862 (3)	0.1405 (3)	0.0359 (7)
C92	0.39087 (17)	0.4871 (3)	0.1574 (3)	0.0418 (8)
H92	0.4380	0.5056	0.1259	0.050*
C93	0.3806 (2)	0.3610 (4)	0.2195 (3)	0.0511 (9)
H93	0.4205	0.2936	0.2302	0.061*
C94	0.3131 (2)	0.3330 (4)	0.2658 (3)	0.0537 (9)
H94	0.3064	0.2460	0.3082	0.064*
C95	0.2549 (2)	0.4299 (4)	0.2513 (3)	0.0532 (9)
H95	0.2083	0.4109	0.2841	0.064*
C96	0.26512 (18)	0.5563 (4)	0.1878 (3)	0.0462 (8)
H96	0.2249	0.6229	0.1767	0.055*
C111	0.33893 (17)	1.1202 (4)	0.0002 (4)	0.0526 (9)
H11A	0.3290	1.2248	0.0175	0.079*
H11B	0.3032	1.0567	0.0380	0.079*
H11C	0.3342	1.1051	-0.0778	0.079*
C211	0.5371 (2)	0.9600 (4)	0.1901 (3)	0.0531 (9)
H21A	0.5894	0.9871	0.1986	0.080*
H21B	0.5270	0.8682	0.2301	0.080*
H21C	0.5058	1.0403	0.2181	0.080*
C212	0.5604 (2)	0.7992 (4)	0.0285 (4)	0.0576 (11)
H21D	0.5484	0.7845	-0.0479	0.086*
H21E	0.5448	0.7117	0.0698	0.086*

supporting information

H21F	0.6139	0.8134	0.0366	0.086*	
N1	0.41386 (13)	1.0819 (2)	0.0341 (2)	0.0369 (6)	
N2	0.39329 (13)	0.7023 (2)	-0.0180 (2)	0.0323 (6)	
01	0.41789 (11)	0.8501 (2)	-0.04964 (17)	0.0370 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0486 (17)	0.0268 (14)	0.0327 (18)	-0.0061 (13)	0.0006 (14)	-0.0026 (13)
C2	0.0508 (18)	0.0289 (15)	0.040 (2)	0.0018 (13)	-0.0082 (15)	0.0004 (13)
C3	0.0405 (16)	0.0306 (15)	0.0327 (19)	-0.0027 (12)	0.0001 (13)	0.0003 (12)
C4	0.0412 (17)	0.0488 (19)	0.051 (2)	-0.0023 (14)	0.0057 (15)	-0.0044 (17)
C5	0.061 (2)	0.052 (2)	0.045 (2)	-0.0220 (17)	0.0183 (17)	-0.0051 (16)
C6	0.075 (2)	0.0369 (18)	0.033 (2)	-0.0124 (16)	0.0080 (16)	-0.0010 (14)
C7	0.0545 (18)	0.0294 (16)	0.040 (2)	-0.0016 (13)	-0.0020 (15)	0.0007 (14)
C8	0.0393 (15)	0.0278 (15)	0.0308 (17)	-0.0033 (11)	0.0016 (13)	-0.0016 (12)
C9	0.0392 (16)	0.0353 (15)	0.0344 (19)	-0.0024 (13)	0.0062 (13)	-0.0029 (12)
C10	0.0589 (19)	0.0389 (17)	0.040 (2)	-0.0125 (14)	0.0075 (16)	-0.0062 (15)
C21	0.0326 (14)	0.0234 (13)	0.0322 (18)	0.0021 (11)	-0.0030 (12)	-0.0014 (12)
C22	0.0439 (16)	0.0333 (15)	0.0328 (19)	-0.0024 (12)	0.0017 (13)	0.0000 (13)
C23	0.0537 (18)	0.0432 (17)	0.0318 (18)	0.0047 (14)	0.0002 (15)	-0.0054 (15)
C24	0.0491 (18)	0.0433 (17)	0.039 (2)	0.0008 (13)	-0.0094 (16)	-0.0094 (15)
C25	0.0419 (16)	0.0399 (16)	0.042 (2)	-0.0044 (13)	-0.0055 (15)	-0.0063 (15)
C26	0.0323 (14)	0.0364 (15)	0.0369 (18)	-0.0013 (12)	-0.0045 (13)	0.0005 (14)
C91	0.0445 (16)	0.0323 (15)	0.0307 (17)	-0.0099 (13)	0.0010 (14)	-0.0021 (13)
C92	0.0427 (16)	0.0409 (17)	0.042 (2)	-0.0040 (13)	-0.0009 (14)	-0.0015 (15)
C93	0.061 (2)	0.0437 (19)	0.048 (2)	-0.0014 (15)	-0.0055 (17)	0.0017 (16)
C94	0.066 (2)	0.0429 (19)	0.052 (2)	-0.0193 (17)	-0.0025 (18)	0.0060 (17)
C95	0.054 (2)	0.058 (2)	0.047 (2)	-0.0182 (18)	0.0122 (17)	0.0016 (18)
C96	0.0472 (17)	0.0453 (18)	0.046 (2)	-0.0044 (14)	0.0023 (16)	-0.0026 (16)
C111	0.0396 (17)	0.0475 (18)	0.071 (3)	0.0017 (14)	-0.0049 (18)	-0.0098 (18)
C211	0.066 (2)	0.0489 (19)	0.045 (2)	-0.0085 (16)	-0.0146 (18)	0.0061 (17)
C212	0.055 (2)	0.0375 (18)	0.081 (3)	0.0098 (16)	-0.0048 (19)	-0.0012 (18)
N1	0.0374 (13)	0.0269 (12)	0.0464 (17)	-0.0029 (11)	0.0025 (11)	-0.0012 (12)
N2	0.0410 (13)	0.0248 (12)	0.0311 (15)	-0.0095 (10)	0.0016 (10)	-0.0016 (11)
01	0.0570 (13)	0.0239 (10)	0.0302 (12)	-0.0113 (8)	0.0029 (10)	-0.0018 (9)

Geometric parameters (Å, °)

C1—N1	1.446 (4)	C23—C24	1.386 (5)	_
C101	1.461 (4)	C23—H23	0.9500	
C1-C10	1.531 (5)	C24—C25	1.367 (5)	
C1—C2	1.565 (4)	C24—H24	0.9500	
C2—C212	1.516 (5)	C25—C26	1.395 (4)	
С2—С3	1.523 (4)	C25—H25	0.9500	
C2—C211	1.534 (5)	C26—H26	0.9500	
C3—C4	1.372 (4)	C91—C92	1.377 (4)	
C3—C8	1.384 (4)	C91—C96	1.397 (4)	

C4—C5	1.397 (5)	C92—C93	1.382 (5)
C4—H4	0.9500	С92—Н92	0.9500
C5—C6	1.376 (5)	C93—C94	1.369 (6)
С5—Н5	0.9500	С93—Н93	0.9500
С6—С7	1.388 (5)	C94—C95	1.375 (6)
С6—Н6	0.9500	C94—H94	0.9500
С7—С8	1.387 (4)	C95—C96	1.393 (5)
С7—Н7	0.9500	C95—H95	0.9500
C8—N1	1 397 (4)	C96—H96	0.9500
C9-N2	1 460 (4)	C111—N1	1 457 (4)
C9-C91	1.512 (4)	C111—H11A	0.9800
C_{9} C_{10}	1.512(1) 1.531(4)	C111_H11B	0.9800
C0 H0	1.0000		0.9800
C10 H10A	0.0000	C_{211} H21A	0.9800
	0.9900	$C_{211} = H_{21R}$	0.9800
$C10$ — $\Pi10D$	0.9900	C211—H21B	0.9800
$C_{21} - C_{22}$	1.384 (4)	C211—H2IC	0.9800
C_{21} C_{20}	1.390 (4)	C212—H21D	0.9800
C21—N2	1.41/(4)	C212—H2IE	0.9800
C22—C23	1.388 (5)	C212—H21F	0.9800
С22—Н22	0.9500	N2—01	1.454 (3)
N1-C1-01	106.4 (2)	C25—C24—H24	120.0
N1-C1-C10	114.6 (3)	C23—C24—H24	120.0
O1—C1—C10	104.0 (2)	C24—C25—C26	120.8 (3)
N1-C1-C2	103.5 (2)	C24—C25—H25	119.6
01	110.6 (2)	C26—C25—H25	119.6
C10-C1-C2	117.4 (3)	C21—C26—C25	119.3 (3)
$C_{212} - C_{2} - C_{3}$	113.4 (3)	C21—C26—H26	120.3
$C_{212} - C_{2} - C_{211}$	110.5 (3)	C25—C26—H26	120.3
C_{3} C_{2} C_{2} C_{211}	1084(3)	C92 - C91 - C96	1184(3)
$C_{212} - C_{2} - C_{1}$	112.8 (3)	C92-C91-C9	121.6(3)
$C_{3} - C_{2} - C_{1}$	100.8(2)	C96-C91-C9	121.0(3) 1200(3)
$C_{211} - C_{2} - C_{1}$	110.6(3)	C91-C92-C93	120.0(3)
C4-C3-C8	1201(3)	C91—C92—H92	119.5
C4 - C3 - C2	120.1(3) 131.2(3)	C93 - C92 - H92	119.5
$C_{4} = C_{3} = C_{2}$	101.2(3) 108.6(3)	C94 - C93 - C92	120.2(3)
$C_{3} - C_{4} - C_{5}$	100.0(3)	C94—C93—H93	119.9
$C_3 = C_4 = C_3$	120.4	C_{02} C_{03} H03	110.0
$C_5 = C_4 = H_4$	120.4	$C_{2}^{0} = C_{2}^{0} = C_{2}^{0}$	120.5 (3)
C_{5}	120.4	$C_{93} = C_{94} = C_{93}$	120.3 (3)
$C_{0} = C_{3} = C_{4}$	119.9 (3)	$C_{95} = C_{94} = H_{94}$	119.8
$C_0 - C_5 - H_5$	120.1	C93 - C94 - H94	119.0
C4—C3—H3	120.1	C94 - C95 - L96	119.5 (5)
$C_{5} = C_{0} = C_{1}$	121.7 (3)	C_{94} C_{95} H_{95}	120.3
$C_{2} = C_{0} = H_{0}$	119.2	C90-C93-H93	120.3
C = C = C = C = C = C = C = C = C = C =	117.4 (2)	C95 = C96 = U91	120.7 (3)
$C_{0} = C_{1} = C_{0}$	117.4 (3)	C93—C96—H96	119.7
$U_{0} - U_{-} H_{/}$	121.3	Суі—Суб—НУб	119.7
$U_0 - U_1 - H_1$	121.3	NI-CIII-HIIA	109.5

C3—C8—C7	121.7 (3)	N1-C111-H11B	109.5
C3—C8—N1	110.6 (3)	H11A—C111—H11B	109.5
C7—C8—N1	127.7 (3)	N1-C111-H11C	109.5
N2—C9—C91	112.4 (2)	H11A—C111—H11C	109.5
N2-C9-C10	100.6 (2)	H11B—C111—H11C	109.5
C91—C9—C10	112.6 (3)	C2—C211—H21A	109.5
N2—C9—H9	110.3	C2—C211—H21B	109.5
С91—С9—Н9	110.3	H21A—C211—H21B	109.5
С10—С9—Н9	110.3	C2—C211—H21C	109.5
C1—C10—C9	106.4 (3)	H21A—C211—H21C	109.5
C1-C10-H10A	110.5	H21B—C211—H21C	109.5
C9—C10—H10A	110.5	C2-C212-H21D	109.5
C1-C10-H10B	110.5	C2—C212—H21E	109.5
С9—С10—Н10В	110.5	H21D—C212—H21E	109.5
H10A—C10—H10B	108.6	C2—C212—H21F	109.5
C22—C21—C26	119.7 (3)	H21D—C212—H21F	109.5
C22—C21—N2	119.1 (2)	H21E—C212—H21F	109.5
C26—C21—N2	121.0 (3)	C8—N1—C1	108.5 (2)
C21—C22—C23	120.3 (3)	C8—N1—C111	120.6 (3)
C21—C22—H22	119.8	C1—N1—C111	120.4 (2)
C23—C22—H22	119.8	C21—N2—O1	107.6 (2)
C24—C23—C22	119.8 (3)	C21—N2—C9	120.8 (2)
С24—С23—Н23	120.1	O1—N2—C9	105.2 (2)
С22—С23—Н23	120.1	N2—O1—C1	105.6 (2)
C25—C24—C23	120.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A	
$C7$ — $H7$ ··· $Cg1^i$	0.95	2.89	3.735 (3)	149	
C23—H23…Cg2 ⁱⁱ	0.95	2.95	3.803 (4)	150	

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, –*y*+2, *z*–1/2.