

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

tert-Butyl imidazole-1-carboxylate

Tobias Kerscher, Tanja Prommnitz, Peter Klüfers and Peter Maver*

Ludwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5-13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 19 January 2009; accepted 26 January 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.104; data-to-parameter ratio = 18.6.

In the title compound, C8H12N2O2, molecules are interconnected by weak $C-H \cdots O$ contacts with $H \cdots O$ distances of 2.30 Å, resulting in the formation of chains along [100]. According to graph-set analysis, the unitary descriptor of these chains is C(5). In addition, there are $\pi - \pi$ stacking interactions between pyrazole rings (centroid distance = 3.878 Å and ring plane distance = 3.26 Å).

Related literature

The title compound is a well known organic compound and was prepared according to a recently published procedure (Jia et al., 2007). For details of graph-set analysis see: Etter et al. (1990); Bernstein et al. (1995).

2097 independent reflections

 $R_{\rm int}=0.026$

1650 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_8H_{12}N_2O_2$	V = 915.58 (5) Å ³
$M_r = 168.19$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 5.9952 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 13.2507 (4) Å	T = 200 (2) K
c = 11.5564 (4) Å	$0.50 \times 0.38 \times 0.38$ mm
$\beta = 94.201 \ (2)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 6875 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 \\ wR(F^2) &= 0.104 \end{split}$$
113 parameters H-atom parameters constrained S = 1.07 $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^ \Delta \rho_{\rm min}$ = -0.16 e Å⁻³ 2097 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1 \cdots O2^i$	0.95	2.30	3.1949 (16)	156
Symmetry code: (i)	x - 1, y, z.			

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

TK thanks the Hanns Seidel Stiftung for a personal grant funded by the German Bundesministerium für Bildung und Forschung.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2854).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Jia, X., Huang, Q., Li, J. & Yang, Q. (2007). Synlett, pp. 806-808.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o405 [doi:10.1107/S1600536809003110]

tert-Butyl imidazole-1-carboxylate

Tobias Kerscher, Tanja Prommnitz, Peter Klüfers and Peter Mayer

S1. Comment

The title compound was synthesized in a multistep sythesis in an attempt to create new complexing ligands.

The molecule is an imidazole protected by the *tert*-butyloxycarbonyle (Boc) group in the 1 position (see Fig. 1). The crystal packing is shown in Fig. 2. In the crystal, weak C—H···O contacts along [100] which can be described according to graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995) with a unitary C(5) descriptor (see Fig. 3), lead to chain like structures of dimeric units which are formed by π -type interaction of two imidazole rings (see Fig. 4). The two imidazole rings are separated by about 3.26 Å and shifted, which results in only about half of one ring overlapping with the other ring (see Fig. 5).

Interestingly the imidazoles do not form longer strands of π -type interacting aromatic systems but only dimeric units which might be due to the large space occupied by the Boc protecting group which leads to separate strands of C—H···O bridged dimeric units (see Fig. 2).

S2. Experimental

 Boc_2O was reacted solvent free with one equivalent of imidazole. After the CO_2 gas evolution had finished, the byproduct, *t*-butanole, was removed by fine vacuum and big colorless crystals of the title compound were obtained.

S3. Refinement

H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms and C—H 0.98 Å for methyl C atoms) and were included in the refinement in the riding model approximation with U(H) set to $1.2U_{eq}(C)$ for aromatic C atoms and $1.5U_{eq}(C)$ for methyl C atoms.

Figure 1

The molecular structure of the title compound with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Figure 2

The packing of the title compound, viewed along $[\overline{1}00]$.

Figure 3

Weak C—H···O interactions lead to chain-like structures in the crystal structure along [100] shown here normal to [001]. Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Figure 4

 π interaction leads to dimeric units shown here normal to [100]. Symmetry code: (i) -x, -y, -z.

Figure 5

The dimeric units formed by π interaction are shifted, so that only half of the imidazole rings overlap. Two of the imidazole rings are shown here, normal to [001]. Symmetry code: (i) -*x*, -*y*, -*z*.

tert-Butyl imidazole-1-carboxylate

Crystal data

 $C_{8}H_{12}N_{2}O_{2}$ $M_{r} = 168.19$ Monoclinic, $P2_{1/c}$ Hall symbol: -P 2ybc a = 5.9952 (2) Å b = 13.2507 (4) Å c = 11.5564 (4) Å $\beta = 94.201$ (2)° V = 915.58 (5) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: rotating anode MONTEL, graded multilayered X-ray optics monochromator CCD; rotation images; thick slices scans 6875 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.104$ S = 1.072097 reflections 113 parameters 0 restraints F(000) = 360 $D_x = 1.220 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3660 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 200 KBlock, colourless $0.50 \times 0.38 \times 0.38 \text{ mm}$

2097 independent reflections 1650 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -17 \rightarrow 17$ $l = -14 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 0.2307P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Extinction correction: SHELXL97 (Sheldrick,
$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$	2008)
$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$	Extinction coefficient: 0.063 (6)

Special details

Refinement. Hydrogen atoms were placed in calculated positions (C–H 0.95 Å for aromatic C atoms and C–H 0.98 Å for methyl C atoms) and were included in the refinement in the riding model approximation with U(H) set to 1.2 $U_{eq}(C)$ for aromatic C atoms and 1.5 $U_{eq}(C)$ for methyl C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.15042 (14)	0.21450 (6)	0.03780 (8)	0.0356 (3)	
O2	0.50241 (15)	0.15584 (8)	0.07833 (10)	0.0527 (3)	
N1	0.19880 (17)	0.06402 (8)	0.12264 (9)	0.0329 (3)	
N2	-0.0623 (2)	-0.03954 (9)	0.17875 (11)	0.0442 (3)	
C1	-0.0253 (2)	0.04699 (10)	0.13009 (11)	0.0359 (3)	
H1	-0.1397	0.0927	0.1031	0.043*	
C2	0.1485 (2)	-0.08085 (11)	0.20408 (13)	0.0450 (4)	
H2	0.1750	-0.1445	0.2404	0.054*	
C3	0.3103 (2)	-0.01943 (10)	0.17071 (12)	0.0410 (3)	
Н3	0.4671	-0.0307	0.1784	0.049*	
C4	0.3034 (2)	0.14897 (10)	0.07701 (11)	0.0350(3)	
C5	0.2187 (2)	0.30947 (10)	-0.01876 (12)	0.0373 (3)	
C6	-0.0052 (3)	0.35703 (12)	-0.05516 (15)	0.0526 (4)	
H6A	-0.0861	0.3708	0.0138	0.079*	
H6B	-0.0929	0.3107	-0.1065	0.079*	
H6C	0.0187	0.4204	-0.0963	0.079*	
C7	0.3515 (3)	0.37416 (11)	0.06973 (13)	0.0485 (4)	
H7A	0.4941	0.3410	0.0926	0.073*	
H7B	0.2661	0.3830	0.1382	0.073*	
H7C	0.3801	0.4402	0.0357	0.073*	
C8	0.3472 (3)	0.28433 (12)	-0.12317 (13)	0.0501 (4)	
H8A	0.2566	0.2400	-0.1756	0.075*	
H8B	0.4871	0.2501	-0.0974	0.075*	
H8C	0.3812	0.3467	-0.1640	0.075*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0293 (5)	0.0336 (5)	0.0438 (5)	-0.0001 (3)	0.0018 (4)	0.0068 (4)
02	0.0279 (5)	0.0595 (7)	0.0709 (7)	0.0038 (4)	0.0052 (5)	0.0188 (6)
N1	0.0322 (6)	0.0335 (6)	0.0329 (5)	0.0020 (4)	0.0007 (4)	0.0020 (4)
N2	0.0469 (7)	0.0399 (6)	0.0458 (7)	-0.0045 (5)	0.0035 (5)	0.0022 (5)
C1	0.0334 (7)	0.0376 (7)	0.0366 (7)	-0.0013 (5)	0.0017 (5)	-0.0004(5)
C2	0.0549 (9)	0.0359 (7)	0.0436 (8)	0.0016 (6)	0.0004 (6)	0.0049 (6)
C3	0.0424 (8)	0.0385 (7)	0.0413 (7)	0.0078 (6)	-0.0022 (6)	0.0036 (6)
C4	0.0312 (7)	0.0384 (7)	0.0353 (6)	0.0023 (5)	0.0016 (5)	0.0028 (5)
C5	0.0389 (7)	0.0338 (7)	0.0392 (7)	-0.0034(5)	0.0036 (5)	0.0049(5)

supporting information

C6	0.0507 (9)	0.0407 (8)	0.0654 (10)	0.0045 (7)	-0.0025 (7)	0.0133 (7)
C7	0.0532 (9)	0.0456 (8)	0.0470 (8)	-0.0127 (7)	0.0054 (7)	-0.0033 (7)
C8	0.0600 (10)	0.0514 (9)	0.0397 (8)	-0.0053 (7)	0.0093 (7)	0.0038 (7)

Geometric p	arameters	(Å, '	")
-------------	-----------	-------	----

01—C4	1.3187 (15)	C5—C6	1.5144 (19)
O1—C5	1.4892 (15)	С5—С7	1.5147 (19)
O2—C4	1.1958 (15)	C5—C8	1.515 (2)
N1—C1	1.3714 (16)	C6—H6A	0.9800
N1—C3	1.3870 (16)	С6—Н6В	0.9800
N1—C4	1.4094 (17)	С6—Н6С	0.9800
N2—C1	1.3032 (17)	C7—H7A	0.9800
N2—C2	1.3886 (19)	C7—H7B	0.9800
C1—H1	0.9500	C7—H7C	0.9800
C2—C3	1.344 (2)	C8—H8A	0.9800
C2—H2	0.9500	C8—H8B	0.9800
С3—Н3	0.9500	C8—H8C	0.9800
C4—O1—C5	120.04 (10)	C6—C5—C8	111.24 (12)
C1—N1—C3	106.82 (11)	C7—C5—C8	112.92 (12)
C1—N1—C4	128.28 (10)	С5—С6—Н6А	109.5
C3—N1—C4	124.90 (11)	C5—C6—H6B	109.5
C1—N2—C2	104.88 (11)	H6A—C6—H6B	109.5
N2—C1—N1	111.73 (11)	С5—С6—Н6С	109.5
N2—C1—H1	124.1	H6A—C6—H6C	109.5
N1—C1—H1	124.1	H6B—C6—H6C	109.5
C3—C2—N2	111.44 (12)	С5—С7—Н7А	109.5
С3—С2—Н2	124.3	С5—С7—Н7В	109.5
N2—C2—H2	124.3	H7A—C7—H7B	109.5
C2—C3—N1	105.13 (12)	С5—С7—Н7С	109.5
С2—С3—Н3	127.4	H7A—C7—H7C	109.5
N1—C3—H3	127.4	H7B—C7—H7C	109.5
O2—C4—O1	128.48 (12)	C5—C8—H8A	109.5
O2—C4—N1	121.79 (11)	C5—C8—H8B	109.5
O1—C4—N1	109.72 (10)	H8A—C8—H8B	109.5
O1—C5—C6	101.94 (10)	C5—C8—H8C	109.5
O1—C5—C7	109.24 (11)	H8A—C8—H8C	109.5
C6—C5—C7	111.30 (12)	H8B—C8—H8C	109.5
O1—C5—C8	109.63 (11)		
C2—N2—C1—N1	-0.07 (15)	C5—O1—C4—N1	-177.82 (10)
C3—N1—C1—N2	0.14 (15)	C1—N1—C4—O2	178.00 (13)
C4—N1—C1—N2	-179.21 (12)	C3—N1—C4—O2	-1.2 (2)
C1—N2—C2—C3	-0.04 (16)	C1—N1—C4—O1	-0.98 (18)
N2-C2-C3-N1	0.12 (16)	C3—N1—C4—O1	179.77 (11)
C1—N1—C3—C2	-0.15 (14)	C4—O1—C5—C6	176.89 (11)
C4—N1—C3—C2	179.23 (12)	C4—O1—C5—C7	-65.27 (15)

supporting information

C5—O1—C4—O2 3.3 (2)		C4—O1—C5—C8	58	58.95 (15)	
Hydrogen-bond geometry (Å, °))				
D—H···A		<i>D</i> —Н	H···A	D···A	D—H…A
C1—H1…O2 ⁱ		0.95	2.30	3.1949 (16)	156

Symmetry code: (i) x-1, y, z.