organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{1-[2-((2-Ammonioethyl){2-[1-(5chloro-2-hydroxyphenyl)ethylideneamino]ethyl}amino)ethyliminio]ethyl}-4-chlorophenolate trifluoroacetate

See Mun Lee, Hapipah Mohd. Ali, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 20 January 2009; accepted 23 January 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.126; data-to-parameter ratio = 16.2.

In the title ion-pair, $C_{22}H_{29}Cl_2N_4O_2^+ \cdot C_2F_3O_2^-$, ammoniumcarboxylate N-H···O hydrogen bonds link two cations and two anions about a centre of inversion to generate a hydrogenbonded tetramer. In the cation, one of the imino N atoms is protonated and donates a hydrogen bond to the O atom of the adjacent chlorophenyl ring. The other imino N atom acts as a hydrogen-bond acceptor from a phenolate O atom.

Related literature

The precursor Schiff base, $bis{2-[1-(5-chloro-2-hydroxy-phenyl)ethyleneamino]ethyl}{2-[1-(5-chloro-2-phenolate)-ethyleneaminio]ethyl}amine, has one of the three C=N double bonds protonated on the N atom (Lee$ *et al.*, 2009).

Experimental

Crystal data

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.981, T_{\rm max} = 0.994$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.126$ S = 1.035762 reflections 356 parameters 5 restraints H atoms treated by a mixture of independent and constrained refinement

12201 measured reflections

5762 independent reflections

4104 reflections with $I > 2\sigma(I)$

 $\Delta \rho_{\text{max}} = 0.72 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.46 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.032$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O2−H21···N2	0.85 (1)	1.68 (2)	2.493 (2)	159 (4)
$N1 - H11 \cdots O1$	0.89(1)	1.73 (2)	2.520 (2)	147 (3)
$N4-H41\cdots O1$	0.88 (1)	1.88 (1)	2.742 (2)	168 (2)
N4-H42···O3	0.89(1)	1.89(1)	2.769 (3)	169 (3)
$N4-H43\cdots O4^{i}$	0.89 (1)	1.92(2)	2.755 (3)	154 (3)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

The authors thank the University of Malaya (grant Nos. FS339/2008A and PS072/2007C) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2856).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Lee, S. M., Ali, H. M., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, 0409.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o410 [doi:10.1107/S1600536809002943]

2-{1-[2-((2-Ammonioethyl){2-[1-(5-chloro-2-hydroxyphenyl)ethylideneamino]ethyl}amino)ethyliminio]ethyl}-4-chlorophenolate trifluoroacetate

See Mun Lee, Hapipah Mohd. Ali, Kong Mun Lo and Seik Weng Ng

S1. Experimental

Tris(2-aminoethyl)amine (1.46 g m 10 mmol) was condensed with 5-chloro-2-hydroxyacetophenone (5.12 g, 30 mol) in refluxing ethanol (100 ml) to yield the unsolvated Schiff base. The compound (0.64 g, 1 mmol) and trifluoroacetic acid (0.11 g, 1 mmol) were dissolved in a small volume of ethanol. Crystals of the salt separated after several days.

S2. Refinement

Carbon-bound H atoms were placed in calculated positions (C—H = 0.93-0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The methyl H atoms were rotated to fit the electron density.

The iminium/ammonium and hydroxy H atoms were located in a difference Fourier map, and were refined with distance restraints [N—H = 0.88 (1) and O—H = 0.84 (1) Å; their isotropic displacement parameters were freely refined.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level. H atoms are drawn as spheres of arbitrary radius.

2-{1-[2-((2-Ammonioethyl){2-[1-(5-chloro-2- hydroxyphenyl)ethylideneamino]ethyl}amino)ethyliminio]ethyl}-4- chlorophenolate trifluoroacetate

Crystal data

 $C_{22}H_{29}Cl_2N_4O_2^{+}C_2F_3O_2^{-}$ $M_r = 565.41$ Triclinic, *P*I Hall symbol: -P 1 a = 10.1041 (2) Å b = 10.6788 (2) Å c = 12.5241 (3) Å a = 88.386 (1)° $\beta = 70.743$ (1)° $\gamma = 81.234$ (2)° V = 1260.48 (5) Å³

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.981, T_{\max} = 0.994$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.126$ S = 1.035762 reflections 356 parameters 5 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 588 $D_x = 1.490 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2402 reflections $\theta = 2.2-27.8^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 100 K Prism, yellow $0.06 \times 0.04 \times 0.02 \text{ mm}$

12201 measured reflections 5762 independent reflections 4104 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 1.7^\circ$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 0.6261P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.72$ e Å⁻³ $\Delta\rho_{min} = -0.46$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.10326 (7)	0.47757 (6)	1.36535 (5)	0.03022 (16)	
Cl2	0.46582 (7)	0.29988 (6)	1.26264 (5)	0.03337 (17)	
01	0.24624 (17)	0.42151 (15)	0.87521 (13)	0.0261 (4)	
O2	0.22931 (18)	-0.00604 (16)	1.01009 (14)	0.0258 (4)	
H21	0.278 (4)	0.005 (4)	0.9419 (14)	0.092 (14)*	
03	0.6309 (2)	0.30567 (19)	0.55587 (16)	0.0445 (5)	
04	0.7436 (2)	0.30693 (16)	0.36975 (14)	0.0349 (4)	
N1	0.0653 (2)	0.27355 (18)	0.90939 (15)	0.0203 (4)	
H11	0.135 (2)	0.316 (2)	0.871 (2)	0.042 (8)*	
N2	0.39560 (19)	0.06404 (17)	0.83106 (15)	0.0214 (4)	

N3	0.23242 (19)	0.19477 (17)	0.68450 (15)	0.0207 (4)
N4	0.3612 (2)	0.4419 (2)	0.64538 (17)	0.0242 (4)
H41	0.332 (3)	0.425 (2)	0.7177 (10)	0.027 (7)*
H42	0.4511 (14)	0.408 (2)	0.613 (2)	0.044 (8)*
H43	0.353 (3)	0.5260 (10)	0.641 (2)	0.038 (8)*
C1	0.2076 (2)	0.4375 (2)	0.98379 (18)	0.0200 (5)
C2	0.0963 (2)	0.37800 (19)	1.06063 (18)	0.0177 (4)
C3	0.0633 (2)	0.3952 (2)	1.17817 (18)	0.0193 (5)
H3	-0.0113	0.3569	1.2290	0.023*
C4	0.1376 (2)	0.4664 (2)	1.21953 (18)	0.0216 (5)
C5	0.2434 (2)	0.5277 (2)	1.1471 (2)	0.0247 (5)
Н5	0.2925	0.5787	1.1773	0.030*
C6	0.2769 (2)	0.5144 (2)	1.0326 (2)	0.0246 (5)
H6	0.3485	0.5578	0.9842	0.030*
C7	0.0240(2)	0.2942 (2)	1.01801 (18)	0.0179 (4)
C8	-0.0912 (2)	0.2298 (2)	1.09553 (19)	0.0250 (5)
H8A	-0.1262	0.1773	1.0509	0.037*
H8B	-0.1692	0.2938	1.1394	0.037*
H8C	-0.0539	0.1763	1.1471	0.037*
C9	0.0156 (2)	0.1860 (2)	0.84896 (19)	0.0227 (5)
H9A	-0.0893	0.2016	0.8730	0.027*
H9B	0.0458	0.0976	0.8668	0.027*
C10	0.0773(2)	0.2056 (2)	0.72269 (19)	0.0231(5)
H10A	0.0499	0.1418	0.6814	0.028*
H10B	0.0368	0.2906	0.7044	0.028*
C11	0.3915 (2)	0.1380(2)	1.00730 (18)	0.0193(5)
C12	0.4442(2)	0.2098 (2)	1.07147 (19)	0.0214 (5)
H12	0.5183	0.2569	1.0342	0.026*
C13	0.3905(2)	0.2132(2)	1.18738 (19)	0.0222(5)
C14	0.2819(2)	0.1461(2)	1 24520 (19)	0.0222(5)
H14	0.2442	0.1503	1 3255	0.028*
C15	0.2300(2)	0.0732(2)	1 18385 (19)	0.022
H15	0.1565	0.0261	1 2227	0.022*(0)
C16	0.1303 0.2827(2)	0.0201	1.06586 (19)	0.027 0.0208 (5)
C17	0.2027(2) 0.4476(2)	0.0070(2) 0.1367(2)	0.88267 (19)	0.0200(5)
C18	0.5569(3)	0.1307(2) 0.2198(2)	0.8265(2)	0.0214(5) 0.0273(5)
H18A	0.5891	0.2051	0.0203(2)	0.0218 (0)
H18B	0.6377	0.1995	0.8540	0.041*
H18C	0.5152	0.3089	0.8443	0.041*
C19	0.3152 0.4354(3)	0.0499(2)	0.0445	0.041 0.0259(5)
H10A	0.4932	-0.0341	0.6833	0.0239 (3)
H10R	0.4932	0.1150	0.635	0.031*
C20	0.4927 0.3015 (2)	0.1139 0.0623(2)	0.6765(2)	0.031 0.0247(5)
U20 H20A	0.3013 (2)	0.0023 (2)	0.5081	0.0247 (3)
H20A	0.3230	0.0295	0.3701	0.030*
C21	0.2347	0.0104 0.2563 (2)	0.1213 0.57570 (10)	0.030
U21 H21A	0.2072 (3)	0.2303 (2)	0.57570 (19)	0.0200 (3)
1121A 1121D	0.2300	0.2340	0.5249	0.032*
п∠ID	0.3009	0.2223	0.3404	0.052**

C22	0.2712 (3)	0.3986 (2)	0.5850(2)	0.0274 (5)	
H22A	0.2968	0.4336	0.5081	0.033*	
H22B	0.1706	0.4325	0.6256	0.033*	
C23	0.7267 (2)	0.2710 (2)	0.4670 (2)	0.0245 (5)	
C24	0.8459 (3)	0.1700 (2)	0.4815 (2)	0.0281 (5)	
F1	0.79561 (19)	0.07794 (17)	0.54812 (16)	0.0644 (6)	
F2	0.9303 (2)	0.21998 (18)	0.5210(2)	0.0813 (8)	
F3	0.92729 (18)	0.11073 (17)	0.38502 (15)	0.0550 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0342 (3)	0.0384 (4)	0.0199 (3)	0.0023 (3)	-0.0144 (3)	-0.0062 (2)
Cl2	0.0386 (4)	0.0377 (4)	0.0288 (3)	-0.0110 (3)	-0.0150 (3)	-0.0050(3)
01	0.0300 (9)	0.0305 (9)	0.0170 (8)	-0.0130 (7)	-0.0031 (7)	0.0024 (7)
O2	0.0267 (9)	0.0292 (9)	0.0234 (9)	-0.0125 (7)	-0.0069 (8)	0.0015 (7)
03	0.0322 (10)	0.0547 (13)	0.0297 (10)	0.0114 (9)	0.0037 (8)	0.0106 (9)
O4	0.0475 (11)	0.0331 (10)	0.0223 (9)	-0.0028 (8)	-0.0111 (8)	0.0062 (7)
N1	0.0228 (10)	0.0221 (10)	0.0169 (9)	-0.0087 (8)	-0.0054 (8)	-0.0002 (7)
N2	0.0216 (10)	0.0239 (10)	0.0186 (9)	-0.0002 (8)	-0.0078 (8)	0.0011 (8)
N3	0.0235 (10)	0.0230 (10)	0.0149 (9)	-0.0012 (8)	-0.0065 (8)	-0.0002 (7)
N4	0.0251 (11)	0.0292 (12)	0.0153 (10)	-0.0029 (9)	-0.0034 (9)	0.0054 (8)
C1	0.0233 (11)	0.0173 (11)	0.0197 (11)	-0.0029 (9)	-0.0076 (9)	0.0027 (8)
C2	0.0183 (11)	0.0156 (10)	0.0199 (11)	-0.0020 (8)	-0.0075 (9)	0.0006 (8)
C3	0.0202 (11)	0.0190 (11)	0.0165 (11)	0.0015 (9)	-0.0050 (9)	0.0007 (8)
C4	0.0269 (12)	0.0216 (11)	0.0174 (11)	0.0016 (9)	-0.0110 (10)	-0.0022 (9)
C5	0.0286 (12)	0.0202 (12)	0.0312 (13)	-0.0046 (9)	-0.0170 (11)	-0.0014 (9)
C6	0.0268 (12)	0.0207 (12)	0.0282 (13)	-0.0095 (9)	-0.0094 (10)	0.0035 (9)
C7	0.0191 (11)	0.0159 (10)	0.0186 (11)	-0.0005 (8)	-0.0071 (9)	0.0003 (8)
C8	0.0282 (12)	0.0281 (13)	0.0196 (11)	-0.0121 (10)	-0.0058 (10)	0.0021 (9)
C9	0.0248 (12)	0.0242 (12)	0.0215 (11)	-0.0074 (9)	-0.0088 (10)	-0.0031 (9)
C10	0.0271 (12)	0.0241 (12)	0.0203 (11)	-0.0028 (9)	-0.0110 (10)	-0.0021 (9)
C11	0.0205 (11)	0.0179 (11)	0.0191 (11)	-0.0013 (9)	-0.0067 (9)	0.0018 (8)
C12	0.0200 (11)	0.0190 (11)	0.0255 (12)	-0.0039 (9)	-0.0075 (10)	0.0032 (9)
C13	0.0236 (12)	0.0211 (12)	0.0237 (12)	-0.0011 (9)	-0.0108 (10)	-0.0017 (9)
C14	0.0245 (12)	0.0256 (12)	0.0179 (11)	0.0009 (9)	-0.0050 (9)	0.0011 (9)
C15	0.0200 (11)	0.0212 (11)	0.0231 (12)	-0.0034 (9)	-0.0033 (9)	0.0034 (9)
C16	0.0179 (11)	0.0207 (11)	0.0234 (12)	-0.0015 (9)	-0.0069 (9)	0.0012 (9)
C17	0.0192 (11)	0.0199 (11)	0.0251 (12)	-0.0013 (9)	-0.0083 (10)	0.0029 (9)
C18	0.0277 (13)	0.0311 (13)	0.0216 (12)	-0.0091 (10)	-0.0046 (10)	0.0049 (10)
C19	0.0283 (13)	0.0291 (13)	0.0182 (11)	0.0023 (10)	-0.0075 (10)	-0.0010 (9)
C20	0.0302 (13)	0.0238 (12)	0.0209 (12)	-0.0009 (10)	-0.0106 (10)	-0.0035 (9)
C21	0.0310(13)	0.0331 (13)	0.0150 (11)	-0.0018 (10)	-0.0078 (10)	0.0008 (9)
C22	0.0313 (13)	0.0306 (13)	0.0209 (12)	-0.0048 (10)	-0.0097 (10)	0.0075 (10)
C23	0.0244 (12)	0.0243 (12)	0.0239 (12)	-0.0046 (9)	-0.0069 (10)	0.0038 (9)
C24	0.0271 (13)	0.0301 (13)	0.0257 (13)	-0.0042 (10)	-0.0072 (11)	0.0029 (10)
F1	0.0543 (11)	0.0495 (11)	0.0659 (13)	0.0096 (9)	0.0014 (10)	0.0328 (10)
F2	0.0898 (15)	0.0505 (12)	0.143 (2)	0.0103 (10)	-0.0980 (16)	-0.0211 (12)

F3	0.0445 (10)	0.0601 (12)	0.0440 (10)	0.0166 (8)	-0.0026 (8)	-0.0095 (8)	
Geometric parameters (Å, °)							
C11-0	C4	1.747 (2)	C9—C10		1.518 (3)	
Cl2—0	C13	1.749 (2)	С9—Н9А		0.9900	
01-0	21	1.294 (3)	С9—Н9В		0.9900	
02—0	216	1.339 (3)	C10—H10A		0.9900	
02—H	121	0.847 (1	0)	C10—H10B		0.9900	
03-0	223	1.231 (3)	C11—C12		1.400 (3)	
04—0	223	1.231 (3)	C11—C16		1.419 (3)	
N1-C	27	1.299 (3)	C11—C17		1.474 (3)	
N1-C	29	1.460 (3)	C12—C13		1.371 (3)	
N1—H	I11	0.889 (1	0)	C12—H12		0.9500	
N2C	217	1.293 (3)	C13—C14		1.389 (3)	
N2C	219	1.458 (3)	C14—C15		1.377 (3)	
N3—C	210	1.467 (3)	C14—H14		0.9500	
N3—C	220	1.469 (3)	C15—C16		1.396 (3)	
N3—C	21	1.469 (3)	C15—H15		0.9500	
N4C	222	1.487 (3)	C17—C18		1.501 (3)	
N4—H	[41	0.878 (1	0)	C18—H18A		0.9800	
N4—F	I42	0.886 (1	0)	C18—H18B		0.9800	
N4—F	I43	0.892 (1	0)	C18—H18C		0.9800	
C1-C	26	1.423 (3)	C19—C20		1.520 (3)	
C1-C	22	1.436 (3)	C19—H19A		0.9900	
С2—С	23	1.409 (3)	C19—H19B		0.9900	
С2—С	27	1.450 (3)	C20—H20A		0.9900	
С3—С	24	1.365 (3)	C20—H20B		0.9900	
С3—Н	[3	0.9500		C21—C22		1.507 (3)	
С4—С	25	1.391 (3)	C21—H21A		0.9900	
С5—С	26	1.367 (3)	C21—H21B		0.9900	
С5—Н	15	0.9500		C22—H22A		0.9900	
С6—Н	16	0.9500		C22—H22B		0.9900	
С7—С	28	1.494 (3)	C23—C24		1.545 (3)	
С8—Н	[8A	0.9800		C24—F2		1.299 (3)	
С8—Н	[8B	0.9800		C24—F1		1.322 (3)	
С8—Н	18C	0.9800		C24—F3		1.329 (3)	
C16—	O2—H21	102 (3)		C13—C12—H12	2	119.5	
C7—N	11—C9	127.14 (19)	C11—C12—H12	2	119.5	
C7—N	11—H11	113.5 (1	9)	C12—C13—C14	ł	121.3 (2)	
C9—N	II—H11	119.3 (1	9)	C12—C13—Cl2		118.69 (18)	
C17—	N2—C19	124.9 (2)	C14—C13—Cl2		119.96 (18)	
C10—	N3—C20	112.17 (18)	C15—C14—C13	3	118.7 (2)	
C10—	N3—C21	111.60 (18)	C15—C14—H14	1	120.7	
C20—	N3—C21	109.93 (18)	C13—C14—H14	1	120.7	
C22—	N4—H41	112.4 (1	7)	C14—C15—C16	ō	121.5 (2)	
C22—	N4—H42	110.4 (1	9)	C14—C15—H15	5	119.2	

supporting information

H41—N4—H42	110 (3)	C16—C15—H15	119.2
C22—N4—H43	107.7 (18)	O2—C16—C15	119.2 (2)
H41—N4—H43	106 (2)	O2—C16—C11	121.3 (2)
H42—N4—H43	109 (3)	C15—C16—C11	119.5 (2)
O1—C1—C6	120.6 (2)	N2—C17—C11	116.1 (2)
O1—C1—C2	122.6 (2)	N2—C17—C18	125.6 (2)
C6—C1—C2	116.8 (2)	C11—C17—C18	118.3 (2)
C3—C2—C1	119.7 (2)	C17—C18—H18A	109.5
C3—C2—C7	119.8 (2)	C17—C18—H18B	109.5
C1—C2—C7	120.32 (19)	H18A—C18—H18B	109.5
C4—C3—C2	120.5 (2)	C17—C18—H18C	109.5
С4—С3—Н3	119.8	H18A—C18—H18C	109.5
С2—С3—Н3	119.8	H18B—C18—H18C	109.5
C3—C4—C5	121.0 (2)	N2—C19—C20	108.94 (19)
C3—C4—Cl1	119.76 (18)	N2—C19—H19A	109.9
C5—C4—Cl1	119.19 (17)	С20—С19—Н19А	109.9
C6—C5—C4	120.0 (2)	N2—C19—H19B	109.9
С6—С5—Н5	120.0	С20—С19—Н19В	109.9
С4—С5—Н5	120.0	H19A—C19—H19B	108.3
C5—C6—C1	121.9 (2)	N3—C20—C19	111.49 (19)
С5—С6—Н6	119.0	N3—C20—H20A	109.3
С1—С6—Н6	119.0	С19—С20—Н20А	109.3
N1—C7—C2	117.78 (19)	N3—C20—H20B	109.3
N1—C7—C8	120.4 (2)	С19—С20—Н20В	109.3
C2—C7—C8	121.75 (19)	H20A—C20—H20B	108.0
С7—С8—Н8А	109.5	N3—C21—C22	114.00 (19)
С7—С8—Н8В	109.5	N3—C21—H21A	108.8
H8A—C8—H8B	109.5	C22—C21—H21A	108.8
С7—С8—Н8С	109.5	N3—C21—H21B	108.8
H8A—C8—H8C	109.5	C22—C21—H21B	108.8
H8B—C8—H8C	109.5	H21A—C21—H21B	107.6
N1—C9—C10	109.14 (18)	N4—C22—C21	112.88 (19)
N1—C9—H9A	109.9	N4—C22—H22A	109.0
С10—С9—Н9А	109.9	C21—C22—H22A	109.0
N1—C9—H9B	109.9	N4—C22—H22B	109.0
С10—С9—Н9В	109.9	C21—C22—H22B	109.0
Н9А—С9—Н9В	108.3	H22A—C22—H22B	107.8
N3—C10—C9	112.01 (18)	O3—C23—O4	130.0 (2)
N3—C10—H10A	109.2	O3—C23—C24	114.3 (2)
С9—С10—Н10А	109.2	O4—C23—C24	115.6 (2)
N3—C10—H10B	109.2	F2—C24—F1	109.2 (2)
C9—C10—H10B	109.2	F2—C24—F3	106.2 (2)
H10A—C10—H10B	107.9	F1—C24—F3	104.2 (2)
C12—C11—C16	118.0 (2)	F2—C24—C23	111.5 (2)
C12—C11—C17	120.8 (2)	F1—C24—C23	112.3 (2)
C16—C11—C17	121.2 (2)	F3—C24—C23	113.1 (2)
C13—C12—C11	121.0 (2)		~ /

O1—C1—C2—C3	177.41 (19)	Cl2—C13—C14—C15	-176.52 (17)
C6—C1—C2—C3	-1.5 (3)	C13-C14-C15-C16	-0.8 (3)
O1—C1—C2—C7	1.2 (3)	C14—C15—C16—O2	179.5 (2)
C6—C1—C2—C7	-177.62 (19)	C14—C15—C16—C11	-0.6 (3)
C1—C2—C3—C4	-1.0 (3)	C12—C11—C16—O2	-178.6 (2)
C7—C2—C3—C4	175.23 (19)	C17—C11—C16—O2	1.6 (3)
C2—C3—C4—C5	2.6 (3)	C12-C11-C16-C15	1.5 (3)
C2—C3—C4—Cl1	-175.57 (16)	C17—C11—C16—C15	-178.3 (2)
C3—C4—C5—C6	-1.7 (3)	C19—N2—C17—C11	179.43 (19)
Cl1—C4—C5—C6	176.49 (18)	C19—N2—C17—C18	0.4 (4)
C4—C5—C6—C1	-0.9 (4)	C12—C11—C17—N2	177.7 (2)
O1—C1—C6—C5	-176.5 (2)	C16—C11—C17—N2	-2.5 (3)
C2-C1-C6-C5	2.4 (3)	C12—C11—C17—C18	-3.2 (3)
C9—N1—C7—C2	175.0 (2)	C16—C11—C17—C18	176.6 (2)
C9—N1—C7—C8	-3.1 (3)	C17—N2—C19—C20	-131.8 (2)
C3—C2—C7—N1	-174.86 (19)	C10-N3-C20-C19	-145.03 (19)
C1-C2-C7-N1	1.3 (3)	C21—N3—C20—C19	90.2 (2)
C3—C2—C7—C8	3.3 (3)	N2-C19-C20-N3	74.7 (2)
C1—C2—C7—C8	179.4 (2)	C10—N3—C21—C22	78.2 (2)
C7—N1—C9—C10	172.3 (2)	C20—N3—C21—C22	-156.73 (19)
C20—N3—C10—C9	76.3 (2)	N3-C21-C22-N4	67.2 (3)
C21—N3—C10—C9	-159.79 (18)	O3—C23—C24—F2	-76.8 (3)
N1-C9-C10-N3	54.4 (2)	O4—C23—C24—F2	101.3 (3)
C16—C11—C12—C13	-1.1 (3)	O3—C23—C24—F1	46.1 (3)
C17—C11—C12—C13	178.72 (19)	O4—C23—C24—F1	-135.8 (2)
C11—C12—C13—C14	-0.2 (3)	O3—C23—C24—F3	163.6 (2)
C11—C12—C13—Cl2	177.53 (17)	O4—C23—C24—F3	-18.3 (3)
C12—C13—C14—C15	1.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2—H21…N2	0.85(1)	1.68 (2)	2.493 (2)	159 (4)
N1—H11…O1	0.89(1)	1.73 (2)	2.520 (2)	147 (3)
N4—H41…O1	0.88(1)	1.88(1)	2.742 (2)	168 (2)
N4—H42…O3	0.89(1)	1.89(1)	2.769 (3)	169 (3)
N4— $H43$ ···O4 ⁱ	0.89 (1)	1.92 (2)	2.755 (3)	154 (3)

Symmetry code: (i) -x+1, -y+1, -z+1.