Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl 3-carboxy-5-nitrobenzoate

Pei Zou, ${ }^{\text {a }} \ddagger$ Min-Hao Xie, ${ }^{\text {b }}$ Shi-Neng Luo, ${ }^{\text {b }}$ Ya-Ling Liu ${ }^{\text {b }}$ and Yong-Jia Shen ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, People's Republic of China, and ${ }^{\mathbf{b}}$ Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
Correspondence e-mail: zou-pei@163.com

Received 16 September 2008; accepted 9 January 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.105$; data-to-parameter ratio $=11.4$.

The structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{6}$, is essentially planar [maximum deviation 0.284 (2) \AA] except for the methyl H atoms. The crystal structure is stabilized by asymmetric $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds linking the hydrogen carboxylates into pairs around the inversion centres. There is also $\pi-\pi$ stacking of the benzene rings [centroid-centroid distance 3.6912 (12) Å].

Related literature

The title complex is as an important intermediate for the preparation of iodinated X-ray contrast media, see: Morin et al. (1987); Singh \& Rathore (1980); Stacul (2001); Jin \& Xiao (2005).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{6}$

$$
M_{r}=225.16
$$

Monoclinic, $P 2_{1} / c$
$a=7.3450$ (15) £
$b=8.9050(18) \AA$
$c=14.474$ (3) \AA
$\beta=91.18$ (3) ${ }^{\circ}$
$V=946.5(3) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.950, T_{\text {max }}=0.977$
1859 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
1717 reflections
150 parameters
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

1717 independent reflections
1284 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
3 standard reflections
every 200 reflections
intensity decay: 1.0%

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.17$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.13$ e $^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 6 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.95(3)$	$1.67(3)$	$2.6206(19)$	$177.9(17)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.48	$3.406(2)$	174

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+3,-y+1,-z+1$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2119).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Jin, L.-F. \& Xiao, F.-P. (2005). Acta Cryst. E61, o1276-o1277.
Morin, J. P., Boutelet, I., Toutain, H. \& Fillastre, J. P. (1987). Pathol. Biol. 35, 1215-1220.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, G. B. \& Rathore, H. G. S. (1980). Indian Drug. Pharm. Ind. 15, 35-38. Stacul, F. (2001). Eur. Radiol. 11, 690-697.

[^0]
supporting information

Acta Cryst. (2009). E65, o335 [doi:10.1107/S1600536809001093]

Methyl 3-carboxy-5-nitrobenzoate

Pei Zou, Min-Hao Xie, Shi-Neng Luo, Ya-Ling Liu and Yong-Jia Shen

S1. Comment

The molecule of the title complex (Fig.1) is useful as an important intermediate for the preparation of iodinated X-ray contrast media, such as iotalamic acid, ioxitalamic acid, and Ioxilan, which are used clinically all over the world (Morin et al., 1987; Singh et al., 1980; Stacul et al., 2001). We report here the crystal structure of title compound. The crystal data show that the bond lengths and angles are within expected ranges. TThe molecule is essentially planar: the maximum deviation from the weighted least-squares plane calculated through all the non- H atoms is 0.284 (2) \AA for O 2 . The molecules are stacked via π - π interactions, with the centroid-centroid distance of 3.6912 (12) \AA [symmetry code(i): 2-x, $1-y, 1-z]$. The stacked columns are linked together by two intermolecular hydrogen bonds, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (Tab. 1 and Fig. 2). The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds bind the hydrogencarboxylates into pairs.

S2. Experimental

Dimethyl 5-nitroisophthalic acid ($956 \mathrm{mg}, 4 \mathrm{mmol}$) was dissolved in hot methanol (6 ml), then sodium hydroxide (152 $\mathrm{mg}, 3.8 \mathrm{mmol}$) in methanol (2 ml) was added and refluxed for 30 min . Methanol was distilled off. The solid residue was extracted by warm water and the undissolved diester was filtered off. The filtrate was acidified with $1 \mathrm{~mol} / \mathrm{l}$ hydrochloric acid $(4 \mathrm{ml})$. The precipitate was filtered and washed with cold water. The crude product was purified by recrystallization. Single crystals were grown by slow evaporation of a ethanol/water ($v / v 1: 1$) solution: colourless block-shaped crystals were formed after several days.

S3. Refinement

All the H atoms could have been discerned in the difference electron density maps. With exception of the hydrogen belonging to the hydroxyl group of the hydrogencarboxylate the hydrogens were situated into the idealized positions and refined in riding motion approximation. The hydroxyl hydrogen was refined freely. The used constraints: $\mathrm{C}_{\text {aryl }}-\mathrm{H}=0.93$ $\AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {ary }}\right) ; \mathrm{C}_{\text {methyl }}-\mathrm{H}=0.96 \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ methyl $)$.

Figure 1
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Figure 2
A packing diagram viewed along the b axis.

Methyl 3-carboxy-5-nitrobenzoate

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{6}$
$M_{r}=225.16$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.3450$ (15) \AA
$b=8.9050(18) \AA$
$c=14.474$ (3) \AA
$\beta=91.18$ (3) ${ }^{\circ}$
$V=946.5(3) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.950, T_{\max }=0.977$
1859 measured reflections
$F(000)=464$
$D_{\mathrm{x}}=1.580 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

1717 independent reflections
1284 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=0 \rightarrow 8$
$k=0 \rightarrow 10$
$l=-17 \rightarrow 17$
3 standard reflections every 200 reflections intensity decay: 1.0%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
1717 reflections
150 parameters
0 restraints
23 constraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: difference Fourier map
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.057 P)^{2}+0.0354 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.17 \mathrm{e}^{-3}$
> $\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
N	$1.0387(2)$	$0.49976(17)$	$0.29780(10)$	$0.0475(4)$
O 1	$1.30752(17)$	$0.20120(16)$	$0.64959(9)$	$0.0588(4)$
C 1	$1.4451(3)$	$0.2024(3)$	$0.72271(15)$	$0.0742(7)$
H 1 A	1.4327	0.1142	0.7602	0.111^{*}
H1B	1.4301	0.2902	0.7603	0.111^{*}
H1C	1.5638	0.2036	0.6962	0.111^{*}
C2	$1.3171(2)$	$0.3110(2)$	$0.58767(12)$	$0.0442(4)$
O2	$1.4321(2)$	$0.40512(19)$	$0.58894(10)$	$0.0769(5)$
C3	$1.1649(2)$	$0.30531(18)$	$0.51817(11)$	$0.0375(4)$
O3	$1.1685(2)$	$0.58281(18)$	$0.29145(11)$	$0.0730(5)$
O4	$0.9140(2)$	$0.4969(2)$	$0.24169(11)$	$0.0832(6)$
C4	$1.0120(2)$	$0.21563(18)$	$0.53024(11)$	$0.0382(4)$
H4A	1.0053	0.1533	0.5816	0.046^{*}
O5	$0.70372(17)$	$0.03897(15)$	$0.54893(9)$	$0.0561(4)$
C5	$0.8694(2)$	$0.21906(18)$	$0.46585(12)$	$0.0373(4)$
O6	$0.57474(18)$	$0.13777(16)$	$0.42237(9)$	$0.0560(4)$
H6B	$0.475(4)$	$0.072(3)$	$0.4318(19)$	$0.119(10)^{*}$
C6	$0.8793(2)$	$0.31082(18)$	$0.38850(11)$	$0.0380(4)$
H6A	0.7850	0.3131	0.3447	0.046^{*}
C7	$1.0324(2)$	$0.39840(18)$	$0.37824(11)$	$0.0368(4)$
C8	$1.1757(2)$	$0.39837(18)$	$0.44108(11)$	$0.0379(4)$
H8A	1.2771	0.4589	0.4323	0.046^{*}
C9	$0.7057(2)$	$0.12519(19)$	$0.48049(12)$	$0.0396(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N	$0.0515(9)$	$0.0492(9)$	$0.0419(9)$	$-0.0049(8)$	$-0.0003(7)$	$0.0054(7)$
O 1	$0.0542(8)$	$0.0634(9)$	$0.0579(8)$	$-0.0185(7)$	$-0.0205(6)$	$0.0167(7)$
C 1	$0.0644(13)$	$0.1017(19)$	$0.0555(13)$	$-0.0228(13)$	$-0.0249(11)$	$0.0225(13)$
C 2	$0.0414(9)$	$0.0467(11)$	$0.0443(10)$	$-0.0094(9)$	$-0.0046(8)$	$0.0030(8)$
O 2	$0.0626(9)$	$0.0911(12)$	$0.0759(11)$	$-0.0421(9)$	$-0.0269(8)$	$0.0280(9)$
C3	$0.0377(9)$	$0.0344(9)$	$0.0404(9)$	$-0.0030(7)$	$-0.0009(7)$	$-0.0046(7)$
O3	$0.0685(10)$	$0.0765(10)$	$0.0737(10)$	$-0.0267(8)$	$-0.0043(8)$	$0.0321(8)$
O4	$0.0783(11)$	$0.1067(14)$	$0.0635(10)$	$-0.0288(10)$	$-0.0274(8)$	$0.0353(9)$
C4	$0.0408(9)$	$0.0331(9)$	$0.0407(9)$	$-0.0040(7)$	$-0.0017(7)$	$-0.0005(7)$
O5	$0.0499(8)$	$0.0578(8)$	$0.0601(8)$	$-0.0174(6)$	$-0.0112(6)$	$0.0174(7)$
C5	$0.0369(8)$	$0.0324(9)$	$0.0424(9)$	$-0.0027(7)$	$-0.0020(7)$	$-0.0053(7)$
O6	$0.0454(8)$	$0.0569(9)$	$0.0650(9)$	$-0.0201(7)$	$-0.0184(7)$	$0.0123(7)$
C6	$0.0396(9)$	$0.0369(9)$	$0.0373(9)$	$-0.0014(8)$	$-0.0049(7)$	$-0.0040(7)$
C7	$0.0409(9)$	$0.0355(9)$	$0.0342(8)$	$-0.0027(7)$	$0.0020(7)$	$-0.0005(7)$
C8	$0.0332(8)$	$0.0370(9)$	$0.0436(10)$	$-0.0037(7)$	$0.0034(7)$	$-0.0050(8)$
C9	$0.0420(9)$	$0.0330(9)$	$0.0435(10)$	$-0.0055(8)$	$-0.0060(8)$	$-0.0006(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{N}-\mathrm{O} 3$	1.211 (2)	C4-C5	1.388 (2)
$\mathrm{N}-\mathrm{O} 4$	1.2122 (19)	C4-H4A	0.9300
$\mathrm{N}-\mathrm{C} 7$	1.475 (2)	O5-C9	1.254 (2)
O1-C2	1.329 (2)	C5-C6	1.389 (2)
O1-C1	1.448 (2)	C5-C9	1.483 (2)
C1-H1A	0.9600	O6-C9	1.270 (2)
C1-H1B	0.9600	O6-H6B	0.95 (3)
C1-H1C	0.9600	C6-C7	1.379 (2)
$\mathrm{C} 2-\mathrm{O} 2$	1.190 (2)	C6-H6A	0.9300
C2-C3	1.489 (2)	C7-C8	1.377 (2)
C3-C4	1.393 (2)	C8-H8A	0.9300
C3-C8	1.393 (2)		
$\mathrm{O} 3-\mathrm{N}-\mathrm{O} 4$	123.18 (16)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.9
$\mathrm{O} 3-\mathrm{N}-\mathrm{C} 7$	118.11 (15)	C4-C5-C6	120.19 (15)
$\mathrm{O} 4-\mathrm{N}-\mathrm{C} 7$	118.71 (15)	C4-C5-C9	119.62 (15)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	116.20 (15)	C6-C5-C9	120.19 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C9-O6-H6B	115.3 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C7-C6-C5	118.42 (15)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C7-C6-H6A	120.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H1C}$	109.5	C5-C6-H6A	120.8
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C8-C7-C6	122.86 (15)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C8-C7-N	119.05 (15)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	123.71 (17)	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N}$	118.05 (15)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	123.86 (17)	C7-C8-C3	118.28 (15)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	112.41 (15)	C7-C8-H8A	120.9

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$120.06(15)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.07(15)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$117.81(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.18(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.9
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	$1.4(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.00(17)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-165.32(18)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$13.1(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$12.0(3)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-169.58(15)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$176.95(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9$	$-178.81(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.6(2)$
$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$178.84(15)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.2(2)$

C3-C8-H8A	120.9
O5-C9-O6	$123.82(16)$
O5-C9-C5	$118.73(15)$
O6-C9-C5	$117.45(15)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} \quad-177.71$ (14)
$\mathrm{O} 3-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8 \quad-2.1$ (2)
$\mathrm{O} 4-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8 \quad 178.43$ (17)
$\mathrm{O} 3-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6 \quad 175.95$ (17)
$\mathrm{O} 4-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6 \quad-3.6(2)$
C6-C7-C8-C3 0.1 (2)
$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3 \quad 178.04$ (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7 \quad-0.1(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7 \quad-177.46$ (15)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9-\mathrm{O} 5 \quad-3.4$ (2)
C6-C5-C9-O5 177.14 (16)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9-\mathrm{O} 6 \quad 176.41$ (16)
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 9-\mathrm{O} 6 \quad-3.1$ (2)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6 — \mathrm{H} 6 B^{\cdots} \cdots 5^{\mathrm{i}}$	$0.95(3)$	$1.67(3)$	$2.6206(19)$	$177.9(17)$
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots 2^{\mathrm{ii}}$	0.93	2.48	$3.406(2)$	174

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+3,-y+1,-z+1$.

[^0]: \ddagger Permanent address: Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China.

