metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrachlorido(1,10-phenanthroline- $\kappa^2 N, N'$)platinum(IV) monohydrate

Nam-Ho Kim,^a In-Chul Hwang^b and Kwang Ha^a*

^aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and ^bDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 13 January 2009; accepted 22 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.013 Å; Hatom completeness 81%; R factor = 0.046; wR factor = 0.141; data-to-parameter ratio = 19.5

In the title complex, $[PtCl_4(C_{12}H_8N_2)] \cdot H_2O$, the Pt^{4+} ion is sixcoordinated in a distorted octahedral environment by two N atoms of a 1,10-phenanthroline ligand and by four Cl atoms. As a result of the different *trans* effects of the N and Cl atoms, the Pt-Cl bonds *trans* to the N atom are slightly shorter than those trans to the Cl atom. The compound displays intermolecular $\pi - \pi$ interactions between the six-membered rings, with a centroid-centroid distance of 3.834 Å. There are also weak intramolecular C-H···Cl hydrogen bonds. According to the IR spectrum, solvent water was present in the crystal, but owing to the high thermal motion of the uncoordinated O atom, the H atoms could not be detected.

Related literature

For details of some other Pt-phenanthroline complexes, see: Buse et al. (1977); Fanizzi et al. (1996). For related Pt-bipyridine complexes, see: Hambley (1986); Hojjat Kashani et al. (2008).

Experimental

Crystal data

$[PtCl_4(C_{12}H_8N_2)] \cdot H_2O$	V = 3201.8 (7) Å ³
M = 535.11	Z = 8
Orthorhombic, $Pbca$	Mo $K\alpha$ radiation
a = 14.8481 (19) A	$\mu = 9.43 \text{ mm}^{-1}$
b = 12.4079 (16) Å	T = 293 (2) K
c = 17.379 (2) Å	$0.25 \times 0.08 \times 0.00$

Data collection

Bruker SMART 1000 CCD	18465 measured reflections
diffractometer	3521 independent reflections
Absorption correction: multi-scan	2414 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.047$
$T_{\min} = 0.418, \ T_{\max} = 0.568$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	181 parameters
$wR(F^2) = 0.141$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 1.41 \text{ e } \text{\AA}^{-3}$
3521 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

0.06 mm

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdot \cdot \cdot Cl2$	0.93	2.72	3.298 (10)	121
$C10-H10\cdots Cl1$	0.93	2.74	3.306 (10)	121

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (grant No. KRF-2007-412-J02001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2191).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem. 16, 1072-1076. Fanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P.
- (1996). Inorg. Chem. 35, 3173-3182.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hambley, T. W. (1986). Acta Cryst. C42, 49-51.
- Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64. m905-m906.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2009). E65, m230 [doi:10.1107/S1600536809002694]

Tetrachlorido(1,10-phenanthroline- $\kappa^2 N, N'$)platinum(IV) monohydrate

Nam-Ho Kim, In-Chul Hwang and Kwang Ha

S1. Comment

The asymmetric unit of the title compound, [PtCl₄(C₁₂H₈N₂)].H₂O, contains a neutral Pt^{IV} complex and a water molecule (Fig. 1 and 2). In the complex, the Pt⁴⁺ ion is six-coordinated in a distorted octahedral environment by two N atoms of the 1,10-phenanthroline ligand and four Cl atoms. The main contribution to the distortion is the tight N1—Pt1—N2 chelate angle (80.1 (2)°), which result in non-linear *trans* axes (<Cl1—Pt1—N1 = 174.0 (2)°, <Cl2—Pt1—N2 = 173.9 (2)° and <Cl3—Pt1—Cl4 = 176.84 (10)°). As a result of the different *trans* effects of the N and Cl atoms, the Pt—Cl bonds *trans* to the N atom (lengths: 2.317 (3) and 2.320 (2) Å) are slightly shorter than bond lengths to mutually *trans* Cl atoms (lengths: 2.343 (3) and 2.335 (3) Å). The compound displays intermolecular π - π interactions between six-membered rings, with a shortest centroid-centroid distance of 3.834 Å and with a dihedral angle between the ring planes of 1.48°. There are also weak intramolecular C—H···Cl hydrogen bonds (Table 1). According to the IR spectrum, water was present in the crystal.

S2. Experimental

To a solution of K_2PtCl_6 (0.3002 g, 0.618 mmol) in H_2O (20 ml) was added 1,10-phenanthroline (0.1108 g, 0.615 mmol) in MeOH (10 ml), and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with water and MeOH and dried under vacuum, to give a yellow powder (0.1655 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH_2Cl_2 solution. IR (KBr): 3424 cm⁻¹ (broad).

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$]. Due to the high thermal motion of the oxygen atom of the solvent H₂O molecule, the H atoms could neither be located from Fourier difference maps, nor added geometrically.

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Figure 2

View of the unit-cell contents of the title compound.

Tetrachlorido(1,10-phenanthroline- $\kappa^2 N, N'$)platinum(IV) monohydrate

Crystal data
$[PtCl_4(C_{12}H_8N_2)]\cdot H_2O$
$M_r = 535.11$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 14.8481 (19) Å
<i>b</i> = 12.4079 (16) Å
c = 17.379 (2) Å
V = 3201.8 (7) Å ³
Z = 8

F(000) = 2000 $D_x = 2.220 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 943 reflections $\theta = 3.2-23.2^{\circ}$ $\mu = 9.43 \text{ mm}^{-1}$ T = 293 KStick, yellow $0.25 \times 0.08 \times 0.06 \text{ mm}$ Data collection

Bruker SMART 1000 CCD	18465 measured reflections
diffractometer	3521 independent reflections
Radiation source: fine-focus sealed tube	2414 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.047$
φ and ω scans	$\theta_{max} = 27.1^{\circ}, \theta_{min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(<i>SADABS</i> ; Bruker, 2000)	$k = -11 \rightarrow 15$
$T_{\min} = 0.418, T_{\max} = 0.568$	$l = -22 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.141$	neighbouring sites
S = 1.02	H-atom parameters constrained
3521 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0738P)^2 + 11.9979P]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.41 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.56 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

r	11	7	II. */II
л	<u>y</u>	2	U _{iso} / U _{eq}
-0.12471 (3)	0.29079 (3)	0.18568 (2)	0.04495 (16)
-0.27151 (18)	0.3484 (2)	0.20445 (16)	0.0580 (7)
-0.15722 (18)	0.12006 (19)	0.23250 (16)	0.0549 (6)
-0.16047 (19)	0.23631 (19)	0.06024 (15)	0.0537 (6)
-0.0833 (2)	0.3517 (2)	0.30779 (14)	0.0568 (6)
0.0092 (5)	0.2536 (6)	0.1619 (4)	0.0364 (16)
-0.0815 (5)	0.4383 (5)	0.1425 (4)	0.0368 (16)
0.0512 (7)	0.1599 (7)	0.1735 (5)	0.045 (2)
0.0193	0.1016	0.1932	0.054*
0.1400 (7)	0.1490 (8)	0.1567 (7)	0.051 (2)
0.1690	0.0845	0.1679	0.062*
0.1871 (7)	0.2308 (8)	0.1239 (6)	0.052 (3)
0.2471	0.2204	0.1105	0.062*
0.1462 (6)	0.3308 (7)	0.1100 (6)	0.041 (2)
0.1870 (6)	0.4213 (8)	0.0779 (6)	0.048 (2)
0.2472	0.4177	0.0633	0.058*
	x -0.12471 (3) -0.27151 (18) -0.15722 (18) -0.16047 (19) -0.0833 (2) 0.0092 (5) -0.0815 (5) 0.0512 (7) 0.0193 0.1400 (7) 0.1690 0.1871 (7) 0.2471 0.1462 (6) 0.1870 (6) 0.2472	xy $-0.12471(3)$ $0.29079(3)$ $-0.27151(18)$ $0.3484(2)$ $-0.15722(18)$ $0.12006(19)$ $-0.16047(19)$ $0.23631(19)$ $-0.0833(2)$ $0.3517(2)$ $0.0092(5)$ $0.2536(6)$ $-0.0815(5)$ $0.4383(5)$ $0.0512(7)$ $0.1599(7)$ 0.0193 0.1016 $0.1400(7)$ $0.1490(8)$ 0.1690 0.0845 $0.1871(7)$ $0.2308(8)$ 0.2471 0.2204 $0.1462(6)$ $0.3308(7)$ $0.1870(6)$ 0.4177	xyz -0.12471 (3) 0.29079 (3) 0.18568 (2) -0.27151 (18) 0.3484 (2) 0.20445 (16) -0.15722 (18) 0.12006 (19) 0.23250 (16) -0.16047 (19) 0.23631 (19) 0.06024 (15) -0.0833 (2) 0.3517 (2) 0.30779 (14) 0.0092 (5) 0.2536 (6) 0.1619 (4) -0.0815 (5) 0.4383 (5) 0.1425 (4) 0.0512 (7) 0.1599 (7) 0.1735 (5) 0.0193 0.1016 0.1932 0.1400 (7) 0.1490 (8) 0.1567 (7) 0.1690 0.0845 0.1679 0.1871 (7) 0.2308 (8) 0.1239 (6) 0.2471 0.2204 0.1105 0.1870 (6) 0.4213 (8) 0.0779 (6) 0.2472 0.4177 0.0633

C6	0.1405 (6)	0.5157 (8)	0.0675 (5)	0.048 (2)	
H6	0.1697	0.5738	0.0448	0.058*	
C7	0.0491 (6)	0.5276 (7)	0.0901 (5)	0.039 (2)	
C8	-0.0011 (6)	0.6212(7)	0.0837 (6)	0.047 (2)	
H8	0.0249	0.6832	0.0634	0.057*	
C9	-0.0879 (8)	0.6221 (7)	0.1068 (6)	0.056 (3)	
Н9	-0.1213	0.6853	0.1028	0.067*	
C10	-0.1284 (6)	0.5293 (7)	0.1368 (6)	0.047 (2)	
H10	-0.1882	0.5311	0.1526	0.057*	
C11	0.0064 (6)	0.4363 (6)	0.1212 (5)	0.0369 (19)	
C12	0.0537 (6)	0.3380 (7)	0.1308 (5)	0.0361 (19)	
01	0.0973 (14)	0.4296 (19)	0.4629 (12)	0.258 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.0506 (3)	0.0368 (2)	0.0475 (3)	0.00031 (15)	-0.00128 (17)	0.00387 (15)
Cl1	0.0537 (14)	0.0544 (15)	0.0658 (17)	0.0055 (11)	0.0089 (12)	0.0134 (12)
C12	0.0589 (14)	0.0404 (12)	0.0653 (17)	-0.0065 (11)	0.0036 (12)	0.0105 (11)
C13	0.0648 (15)	0.0489 (13)	0.0475 (15)	-0.0084 (11)	-0.0064 (12)	0.0002 (11)
Cl4	0.0744 (17)	0.0486 (14)	0.0473 (15)	0.0025 (12)	-0.0074 (12)	-0.0021 (11)
N1	0.036 (4)	0.036 (4)	0.037 (4)	-0.001 (3)	0.002 (3)	-0.006 (3)
N2	0.043 (4)	0.024 (3)	0.044 (4)	-0.001 (3)	0.000 (3)	0.004 (3)
C1	0.053 (6)	0.030 (5)	0.053 (6)	0.002 (4)	0.003 (5)	-0.002 (4)
C2	0.056 (6)	0.037 (5)	0.062 (7)	0.008 (4)	-0.008 (5)	-0.001 (5)
C3	0.041 (5)	0.058 (6)	0.056 (6)	0.012 (4)	-0.006 (5)	-0.017 (5)
C4	0.041 (5)	0.042 (5)	0.040 (5)	-0.007(4)	0.002 (4)	-0.011 (4)
C5	0.040 (5)	0.056 (6)	0.048 (6)	-0.010 (4)	0.003 (4)	-0.008 (5)
C6	0.058 (6)	0.050 (6)	0.037 (5)	-0.017 (4)	0.001 (4)	0.001 (4)
C7	0.054 (5)	0.036 (5)	0.027 (4)	-0.010 (4)	-0.006 (4)	-0.004 (3)
C8	0.062 (6)	0.032 (5)	0.048 (6)	-0.013 (4)	-0.002(5)	-0.003 (4)
C9	0.084 (7)	0.025 (4)	0.059 (7)	0.003 (5)	-0.010 (6)	0.000 (4)
C10	0.053 (5)	0.039 (5)	0.050 (6)	0.002 (4)	-0.002(5)	0.002 (4)
C11	0.048 (5)	0.032 (4)	0.030 (5)	-0.002 (4)	-0.007 (4)	-0.006 (4)
C12	0.044 (5)	0.032 (4)	0.032 (5)	-0.006 (4)	-0.006 (4)	-0.005 (3)
01	0.33 (3)	0.29 (3)	0.151 (17)	0.06 (2)	0.028 (17)	0.043 (17)

Geometric parameters (Å, °)

Pt1—N2	2.080 (7)	С3—Н3	0.9300
Pt1—N1	2.083 (7)	C4—C5	1.393 (13)
Pt1—Cl1	2.317 (3)	C4—C12	1.424 (12)
Pt1—Cl2	2.320 (2)	C5—C6	1.372 (13)
Pt1—Cl4	2.335 (3)	С5—Н5	0.9300
Pt1-C13	2.343 (3)	C6—C7	1.421 (13)
N1-C1	1.335 (11)	C6—H6	0.9300
N1-C12	1.351 (11)	C7—C8	1.384 (13)
N2—C10	1.330 (11)	C7—C11	1.405 (11)

N2 C11	1 357 (11)	C8 C9	1 351 (14)
C_1 C_2	1.337(11) 1.257(12)	C° H°	1.331(14)
C1 = C2	1.557(15)	$C_0 = C_1 O$	0.9300
	0.9300	C9	1.400 (14)
C2-C3	1.358 (14)	C9—H9	0.9300
C2—H2	0.9300	С10—Н10	0.9300
C3—C4	1.402 (13)	C11—C12	1.417 (12)
N2—Pt1—N1	80.1 (3)	С4—С3—Н3	119.7
N2—Pt1—Cl1	94.0 (2)	C5—C4—C3	126.5 (8)
N1—Pt1—C11	174.0 (2)	C5—C4—C12	118.0 (8)
N2—Pt1—Cl2	173.9 (2)	C3—C4—C12	115.5 (8)
N1— $Pt1$ — $C12$	93.8 (2)	C6—C5—C4	121.5 (9)
Cl1— $Pt1$ — $Cl2$	92, 10 (9)	С6—С5—Н5	119.2
N2—Pt1—Cl4	87.8 (2)	C4—C5—H5	119.2
N1— $Pt1$ — $C14$	90.0(2)	$C_{5}-C_{6}-C_{7}$	122.2 (8)
C11— $Pt1$ — $C14$	91 14 (10)	C5-C6-H6	118.9
C_{12} P_{11} C_{14}	91.14(10)	C7 C6 H6	118.9
$N_2 = 111 - C_{14}$	91.81(10) 80.3(2)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	117.7(8)
N1 D+1 C12	89.3 (2) 89.2 (2)	C^{8}	117.7(8) 125.4(8)
$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$	00.2(2)	$C_{0} = C_{0} = C_{0}$	123.4(6)
C12 Pt1 C12	90.39(10)	$C_1 = C_2 = C_2$	117.0(8)
C12— $P11$ — $C13$	90.90 (9)	C_{2}	119.8 (9)
CI4—PtI—CI3	1/0.84 (10)	C9—C8—H8	120.1
CI—NI—CI2	120.5 (8)	C/C8H8	120.1
CI—NI—Ptl	127.5 (6)	C8—C9—C10	120.9 (9)
C12—N1—Pt1	112.0 (6)	С8—С9—Н9	119.5
C10—N2—C11	120.0 (7)	С10—С9—Н9	119.5
C10—N2—Pt1	127.7 (6)	N2—C10—C9	120.0 (9)
C11—N2—Pt1	112.3 (5)	N2—C10—H10	120.0
N1—C1—C2	120.5 (9)	С9—С10—Н10	120.0
N1—C1—H1	119.7	N2—C11—C7	121.6 (8)
C2—C1—H1	119.7	N2-C11-C12	117.4 (7)
C1—C2—C3	121.1 (9)	C7—C11—C12	121.0 (8)
С1—С2—Н2	119.5	N1—C12—C11	118.2 (8)
С3—С2—Н2	119.5	N1—C12—C4	121.6 (8)
C2—C3—C4	120.7 (9)	C11—C12—C4	120.2 (8)
С2—С3—Н3	119.7		
N2 D+1 N1 C1	170 4 (8)	C11 C7 C9 C0	-0.1(12)
$N_2 - P_1 - N_1 - C_1$	1/9.4 (8)	$C_{11} = C_{12} = C_{12} = C_{12}$	-0.1(13)
CI2— PII — NI — CI	-0.2(8)	$C_{0} - C_{1} - C_{0} - C_{1}$	1/9.3(9)
C14— $Pt1$ — $N1$ — $C1$	91.0(7)	$C_{}C_{-$	-0.0(13)
CI3—PTI—NI—CI	-91.0(7)	C11 - N2 - C10 - C9	1.7 (14)
N2—Pt1—N1—C12	-1.2 (6)	Pt1 - N2 - C10 - C9	1/9.3 (7)
CI2—Pt1—N1—C12	1/9.2 (5)	C8—C9—C10—N2	-0.2 (15)
C14—Pt1—N1—C12	-89.0 (5)	C10—N2—C11—C7	-2.5 (13)
CI3—Pt1—N1—C12	88.4 (5)	Pt1—N2—C11—C7	179.6 (6)
N1—Pt1—N2—C10	-177.2 (8)	C10—N2—C11—C12	178.2 (8)
Cl1—Pt1—N2—C10	4.2 (8)	Pt1—N2—C11—C12	0.3 (9)
Cl4—Pt1—N2—C10	-86.8 (8)	C8—C7—C11—N2	1.7 (12)

$\begin{array}{c} Cl3 - Pt1 - N2 - C10 \\ N1 - Pt1 - N2 - C11 \\ Cl1 - Pt1 - N2 - C11 \\ Cl4 - Pt1 - N2 - C11 \\ Cl3 - Pt1 - N2 - C11 \\ Cl2 - N1 - C1 - C2 \\ Pt1 - N1 - C1 - C2 \\ Pt1 - N1 - C1 - C2 \\ N1 - C1 - C2 - C3 \\ C1 - C2 - C3 - C4 \\ C2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C12 \\ C3 - C4 - C5 - C6 \end{array}$	94.6 (8) 0.5 (6) -178.1 (6) 90.9 (6) -87.7 (6) 2.3 (13) -178.3 (7) -3.7 (16) 3.2 (16) 179.0 (10) -1.4 (14) -179.5 (9)	C6—C7—C11—N2 C8—C7—C11—C12 C6—C7—C11—C12 C1—N1—C12—C11 Pt1—N1—C12—C11 C1—N1—C12—C4 Pt1—N1—C12—C4 N2—C11—C12—N1 C7—C11—C12—N1 N2—C11—C12—C4 C7—C11—C12—C4 C7—C11—C12—C4 C5—C4—C12—N1	-178.0(8) -179.0(8) 1.3(12) -178.7(8) 1.8(9) -0.6(12) 180.0(6) -1.4(12) 179.2(7) -179.6(8) 1.0(12) 179.7(8)
C2—C3—C4—C5 C2—C3—C4—C12 C3—C4—C5—C6 C12—C4—C5—C6 C4—C5—C6—C7 C5—C6—C7—C8 C5—C6—C7—C11	179.0 (10) -1.4 (14) -179.5 (9) 1.0 (14) 1.4 (15) 177.8 (9) -2.6 (13)	N2—C11—C12—C4 C7—C11—C12—C4 C5—C4—C12—N1 C3—C4—C12—N1 C5—C4—C12—C11 C3—C4—C12—C11	-179.6 (8) 1.0 (12) 179.7 (8) 0.1 (12) -2.2 (13) 178.2 (8)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C1—H1…Cl2	0.93	2.72	3.298 (10)	121
C10—H10…Cl1	0.93	2.74	3.306 (10)	121