

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquabis(2-iodoacetato- κ O)(1,10phenanthroline- $\kappa^2 N, N'$)copper(II)

Rengao Zhao,^a Junshan Sun,^a* Jie Lu^b and Jikun Li^a

^aDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Applied and Science Technology, Taishan University, 271021 Taian, Shandong, People's Republic of China

Correspondence e-mail: klsz79@163.com

Received 15 January 2009; accepted 22 January 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.009 Å; R factor = 0.038; wR factor = 0.104; data-to-parameter ratio = 13.9.

In the title compound, $[Cu(C_2H_2IO_2)_2(C_{12}H_8N_2)(H_2O)]$, the Cu^{II} ion is coordinated by two N atoms [Cu-N = 2.013 (4)] and 2.024 (4) Å] from a 1,10-phenanthroline ligand and three O atoms [Cu-O = 1.940 (4)-2.261 (4)]Å] from two carboxyl ligands and a water molecule in a distorted square-pyramidal geometry. One iodoacetate O atom [Cu-O = 2.775 (4)]Å] completes the coordination to form a distorted octahedron. Intermolecular $O-H\cdots O$ hydrogen bonds link the molecules into centrosymmetric dimers, which are further packed by $\pi-\pi$ interactions between the 1,10-phenanthroline ligands into layers parallel to the *ab* plane. The crystal packing also exhibits short intermolecular $I\cdots I$ contacts of 3.6772 (9) Å and weak $C-H\cdots O$ hydrogen bonds.

Related literature

The related crystal structure of aquabis(2,4-dichlorophenoxyacetato-O)(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II) has been reported by Liu *et al.* (2006).

Experimental

Crystal data

$[Cu(C_2H_2IO_2)_2(C_{12}H_8N_2)(H_2O)]$	
$M_r = 631.63$	
Triclinic, $P\overline{1}$	
a = 9.5156 (11) Å	

$$\begin{split} b &= 10.6293 \ (12) \ \text{\AA} \\ c &= 11.3441 \ (13) \ \text{\AA} \\ \alpha &= 65.803 \ (2)^{\circ} \\ \beta &= 65.598 \ (2)^{\circ} \end{split}$$

 $\gamma = 72.451 \ (2)^{\circ}$ $V = 940.94 \ (19) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.389, T_{max} = 0.454$ (expected range = 0.336-0.391)

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 & 3 \text{ restraints} \\ wR(F^2) &= 0.104 & H\text{-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\text{max}} = 1.53 \text{ e } \text{\AA}^{-3} \\ 3305 \text{ reflections} & \Delta\rho_{\text{min}} = -1.68 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected interatomic distances (Å).

Cg1, Cg2 and Cg3 are the centroids of the C4–C7/C11/C12, C6–C10/N2 and C1–C5/N1 rings, respectively.

$\overline{Cg1\cdots Cg3^{i}}$	3.505 (6)	$Cg2 \cdots Cg1^{ii}$	3.634 (6)
$Cg1 \cdots Cg1^{ii}$	3.584 (6)	$I2 \cdot \cdot \cdot I2^{iii}$	3.6772 (9)
$Cg2 \cdot \cdot \cdot Cg3^{i}$	3.625 (6)		

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) -x + 1, -y + 2, -z; (iii) -x + 1, -y, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1B\cdots O3$	0.85	1.84	2.639 (6)	156
$O1 - H1C \cdots O4^{iv}$	0.85	1.97	2.785 (5)	161
C3−H3···O1 ⁱⁱ	0.93	2.44	3.240 (7)	144
$C11-H11\cdots O5^{i}$	0.93	2.71	3.508 (8)	144
C10−H10···O3 ^{iv}	0.93	2.68	3.431 (8)	138
$C14 - H14B \cdots O2^{v}$	0.97	2.59	3.436 (8)	146
$C14-H14A\cdots O5^{v}$	0.97	2.64	3.219 (8)	119

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) -x + 1, -y + 2, -z; (iv) -x + 2, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Postgraduate Foundation of Taishan University (grant No. Y07-2-15) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2511).

References

Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). *Acta Cryst.* E62, m2030–m2032. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

 $\mu = 4.47 \text{ mm}^{-1}$

T = 273 (2) K

 $R_{\rm int} = 0.016$

 $0.26 \times 0.23 \times 0.21 \text{ mm}$

4948 measured reflections

3305 independent reflections

2934 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, m241 [doi:10.1107/S1600536809002682]

Aquabis(2-iodoacetato- κO)(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II)

Rengao Zhao, Junshan Sun, Jie Lu and Jikun Li

S1. Comment

Metal complexes with carboxylates are among the most investigated complexes in the field of coordination chemistry. Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear monomeric and polymeric complexes (Liu *et al.*, 2006). In order to develop some new topological structures, we study the reaction of the copper(II) ion and 2-iodoacetic acid with the presence of 1,10-phenanthroline.

The molecular structure of the title complex is shown in Fig.1. The Cu atom exhibits a six-coordinated distorted octahedral pyramidal geometry with two carboxyl O atoms from (Cu2—O4 2.000 (4) Å, Cu2—O5 2.775 (4) Å), a water molecule (Cu—O 2.261 (4) Å) and a nitrogen atom (Cu2—N2 2.024 (4) Å) occupying the equatorial planar position. A nitrogen atom N2 (Cu2—N2 2.013 (4) Å) and a carboxyl O atom (Cu2—O2 1.940 (4) Å) occupy the apical positions. The displacement of the metal atom from the basal plane is 0.0640 (2) Å. The crystal packing exhibits short intermolecular I···I contacts (Table 1) and weak C—H···O hydrogen bonds (Table 2).

S2. Experimental

The reaction was carried out by the solvothermal method. 2-iodoacetic acid(0.372 g,2 mmol) and cupric acetate(0.199 g, 1 mmol) and 1,10-phenanthroline(0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for sevaral days yielding blue block-shaped crystals.

The yield is 81%. Elemental analysis: calc. for $C_{16}H_{14}CuI_2N_2O_5$: C 30.42, H 2.23, N 4.43; found: C 30.15, H 2.49, N 4.22. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

S3. Refinement

All the H atoms were found in Fourier map, but placed in idealized positions(C—H 0.93–0.97 Å, O—H 0.85 Å), with the U_{iso} (H) values were set at $1.2U_{eq}$ (C,O) of the parent atoms.

Figure 1

The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.

Aquabis(2-iodoacetato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')copper(II)

Crystal data

$\begin{bmatrix} Cu(C_2H_2IO_2)_2(C_{12}H_8N_2)(H_2O) \end{bmatrix}$ $M_r = 631.63$ Triclinic, $P\overline{1}$ a = 9.5156 (11) Å b = 10.6293 (12) Å c = 11.3441 (13) Å $a = 65.803 (2)^{\circ}$ $\beta = 65.598 (2)^{\circ}$ $\gamma = 72.451 (2)^{\circ}$ $V = 940 94 (19) \text{ Å}^3$	Z = 2 F(000) = 598 $D_x = 2.229 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3047 reflections $\theta = 2.6-28.1^{\circ}$ $\mu = 4.47 \text{ mm}^{-1}$ T = 273 K Block, blue $0.26 \times 0.23 \times 0.21 \text{ mm}$
Data collection	0.20 ~ 0.25 ~ 0.21 mm
Bruker APEXII diffractometer	4948 measured reflections 3305 independent reflections 2024 reflections with $L > 2$ (1)
Radiation source. The locus sealed tube	2334 reflections with $I \ge 20(I)$

diffractometer	5505 independent reflections
Radiation source: fine-focus sealed tube	2934 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
φ and ω scans	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 10$
$T_{\min} = 0.389, \ T_{\max} = 0.454$	$l = -13 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.01	H-atom parameters constrained
3305 reflections	$w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 3.6149P]$
237 parameters	where $P = (F_o^2 + 2F_c^2)/3$
3 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.53 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.68 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu2	0.76967 (7)	0.67482 (6)	0.13753 (6)	0.02670 (17)	
I1	0.95532 (7)	0.21497 (5)	0.43653 (6)	0.06644 (19)	
I2	0.43146 (5)	0.18948 (4)	0.45215 (4)	0.04345 (15)	
N1	0.6118 (5)	0.8490 (4)	0.1546 (4)	0.0255 (9)	
N2	0.9024 (5)	0.8189 (4)	-0.0095 (4)	0.0280 (9)	
01	0.7777 (4)	0.6019 (4)	-0.0268 (4)	0.0341 (9)	
H1C	0.8711	0.5671	-0.0635	0.031 (15)*	
H1B	0.7272	0.5340	0.0231	0.06 (2)*	
O2	0.6142 (4)	0.5607 (4)	0.2794 (4)	0.0359 (9)	
O3	0.6083 (7)	0.4189 (6)	0.1825 (5)	0.0661 (15)	
O4	0.9474 (4)	0.5270 (4)	0.1793 (4)	0.0329 (8)	
O5	0.8852 (5)	0.6118 (4)	0.3468 (4)	0.0429 (10)	
C1	0.4672 (6)	0.8592 (6)	0.2411 (5)	0.0307 (11)	
H1A	0.4265	0.7782	0.3029	0.037*	
C2	0.3740 (7)	0.9891 (6)	0.2417 (6)	0.0382 (13)	
H2	0.2725	0.9934	0.3032	0.046*	
C3	0.4311 (7)	1.1090 (6)	0.1529 (6)	0.0382 (13)	
H3	0.3693	1.1954	0.1536	0.046*	
C4	0.5840 (6)	1.1012 (5)	0.0602 (6)	0.0302 (11)	
C5	0.6710 (6)	0.9677 (5)	0.0657 (5)	0.0241 (10)	
C6	0.8265 (6)	0.9512 (5)	-0.0244 (5)	0.0249 (10)	
C7	0.8936 (6)	1.0689 (6)	-0.1235 (5)	0.0305 (11)	
C8	1.0481 (7)	1.0437 (6)	-0.2087 (6)	0.0380 (13)	
H8	1.0990	1.1181	-0.2742	0.046*	
C9	1.1228 (7)	0.9109 (6)	-0.1952 (6)	0.0392 (13)	

H9	1.2240	0.8936	-0.2535	0.047*	
C10	1.0475 (6)	0.8002 (6)	-0.0934 (6)	0.0356 (12)	
H10	1.1012	0.7096	-0.0841	0.043*	
C11	0.8014 (8)	1.2041 (6)	-0.1279 (7)	0.0432 (14)	
H11	0.8440	1.2830	-0.1935	0.052*	
C12	0.6551 (7)	1.2204 (6)	-0.0396 (6)	0.0381 (13)	
H12	0.5997	1.3098	-0.0436	0.046*	
C13	0.5693 (6)	0.4601 (6)	0.2801 (6)	0.0336 (12)	
C14	0.4522 (9)	0.3957 (7)	0.4171 (7)	0.0550 (19)	
H14A	0.3507	0.4539	0.4228	0.066*	
H14B	0.4825	0.3950	0.4891	0.066*	
C15	0.9541 (6)	0.5230 (5)	0.2913 (5)	0.0293 (11)	
C16	1.0576 (7)	0.3988 (6)	0.3569 (6)	0.0354 (12)	
H16A	1.0700	0.4144	0.4303	0.043*	
H16B	1.1602	0.3872	0.2894	0.043*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu2	0.0264 (3)	0.0205 (3)	0.0253 (3)	-0.0018 (2)	-0.0022 (3)	-0.0080 (2)
I1	0.0913 (4)	0.0355 (3)	0.0650 (3)	-0.0196 (2)	-0.0323 (3)	0.0035 (2)
I2	0.0464 (3)	0.0329 (2)	0.0460 (3)	-0.01190 (17)	-0.00496 (18)	-0.01484 (18)
N1	0.028 (2)	0.025 (2)	0.022 (2)	-0.0010 (17)	-0.0070 (17)	-0.0096 (17)
N2	0.029 (2)	0.026 (2)	0.026 (2)	-0.0039 (18)	-0.0058 (18)	-0.0100 (18)
01	0.036 (2)	0.032 (2)	0.0267 (19)	0.0013 (18)	-0.0049 (16)	-0.0137 (17)
O2	0.040 (2)	0.031 (2)	0.031 (2)	-0.0118 (17)	0.0021 (17)	-0.0139 (16)
O3	0.093 (4)	0.070 (3)	0.038 (3)	-0.050 (3)	0.012 (2)	-0.030 (2)
O4	0.034 (2)	0.0286 (19)	0.0270 (19)	0.0040 (16)	-0.0075 (16)	-0.0095 (16)
05	0.049 (2)	0.034 (2)	0.044 (2)	-0.0013 (19)	-0.0081 (19)	-0.0224 (19)
C1	0.028 (3)	0.035 (3)	0.024 (3)	-0.003 (2)	-0.003 (2)	-0.012 (2)
C2	0.031 (3)	0.046 (3)	0.032 (3)	0.003 (3)	-0.007 (2)	-0.018 (3)
C3	0.036 (3)	0.037 (3)	0.043 (3)	0.009 (2)	-0.019 (3)	-0.019 (3)
C4	0.034 (3)	0.027 (3)	0.037 (3)	-0.001 (2)	-0.019 (2)	-0.013 (2)
C5	0.031 (3)	0.022 (2)	0.025 (2)	-0.002 (2)	-0.014 (2)	-0.009(2)
C6	0.025 (3)	0.025 (3)	0.025 (2)	0.000 (2)	-0.010 (2)	-0.010 (2)
C7	0.035 (3)	0.029 (3)	0.030 (3)	-0.011 (2)	-0.013 (2)	-0.006 (2)
C8	0.040 (3)	0.042 (3)	0.032 (3)	-0.020 (3)	-0.010 (2)	-0.005 (2)
C9	0.031 (3)	0.049 (4)	0.032 (3)	-0.010 (3)	-0.001 (2)	-0.016 (3)
C10	0.032 (3)	0.038 (3)	0.031 (3)	-0.002(2)	-0.002 (2)	-0.017 (2)
C11	0.055 (4)	0.024 (3)	0.051 (4)	-0.013 (3)	-0.025 (3)	-0.001 (3)
C12	0.042 (3)	0.025 (3)	0.050 (4)	-0.002 (2)	-0.022 (3)	-0.010 (3)
C13	0.033 (3)	0.030 (3)	0.031 (3)	-0.010 (2)	-0.001 (2)	-0.010 (2)
C14	0.071 (5)	0.048 (4)	0.039 (4)	-0.034 (4)	0.013 (3)	-0.022 (3)
C15	0.029 (3)	0.024 (3)	0.028 (3)	-0.007(2)	-0.002 (2)	-0.007(2)
C16	0.040 (3)	0.034 (3)	0.033 (3)	-0.003 (2)	-0.015 (3)	-0.010 (2)

Geometric parameters (Å, °)

Cu2—O2	1.940 (4)	C3—C4	1.402 (8)	-
Cu2—O4	2.000 (4)	С3—Н3	0.9300	
Cu2—O5	2.775 (4)	C4—C5	1.402 (7)	
Cu2—N2	2.013 (4)	C4—C12	1.433 (8)	
Cu2—N1	2.024 (4)	С5—С6	1.416 (7)	
Cu2—O1	2.261 (4)	С6—С7	1.404 (7)	
I1—C16	2.134 (6)	С7—С8	1.403 (8)	
I2—I2 ⁱ	3.6772 (9)	C7—C11	1.434 (8)	
I2—C14	2.117 (6)	C8—C9	1.352 (8)	
N1—C1	1.322 (6)	C8—H8	0.9300	
N1—C5	1.357 (6)	C9—C10	1.394 (8)	
N2—C10	1.325 (7)	С9—Н9	0.9300	
N2—C6	1.349 (6)	C10—H10	0.9300	
01—H1C	0.8500	C11—C12	1.348 (9)	
01—H1B	0.8500	C11—H11	0.9300	
O2—C13	1.262 (7)	C12—H12	0.9300	
O3—C13	1.230 (7)	C13—C14	1.511 (8)	
O4—C15	1.282 (6)	C14—H14A	0.9700	
O5—C15	1.221 (6)	C14—H14B	0.9700	
C1—C2	1.399 (8)	C15—C16	1.510(7)	
C1—H1A	0.9300	C16—H16A	0.9700	
С2—С3	1.359 (9)	C16—H16B	0.9700	
С2—Н2	0.9300			
Cg1…Cg3 ⁱⁱ	3.505 (6)	Cg2····Cg4 ⁱⁱⁱ	3.634 (6)	
Cg1···Cg4 ⁱⁱⁱ	3.584 (6)	$I2\cdots I2^i$	3.6772 (9)	
Cg2…Cg3 ⁱⁱ	3.625 (6)			
O2—Cu2—O4	92.78 (16)	C7—C6—C5	120.1 (4)	
O2—Cu2—N2	170.83 (17)	C8—C7—C6	116.6 (5)	
O4—Cu2—N2	96.04 (17)	C8—C7—C11	125.3 (5)	
O2—Cu2—N1	89.71 (17)	C6—C7—C11	118.1 (5)	
O4—Cu2—N1	153.55 (16)	C9—C8—C7	119.8 (5)	
N2—Cu2—N1	81.29 (17)	С9—С8—Н8	120.1	
O2—Cu2—O1	93.26 (15)	С7—С8—Н8	120.1	
O4—Cu2—O1	92.60 (14)	C8—C9—C10	119.7 (5)	
N2—Cu2—O1	88.81 (16)	С8—С9—Н9	120.2	
N1—Cu2—O1	113.56 (15)	С10—С9—Н9	120.2	
C1—N1—C5	118.9 (4)	N2—C10—C9	122.7 (5)	
C1—N1—Cu2	128.7 (4)	N2-C10-H10	118.7	
C5—N1—Cu2	112.3 (3)	C9—C10—H10	118.7	
C10—N2—C6	117.8 (5)	C12—C11—C7	122.0 (5)	
C10—N2—Cu2	129.0 (4)	C12—C11—H11	119.0	
C6—N2—Cu2	113.1 (3)	C7—C11—H11	119.0	
Cu2—O1—H1C	109.3	C11—C12—C4	120.6 (5)	
Cu2—O1—H1B	99.7	C11—C12—H12	119.7	

H1C—O1—H1B	106.6	C4—C12—H12	119.7
C13—O2—Cu2	130.1 (3)	O3—C13—O2	126.2 (5)
C15—O4—Cu2	108.2 (3)	O3—C13—C14	122.0 (5)
N1—C1—C2	121.5 (5)	O2—C13—C14	111.7 (5)
N1—C1—H1A	119.2	C13—C14—I2	113.9 (4)
C2—C1—H1A	119.2	C13—C14—H14A	108.8
C3—C2—C1	120.4 (5)	I2—C14—H14A	108.8
С3—С2—Н2	119.8	C13—C14—H14B	108.8
C1—C2—H2	119.8	I2—C14—H14B	108.8
C2—C3—C4	119.3 (5)	H14A—C14—H14B	107.7
С2—С3—Н3	120.4	O5—C15—O4	125.0 (5)
С4—С3—Н3	120.4	O5—C15—C16	118.5 (5)
C5—C4—C3	117.3 (5)	O4—C15—C16	116.5 (4)
C5—C4—C12	118.6 (5)	C15—C16—I1	109.7 (4)
C3—C4—C12	124.1 (5)	C15—C16—H16A	109.7
N1—C5—C4	122.6 (5)	I1—C16—H16A	109.7
N1—C5—C6	116.8 (4)	C15—C16—H16B	109.7
C4—C5—C6	120.6 (5)	I1—C16—H16B	109.7
N2—C6—C7	123.4 (5)	H16A—C16—H16B	108.2
N2—C6—C5	116.5 (4)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, -*y*+2, -*z*; (iii) -*x*+1, -*y*+2, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>B</i> ···O3	0.85	1.84	2.639 (6)	156
O1—H1C····O4 ^{iv}	0.85	1.97	2.785 (5)	161
C3—H3···O1 ⁱⁱⁱ	0.93	2.44	3.240 (7)	144
C11—H11…O5 ⁱⁱ	0.93	2.71	3.508 (8)	144
C10—H10…O3 ^{iv}	0.93	2.68	3.431 (8)	138
C14—H14 B ···O2 ^v	0.97	2.59	3.436 (8)	146
C14—H14 <i>A</i> ···O5 ^v	0.97	2.64	3.219 (8)	119

Symmetry codes: (ii) -x+2, -y+2, -z; (iii) -x+1, -y+2, -z; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z+1.