organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-(4R,17S,18R,26R)-Ethyl 4'-methoxycarbonyl-5"-(4-methoxyphenyl)-1'-methyl-2,3"-dioxo-2",3"-dihydroindoline-3spiro-2'-pyrrolidine-3'-spiro-2"-thiazolo[3,2-a]pyrimidine-6"-carboxylate

Zhao-Hui Hou,^a* Ning-Bo Zhou,^a Bin-Hong He^a and Xiao-Fang Li^b

^aDepartment of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China Correspondence e-mail: houzhaohui1972@163.com

Received 15 January 2009; accepted 21 January 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.098; data-to-parameter ratio = 12.7.

In the title compound, $C_{30}H_{30}N_4O_7S$, the two spiro junctions link a planar 2-oxindole ring [with a mean deviation from the plane of 0.0319 (3) Å, a pyrrolidine ring in an envelope conformation and a thiazolo[3,2-a]pyrimidine system. Two molecules are connected into a dimer by two N-H···O hydrogen bonds, forming an $R_2^2(8)$ graph-set motif. The title compound has four stereogenic centers and appears as a racemic mixture of one single diastereoisomer (RSRR/SRSS).

Related literature

For related literature on spiro compounds, see: Caramella & Grunanger (1984); James et al. (1991); Kobayashi et al. (1991). For structural discussion, see: Cremer & Pople (1975); Etter (1990); Bernstein et al. (1994).

Experimental

Crystal data

β

$C_{30}H_{30}N_4O_7S$	$\gamma = 101.00 \ (3)^{\circ}$
$M_r = 590.64$	V = 1391.8 (6) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.944 (2) Å	Mo $K\alpha$ radiation
b = 11.389 (2) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 13.417 (3) Å	T = 113 (2) K
$\alpha = 98.06 \ (3)^{\circ}$	$0.20 \times 0.18 \times 0.08 \text{ mm}$
$\beta = 107.36 \ (3)^{\circ}$	

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2001) $T_{\min} = 0.956, T_{\max} = 0.977$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	384 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
4881 reflections	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

10220 measured reflections

 $R_{\rm int} = 0.029$

4881 independent reflections

3700 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N3 - H3 \cdots O5^i$ 1.97 2.8189 (18) 0.86 169

Symmetry code: (i) -x, -y + 1, -z.

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2427).

References

Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.

Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.

- Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron 47, 6617-6622.
- Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2009). E65, o398 [doi:10.1107/S160053680900261X]

rac-(4*R*,17*S*,18*R*,26*R*)-Ethyl 4'-methoxycarbonyl-5''-(4-methoxyphenyl)-1'methyl-2,3''-dioxo-2'',3''-dihydroindoline-3-spiro-2'-pyrrolidine-3'-spiro-2''thiazolo[3,2-a]pyrimidine-6''-carboxylate

Zhao-Hui Hou, Ning-Bo Zhou, Bin-Hong He and Xiao-Fang Li

S1. Comment

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi *et al.*, 1991; James *et al.*, 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella & Grunanger,1984). In this paper, the structure of the title compound (I) is reported. The compound was synthesized by the intermolecular [3 + 2] cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and (2*Z*)-ethyl 2-((methoxycarbonyl)methylene)-3,5-dihydro-5-(4-methoxyphenyl)- 7-methyl-3-oxo-2*H*-thiazolo[3,2-*a*]pyrimidine-6-carboxylate.

In the title compound, $C_{30}H_{30}N_4O_7S$, the two spiro junctions link a planar 2-oxindole ring, a pyrrolidine ring in an halfchair conformation and a thiazolo[3,2-*a*]pyrimidine ring (Fig. 1). The pyrrolidine ring (N4/C27/C26/C17/C18) has a halfchair conformation with puckering parameters, Q(2)= 0.4780 (18)Å and φ (2)= 47.9° (Cremer & Pople, 1975). The 2oxindole ring (N3/C25/C18/C19/C20/C21/C22/C23/C24) is nearly planar with the mean deviation from this plane being 0.032 (3)%A.

Two molecules are connected into a dimer by two N—H···O hydrogen bonds forming a ring with a $R_2^2(8)$ graph set motif (Etter, 1990; Bernstein *et al.*, 1994) (Table 1, Fig. 2).

The title compound has 4 stereogenic centers and then appears as a racemic mixture of one single diastereoisomer (*RSRR/SRSS*).

S2. Experimental

A mixture of (2*Z*)-ethyl 2-((methoxycarbonyl)methylene)-3,5-dihydro-5-(4-methoxyphenyl)- 7-methyl-3-oxo-2*H*-thiazolo[3,2-*a*]pyrimidine-6-carboxylate(1 mmol), isatin(1 mmol) and sarcosine(1 mmol) were refluxed in methanol (60 ml) until the disappearence of the starting material as evidenced by the TLC. After the reaction was over, the solvent was removed *in vacuo* and the residue was separated by column chromatography (silica gel, petroleum ether/ethylacetate=5:1) to give the title compound (I).

m.p.497 K; ¹H-NMR (δ, p.p.m.): 1.01–1.02(m, 3H), 2.06 (s, 3H), 2.35(s, 3H), 3.05(s, 3H), 3.39–3.40 (m, 1H), 3.60– 3.63 (m, 1H), 3.90–3.92(m, 2H), 4.81–4.85(m, 1H), 5.76(s, 1H), 6.74–6.76(m, 1H), 6.96–6.99(m, 1H), 7.20–7.26(m, 5H), 7.58–7.60(m, 1H), 7.62 (bs, 1H, –NH);

20 mg of (I) was dissolved in 15 ml dioxane-ethyl acetate mixed solvent; the solution was kept at room temperature for 15 d by natural evaporation to give colorless single crystals of (I), suitable for X-Ray analysis.

S3. Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96Å (methyl), 0.97Å (methylene), 0.98Å (methine) and N—H = 0.86Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ or $U_{iso}(H) = 1.5U_{eq}(methine)$.

Figure 1

The molecular structure of (I) with the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 2

Partial packing view showing the formation of dimer through N-H…O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x, 1-y, -z]

rac-(4*R*,17*S*,18*R*,26*R*)-Ethyl 4'-methoxycarbonyl-5''-(4-methoxyphenyl)-1'-methyl-2,3''-dioxo-2'',3''-dihydroindoline-3-spiro-2'-pyrrolidine-3'-spiro-2''-thiazolo[3,2-a]pyrimidine- 6''-carboxylate

Crystal data	
$C_{30}H_{30}N_4O_7S$	Z = 2
$M_r = 590.64$	F(000) = 620
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.409 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo Ka radiation, $\lambda = 0.71073$ Å
a = 9.944 (2) Å	Cell parameters from 4258 reflections
b = 11.389(2) Å	$\theta = 1.8 - 27.9^{\circ}$
c = 13.417 (3) Å	$\mu = 0.17 \text{ mm}^{-1}$
$\alpha = 98.06(3)^{\circ}$	T = 113 K
$\beta = 107.36(3)^{\circ}$	Block, colourless
$\gamma = 101.00 (3)^{\circ}$	$0.20 \times 0.18 \times 0.08 \text{ mm}$
V = 1391.8 (6) Å ³	
Data collection	
Rigaku Saturn	10220 measured reflections
diffractometer	4881 independent reflections
Radiation source: rotating anode	3700 reflections with $I > 2\sigma(I)$
Confocal monochromator	$R_{\rm int} = 0.029$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(CrystalClear; Rigaku, 2001)	$k = -13 \rightarrow 10$
$T_{\min} = 0.956, \ T_{\max} = 0.977$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.06	H-atom parameters constrained
4881 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0589P)^2]$
384 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
S1	0.04156 (5)	0.35302 (4)	0.42322 (3)	0.02231 (13)
01	0.32486 (14)	-0.13252 (12)	0.32935 (11)	0.0354 (3)
O2	0.26663 (13)	-0.05624 (11)	0.18117 (10)	0.0281 (3)
O3	-0.42217 (12)	-0.30677 (11)	0.05644 (10)	0.0316 (3)
O4	-0.02319 (12)	0.24227 (10)	0.12268 (9)	0.0236 (3)
O5	-0.11369 (12)	0.48453 (10)	0.08582 (8)	0.0218 (3)
O6	-0.27264 (14)	0.17208 (12)	0.27772 (13)	0.0429 (4)
07	-0.39268 (13)	0.31585 (11)	0.30007 (10)	0.0328 (3)
N1	0.16597 (15)	0.16869 (13)	0.46129 (11)	0.0241 (3)
N2	0.07144 (14)	0.18849 (12)	0.28126 (10)	0.0174 (3)
N3	0.13510 (14)	0.52812 (12)	0.12989 (11)	0.0208 (3)
Н3	0.1406	0.5309	0.0674	0.025*
N4	-0.02410 (14)	0.56993 (12)	0.32782 (10)	0.0182 (3)
C1	0.3131 (2)	0.02959 (19)	0.51724 (15)	0.0344 (5)
H1A	0.3593	-0.0288	0.4913	0.052*
H1B	0.2512	-0.0083	0.5526	0.052*
H1C	0.3858	0.0978	0.5667	0.052*
C2	0.22450 (18)	0.07314 (16)	0.42587 (14)	0.0229 (4)
C3	0.20286 (17)	0.03199 (15)	0.32123 (14)	0.0213 (4)
C4	0.09652 (17)	0.07312 (14)	0.23379 (13)	0.0189 (4)
H4	0.1403	0.0886	0.1790	0.023*
C5	0.10029 (17)	0.22161 (15)	0.39038 (13)	0.0199 (4)
C6	0.27164 (17)	-0.06142 (16)	0.28186 (15)	0.0239 (4)
C7	0.3202 (2)	-0.14574 (17)	0.12533 (16)	0.0364 (5)
H7A	0.2439	-0.2201	0.0913	0.044*

H7B	0.4011	-0.1660	0.1752	0.044*
C8	0.3682 (2)	-0.09030 (19)	0.04354 (17)	0.0391 (5)
H8A	0.2880	-0.0685	-0.0041	0.059*
H8B	0.4014	-0.1483	0.0037	0.059*
H8C	0.4459	-0.0184	0.0783	0.059*
C9	-0.04382 (17)	-0.02596 (14)	0.18261 (13)	0.0181 (4)
C10	-0.07297 (18)	-0.10076 (15)	0.08378 (13)	0.0212 (4)
H10	-0.0079	-0.0867	0.0468	0.025*
C11	-0.19697 (18)	-0.19597 (15)	0.03911 (14)	0.0250 (4)
H11	-0.2141	-0.2460	-0.0267	0.030*
C12	-0.29533 (17)	-0.21597 (15)	0.09342 (14)	0.0232 (4)
C13	-0.26702 (18)	-0.14307 (16)	0.19270 (14)	0.0248 (4)
H13	-0.3321	-0.1574	0.2297	0.030*
C14	-0.14238 (17)	-0.04920 (15)	0.23686 (13)	0.0216 (4)
H14	-0.1240	-0.0009	0.3037	0.026*
C15	-0.4605 (2)	-0.3746 (2)	-0.04918 (17)	0.0525 (6)
H15A	-0.4643	-0.3196	-0.0975	0.079*
H15B	-0.5540	-0.4305	-0.0685	0.079*
H15C	-0.3891	-0.4195	-0.0531	0.079*
C16	0.00520 (17)	0.26045 (14)	0.21851 (13)	0.0182 (4)
C17	-0.02451 (17)	0.36688 (15)	0.28420 (12)	0.0179 (4)
C18	0.04721 (17)	0.49640 (14)	0.27189 (12)	0.0177 (4)
C19	0.21177 (17)	0.53663 (14)	0.31052 (13)	0.0190 (4)
C20	0.31437 (18)	0.56616 (16)	0.41158 (14)	0.0244 (4)
H20	0.2864	0.5586	0.4711	0.029*
C21	0.46058 (18)	0.60752 (16)	0.42303 (15)	0.0275 (4)
H21	0.5304	0.6264	0.4907	0.033*
C22	0.50340 (18)	0.62089 (16)	0.33501 (15)	0.0262 (4)
H22	0.6016	0.6480	0.3443	0.031*
C23	0.40141 (17)	0.59426 (15)	0.23323 (14)	0.0227 (4)
H23	0.4291	0.6039	0.1739	0.027*
C24	0.25706 (17)	0.55281 (14)	0.22340 (13)	0.0194 (4)
C25	0.00866 (18)	0.49965 (14)	0.14971 (13)	0.0187 (4)
C26	-0.18551 (17)	0.37201 (15)	0.25039 (13)	0.0197 (4)
H26	-0.2205	0.3585	0.1723	0.024*
C27	-0.17881 (17)	0.50704 (15)	0.29251 (13)	0.0208 (4)
H27A	-0.2352	0.5409	0.2364	0.025*
H27B	-0.2161	0.5145	0.3516	0.025*
C28	0.00420 (19)	0.69933 (15)	0.32462 (14)	0.0244 (4)
H28A	0.1071	0.7349	0.3524	0.037*
H28B	-0.0424	0.7401	0.3672	0.037*
H28C	-0.0334	0.7083	0.2522	0.037*
C29	-0.28448(18)	0.27477 (16)	0.27959 (14)	0.0257 (4)
C30	-0.5040 (2)	0.22464 (19)	0.31518 (18)	0.0452 (6)
H30A	-0.5414	0.1575	0.2545	0.068*
H30B	-0.5813	0.2604	0.3225	0.068*
H30C	-0.4628	0.1956	0.3785	0.068*
				2.000

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
S1	0.0323 (3)	0.0206 (2)	0.0145 (2)	0.00589 (18)	0.00909 (19)	0.00318 (18)
01	0.0359 (8)	0.0347 (8)	0.0425 (8)	0.0188 (6)	0.0128 (7)	0.0170 (7)
O2	0.0311 (7)	0.0284 (7)	0.0330 (7)	0.0159 (6)	0.0164 (6)	0.0083 (6)
O3	0.0246 (7)	0.0246 (7)	0.0345 (7)	-0.0027 (5)	0.0041 (6)	-0.0046 (6)
O4	0.0335 (7)	0.0232 (6)	0.0143 (6)	0.0093 (5)	0.0074 (5)	0.0024 (5)
05	0.0213 (6)	0.0286 (7)	0.0150 (6)	0.0065 (5)	0.0048 (5)	0.0057 (5)
O6	0.0429 (8)	0.0239 (7)	0.0705 (11)	0.0051 (6)	0.0322 (8)	0.0122 (7)
O7	0.0267 (7)	0.0302 (7)	0.0435 (8)	-0.0003 (6)	0.0213 (7)	0.0026 (6)
N1	0.0255 (8)	0.0268 (8)	0.0190 (7)	0.0050 (6)	0.0058 (7)	0.0065 (7)
N2	0.0198 (7)	0.0160 (7)	0.0159 (7)	0.0036 (6)	0.0062 (6)	0.0025 (6)
N3	0.0227 (8)	0.0270 (8)	0.0153 (7)	0.0064 (6)	0.0090 (6)	0.0064 (6)
N4	0.0219 (7)	0.0164 (7)	0.0177 (7)	0.0047 (6)	0.0094 (6)	0.0019 (6)
C1	0.0336 (11)	0.0395 (11)	0.0282 (10)	0.0130 (9)	0.0036 (9)	0.0103 (9)
C2	0.0182 (9)	0.0241 (9)	0.0269 (9)	0.0038 (7)	0.0070 (8)	0.0108 (8)
C3	0.0148 (8)	0.0214 (9)	0.0276 (9)	0.0025 (7)	0.0066 (8)	0.0091 (8)
C4	0.0197 (9)	0.0181 (8)	0.0197 (8)	0.0055 (7)	0.0083 (7)	0.0019 (7)
C5	0.0212 (9)	0.0204 (9)	0.0164 (8)	0.0005 (7)	0.0066 (7)	0.0043 (7)
C6	0.0141 (9)	0.0219 (9)	0.0326 (10)	-0.0006 (7)	0.0061 (8)	0.0065 (8)
C7	0.0389 (12)	0.0299 (10)	0.0495 (13)	0.0199 (9)	0.0216 (11)	0.0070 (10)
C8	0.0419 (12)	0.0425 (12)	0.0411 (12)	0.0189 (10)	0.0223 (11)	0.0054 (10)
C9	0.0190 (9)	0.0166 (8)	0.0194 (8)	0.0070 (7)	0.0053 (7)	0.0045 (7)
C10	0.0240 (9)	0.0220 (9)	0.0203 (8)	0.0079 (7)	0.0092 (8)	0.0053 (7)
C11	0.0307 (10)	0.0217 (9)	0.0188 (9)	0.0069 (8)	0.0049 (8)	-0.0011 (8)
C12	0.0183 (9)	0.0182 (9)	0.0275 (9)	0.0042 (7)	0.0014 (8)	0.0012 (8)
C13	0.0218 (9)	0.0248 (9)	0.0295 (10)	0.0056 (7)	0.0130 (8)	0.0012 (8)
C14	0.0224 (9)	0.0192 (9)	0.0208 (9)	0.0042 (7)	0.0072 (8)	-0.0020 (7)
C15	0.0482 (14)	0.0483 (14)	0.0340 (12)	-0.0169 (11)	0.0018 (11)	-0.0114 (11)
C16	0.0169 (8)	0.0167 (8)	0.0190 (9)	0.0003 (7)	0.0063 (7)	0.0020 (7)
C17	0.0217 (9)	0.0179 (8)	0.0125 (8)	0.0025 (7)	0.0057 (7)	0.0016 (7)
C18	0.0218 (9)	0.0172 (8)	0.0138 (8)	0.0043 (7)	0.0063 (7)	0.0025 (7)
C19	0.0215 (9)	0.0155 (8)	0.0205 (9)	0.0056 (7)	0.0074 (8)	0.0034 (7)
C20	0.0283 (10)	0.0243 (9)	0.0200 (9)	0.0068 (8)	0.0069 (8)	0.0053 (8)
C21	0.0210 (9)	0.0296 (10)	0.0254 (9)	0.0060 (8)	-0.0005 (8)	0.0031 (8)
C22	0.0181 (9)	0.0233 (9)	0.0364 (10)	0.0067 (7)	0.0083 (8)	0.0037 (8)
C23	0.0231 (9)	0.0210 (9)	0.0261 (9)	0.0065 (7)	0.0117 (8)	0.0025 (8)
C24	0.0232 (9)	0.0163 (8)	0.0189 (8)	0.0063 (7)	0.0069 (7)	0.0027 (7)
C25	0.0258 (10)	0.0146 (8)	0.0165 (8)	0.0046 (7)	0.0088 (8)	0.0025 (7)
C26	0.0198 (9)	0.0202 (9)	0.0185 (8)	0.0029 (7)	0.0075 (7)	0.0019 (7)
C27	0.0230 (9)	0.0222 (9)	0.0186 (8)	0.0062 (7)	0.0091 (8)	0.0032 (7)
C28	0.0300 (10)	0.0185 (9)	0.0255 (9)	0.0059 (7)	0.0106 (8)	0.0048 (8)
C29	0.0270 (10)	0.0255 (10)	0.0241 (9)	0.0035 (8)	0.0114 (8)	0.0012 (8)
C30	0.0389 (12)	0.0398 (12)	0.0564 (14)	-0.0091 (10)	0.0317 (12)	-0.0001 (11)

Geometric parameters (Å, °)

S1—C5	1.7542 (17)	C9—C14	1.393 (2)
S1—C17	1.8239 (17)	C10—C11	1.386 (2)
O1—C6	1.204 (2)	C10—H10	0.9300
O2—C6	1.347 (2)	C11—C12	1.388 (2)
O2—C7	1.4547 (19)	C11—H11	0.9300
O3—C12	1.375 (2)	C12—C13	1.386 (2)
O3—C15	1.417 (2)	C13—C14	1.382 (2)
O4—C16	1.2092 (19)	C13—H13	0.9300
O5—C25	1.225 (2)	C14—H14	0.9300
O6—C29	1.195 (2)	C15—H15A	0.9600
O7—C29	1.336 (2)	C15—H15B	0.9600
O7—C30	1.449 (2)	C15—H15C	0.9600
N1—C5	1.279 (2)	C16—C17	1.525 (2)
N1—C2	1.418 (2)	C17—C26	1.543 (2)
N2-C16	1.372 (2)	C17—C18	1.565 (2)
N2—C5	1.386 (2)	C18—C19	1.516 (2)
N2—C4	1.4763 (19)	C18—C25	1.576 (2)
N3—C25	1.351 (2)	C19—C20	1.381 (2)
N3—C24	1.410 (2)	C19—C24	1.395 (2)
N3—H3	0.8600	C20—C21	1.394 (2)
N4—C28	1.456 (2)	C20—H20	0.9300
N4—C18	1.4613 (19)	C21—C22	1.387 (2)
N4—C27	1.468 (2)	C21—H21	0.9300
C1—C2	1.489 (3)	C22—C23	1.387 (2)
C1—H1A	0.9600	C22—H22	0.9300
C1—H1B	0.9600	C23—C24	1.383 (2)
C1—H1C	0.9600	С23—Н23	0.9300
C2—C3	1.354 (2)	C26—C29	1.511 (2)
C3—C6	1.488 (2)	C26—C27	1.544 (2)
C3—C4	1.522 (2)	C26—H26	0.9800
C4—C9	1.517 (2)	С27—Н27А	0.9700
C4—H4	0.9800	С27—Н27В	0.9700
С7—С8	1.490 (3)	C28—H28A	0.9600
С7—Н7А	0.9700	C28—H28B	0.9600
С7—Н7В	0.9700	C28—H28C	0.9600
C8—H8A	0.9600	С30—Н30А	0.9600
C8—H8B	0.9600	С30—Н30В	0.9600
C8—H8C	0.9600	С30—Н30С	0.9600
C9—C10	1.388 (2)		
C5—S1—C17	92.62 (8)	O3—C15—H15B	109.5
С6—О2—С7	118.23 (14)	H15A—C15—H15B	109.5
C12—O3—C15	116.59 (14)	O3—C15—H15C	109.5
С29—О7—С30	115.34 (15)	H15A—C15—H15C	109.5
C5—N1—C2	116.85 (14)	H15B—C15—H15C	109.5
C16—N2—C5	117.35 (13)	O4—C16—N2	123.53 (14)

	101 00 (10)	04 016 017	104 40 (15)
C16—N2—C4	121.33 (13)	04—C16—C17	124.42 (15)
C5—N2—C4	120.99 (14)	N2—C16—C17	112.04 (13)
C25—N3—C24	112.18 (13)	C16—C17—C26	114.29 (13)
С25—N3—H3	123.9	C16—C17—C18	114.60 (12)
C24—N3—H3	123.9	C26—C17—C18	100.14 (13)
C28—N4—C18	116.07 (12)	C16—C17—S1	106.54 (11)
C28—N4—C27	114.43 (13)	C26—C17—S1	110.98 (11)
C18 - N4 - C27	107.91 (12)	$C_{18} - C_{17} - S_{1}$	110 29 (11)
$C_2 - C_1 - H_1 A$	109.5	N4_C18_C19	115.29(11) 115.48(13)
$C_2 = C_1 = H_1 R$	100.5	N4 C18 C17	113.40(13)
	109.5	$N_{+-} C_{10} C_{17}$	99.08 (11)
HIA—CI—HIB	109.5		117.85 (14)
C2—CI—HIC	109.5	N4—C18—C25	113.92 (13)
H1A—C1—H1C	109.5	C19—C18—C25	101.49 (12)
H1B—C1—H1C	109.5	C17—C18—C25	109.54 (13)
C3—C2—N1	122.34 (16)	C20—C19—C24	119.01 (15)
C3—C2—C1	126.15 (16)	C20-C19-C18	131.99 (14)
N1—C2—C1	111.49 (15)	C24—C19—C18	108.80 (14)
C2—C3—C6	123.73 (17)	C19—C20—C21	118.98 (16)
C2—C3—C4	121.49 (15)	C19—C20—H20	120.5
C6-C3-C4	114 66 (14)	C_{21} C_{20} H_{20}	120.5
$N_2 - C_4 - C_9$	111,00(14) 111,87(12)	$C_{22} = C_{21} = C_{20}$	120.9 121.00(17)
$N_2 = C_4 = C_3$	111.07(12) 109.25(12)	$C_{22} = C_{21} = C_{20}$	121.00 (17)
$N_2 - C_4 - C_3$	100.55(15)	$C_{22} = C_{21} = H_{21}$	119.5
C_{9}	110.37 (13)	C20—C21—H21	119.5
N2-C4-H4	108.7	C23—C22—C21	120.73 (15)
С9—С4—Н4	108.7	C23—C22—H22	119.6
C3—C4—H4	108.7	C21—C22—H22	119.6
N1—C5—N2	126.15 (15)	C24—C23—C22	117.44 (15)
N1—C5—S1	122.36 (13)	С24—С23—Н23	121.3
N2—C5—S1	111.45 (13)	С22—С23—Н23	121.3
O1—C6—O2	123.06 (16)	C23—C24—C19	122.81 (16)
O1—C6—C3	127.42 (17)	C23—C24—N3	127.24 (15)
02	109.52 (15)	C19—C24—N3	109.84 (14)
02 - 07 - 08	107.49(15)	05-C25-N3	126 46 (15)
$O_2 = C_7 = C_3$	110.2	05 - 025 - 018	120.40(13)
$O_2 - C_1 - H_1 A$	110.2	03-025-018	123.94(13)
	110.2	$N_{3} = C_{25} = C_{18}$	107.53 (14)
02—C/—H/B	110.2	C29—C26—C17	115.01 (14)
С8—С7—Н7В	110.2	C29—C26—C27	117.66 (13)
H7A—C7—H7B	108.5	C17—C26—C27	103.79 (13)
С7—С8—Н8А	109.5	C29—C26—H26	106.5
C7—C8—H8B	109.5	С17—С26—Н26	106.5
H8A—C8—H8B	109.5	С27—С26—Н26	106.5
C7—C8—H8C	109.5	N4—C27—C26	104.93 (13)
H8A—C8—H8C	109.5	N4—C27—H27A	110.8
H8B—C8—H8C	109.5	C26—C27—H27A	110.8
C10-C9-C14	118 29 (14)	N4_C27_H27B	110.8
$C_{10} C_{2} C_{14}$	120.06 (12)	$C_{26} C_{27} U_{27} U_{27} D_{27}$	110.0
$C_{10} - C_{7} - C_{4}$	120.70(13) 120.62(14)	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	110.0
$C_{14} - C_{2} - C_{4}$	120.02 (14)	$\Pi \angle /A = U \angle / = \Pi \angle /B$	108.8
C11—C10—C9	121.39 (15)	N4—C28—H28A	109.5

C11—C10—H10	119.3	N4—C28—H28B	109.5
С9—С10—Н10	119.3	H28A—C28—H28B	109.5
C10—C11—C12	119.42 (15)	N4—C28—H28C	109.5
C10-C11-H11	120.3	H28A—C28—H28C	109.5
C12—C11—H11	120.3	H28B—C28—H28C	109.5
O3—C12—C13	115.67 (15)	O6—C29—O7	124.42 (16)
O3—C12—C11	124.42 (15)	O6—C29—C26	124.14 (15)
C13—C12—C11	119.90 (15)	O7—C29—C26	111.27 (15)
C14—C13—C12	120.14 (15)	O7—C30—H30A	109.5
C14—C13—H13	119.9	O7—C30—H30B	109.5
C12—C13—H13	119.9	H30A—C30—H30B	109.5
C13—C14—C9	120.84 (15)	O7—C30—H30C	109.5
C13—C14—H14	119.6	H30A—C30—H30C	109.5
C9—C14—H14	119.6	H30B—C30—H30C	109.5
O3—C15—H15A	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3···O5 ⁱ	0.86	1.97	2.8189 (18)	169

Symmetry code: (i) -x, -y+1, -z.