Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-3-[(E)-3-Phenylallylidene]indolin-2one

Hongming Zhang,* Shashidhar Kumar Akubathini, Haribabu Ankati and Ed Biehl

Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA Correspondence e-mail: hzhang@smu.edu

Received 20 December 2008; accepted 15 January 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.132; data-to-parameter ratio = 9.6.

The title compound, C₁₇H₁₃NO, synthesized to be tested for neuroprotective activities, consists of an indoline and a phenylallylidene unit with a dihedral angle of 9.0 $(1)^{\circ}$ between the two ring systems. There are two independent molecules in the asymmetric unit which are connected into a dimer by intermolecular N-H···O hydrogen bonds.

Related literature

For the pharmacological properties of 3-substituted indoline-2-ones, see: Sun et al. (2003); Andreani et al. (2006); Johnson et al. (2005). For the synthesis and neuroprotective activities of a series of 3-substituted indoline-2-one derivatives, see: Balderamos et al. (2008). For the original synthesis of the title compound, see: Elliott & Rivers (1964). For modified synthetic methods, see: Tacconi & Marinone (1968); Villemin & Martin (1998). For the crystal structures of related compounds, see: Zhang et al. (2008, 2009).

Experimental

Crystal data

C ₁₇ H ₁₃ NO	b = 15.3294 (11) Å
$M_r = 247.28$	c = 14.6516 (10) Å
Monoclinic, P2 ₁	$\beta = 94.312 \ (1)^{\circ}$
a = 5.8373 (4) Å	V = 1307.35 (16) Å ³

```
Z = 4
Mo K\alpha radiation
\mu = 0.08 \text{ mm}^{-1}
```

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.971, T_{\max} = 0.994$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.132$ S = 1.113282 reflections 343 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N21 - H21 \cdots O2^{i} \\ N1 - H1 \cdots O22^{ii} \end{array}$	0.86	2.03	2.852 (3)	159
	0.86	2.07	2.893 (3)	161

Symmetry codes: (i) x + 1, y - 1, z; (ii) x - 1, y + 1, z.

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009).

The authors are grateful for the grants from the Welch Foundation (N-118) and the DARPA (HR0011-06-1-0032).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2843).

References

- Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922-6924.
- Balderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. & D'Mello, S. (2008). Exp. Biol. Med. 233, 1395-1402.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Elliott, I. W. & Rivers, P. (1964). J. Org. Chem. 29, 2438-2440.
- Johnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538-548.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J. & Tang, C. (2003). J. Med. Chem. 46, 1116-1119.

Tacconi, M. & Marinone, F. (1968). Ricerca Sci. Univ. Pavia, 38, 1239-1244.

- Villemin, D. & Martin, B. (1998). Synth. Commun.. 28, 3201-3208.
- Westrip, S. P. (2009). publCIF. In preparation.
- Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, o2103.

Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009). Acta Cryst. E65, 08.

organic compounds

12503 measured reflections 3282 independent reflections

2386 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 296 (2) K $0.38 \times 0.21 \times 0.08 \text{ mm}$

 $R_{\rm int} = 0.032$

1 restraint

 $\Delta \rho_{\text{max}} = 0.17 \text{ e} \text{ Å}$

 $\Delta \rho_{\rm min}$ = -0.15 e Å⁻³

supporting information

Acta Cryst. (2009). E65, o363 [doi:10.1107/S1600536809002037]

(Z)-3-[(E)-3-Phenylallylidene]indolin-2-one

Hongming Zhang, Shashidhar Kumar Akubathini, Haribabu Ankati and Ed Biehl

S1. Comment

It is known that some 3-substituted indoline-2-ones compounds exhibit a variety of pharmacologically important properties such as protein kinase inhibitors (Sun *et al.*, 2003), anti-tumor agents (Andreani *et al.*, 2006) and neuroprotecting agents (Johnson *et al.*, 2005). For studying the biological properties, a series of 3-substituted indoline-2-one derivatives have been synthesized in our lab and their neuroprotective activities have been tested (Balderamos *et al.*, 2008). The results are very promising. To expand our research, a few known compounds were made for test purpose. The title compound was first made by Elliott & Rivers (1964), and modified synthetic methods were reported later (Tacconi & Marinone, 1968; Villemin & Martin, 1998). As a part of our studies on the relationship between the biological activities and solid structures a couple of crystal structures of the derivatives have been carried out (Zhang, *et al.*, 2008, 2009). The title compound consists an indoline and a phenylallylidene unit. The two aromatic rings are slightly twisted with a dihedral angle of 9.0 (1)° (Fig 1). In the crystal the molecules are connected by intermolecular H-bonds between the two independent molecules to form a dimer (Table 1, Fig. 2).

S2. Experimental

The title compound was synthesized by the condensation of *trans*- cinnamaldehyde (1 mmol) with 2-oxindole (1 mmol) in ethanol (10 ml) in the presence of catalytic amount of piperidine (0.1 mmol). After refluxing for 3 h, the reaction mixture was left to stand for overnight. The resulting crude solid was filtered, washed with cold ethanol (10 ml) and dried. Orange colored single crystals of the compound suitable for *x*-ray structure determination were recrystallized from ethanol.

S3. Refinement

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding model, with distances N–H = 0.86 Å and C–H = 0.93 Å, and displacement parameters $U_{iso}(H) = 1.2U_{eq}(N,C)$. Friedel pairs have been merged prior to refinement.

Figure 1

A view of one of the independent molecules with displacement ellipsoids drawn at the 40% probability level. H atoms are presented as open circles with arbitrary radii. Atoms of another independent molecule were labeled as N21 H21 C22 O22 through C38 H38.

Figure 2

A unit cell packing view of the title compound. Dash lines indicate hydrogen bonds.

(Z)-3-[(E)-3-Phenylallylidene]indolin-2-one

Crystal data $C_{17}H_{13}NO$ $M_r = 247.28$ Monoclinic, $P2_1$ a = 5.8373 (4) Å b = 15.3294 (11) Å c = 14.6516 (10) Å $\beta = 94.312$ (1)° V = 1307.35 (16) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 83.33 pixels mm⁻¹ φ and ω scans F(000) = 520 $D_x = 1.256 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3505 reflections $\theta = 2.7-28.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KPlates, orange $0.38 \times 0.21 \times 0.08 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.971$, $T_{max} = 0.994$ 12503 measured reflections 3282 independent reflections 2386 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.032$	$k = -19 \rightarrow 20$
$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 1.4^{\circ}$	$l = -19 \rightarrow 19$
$h = -7 \rightarrow 7$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.132$	neighbouring sites
S = 1.11	H-atom parameters constrained
3282 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0629P)^2 + 0.0136P]$
343 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and isotr	opic or	eauivalent	isotropic	displacement	parameters	$(Å^2)$)
								p	()	<u> </u>

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.4059 (5)	0.95163 (18)	0.38623 (17)	0.0543 (7)
H1	0.2755	0.9773	0.3761	0.065*
C2	0.5085 (5)	0.9366 (2)	0.4708 (2)	0.0489 (8)
O2	0.4320 (4)	0.95989 (17)	0.54301 (15)	0.0629 (7)
C3	0.7271 (5)	0.8900 (2)	0.4579 (2)	0.0472 (8)
C4	0.8935 (6)	0.8445 (2)	0.3042 (2)	0.0570 (9)
H4	1.0253	0.8175	0.3303	0.068*
C5	0.8528 (7)	0.8490 (3)	0.2103 (3)	0.0688 (10)
H5	0.9586	0.8254	0.1729	0.083*
C6	0.6563 (7)	0.8883 (3)	0.1715 (2)	0.0710 (11)
H6	0.6319	0.8903	0.1081	0.085*
C7	0.4945 (6)	0.9250 (2)	0.2242 (2)	0.0616 (9)
H7	0.3628	0.9516	0.1976	0.074*
C8	0.5369 (6)	0.9204 (2)	0.3177 (2)	0.0502 (8)
C9	0.7351 (5)	0.8807 (2)	0.3587 (2)	0.0462 (8)
C10	0.8870 (6)	0.8656 (2)	0.5242 (2)	0.0516 (8)
H10	1.0145	0.8360	0.5057	0.062*
C11	0.8796 (6)	0.8809(2)	0.6199 (2)	0.0533 (9)
H11	0.7472	0.9045	0.6414	0.064*
C12	1.0558 (6)	0.8623 (2)	0.6795 (2)	0.0561 (9)
H12	1.1814	0.8356	0.6557	0.067*
C13	1.0757 (6)	0.8790 (2)	0.7785 (2)	0.0537 (8)

C14	0.9034 (7)	0.9174 (2)	0.8247 (2)	0.0654 (10)
H14	0.7671	0.9344	0.7927	0.078*
C15	0.9330 (8)	0.9305 (3)	0.9174 (3)	0.0809 (12)
H15	0.8159	0.9563	0.9476	0.097*
C16	1.1324 (10)	0.9062 (3)	0.9662 (3)	0.0879 (14)
H16	1.1517	0.9164	1.0289	0.105*
C17	1.3015 (9)	0.8671 (4)	0.9220 (3)	0.0892 (14)
H17	1.4350	0.8485	0.9549	0.107*
C18	1.2756 (7)	0.8550 (3)	0.8289 (3)	0.0686 (10)
H18	1.3949	0.8302	0.7992	0.082*
N21	1.0612 (5)	0.08155 (18)	0.53233 (18)	0.0536 (7)
H21	1.1927	0.0565	0.5416	0.064*
C22	0.9524 (5)	0.0958 (2)	0.4481 (2)	0.0492 (8)
O22	1.0232 (4)	0.07199 (16)	0.37516 (15)	0.0594 (6)
C23	0.7335 (5)	0.1433 (2)	0.4633 (2)	0.0456 (8)
C24	0.5755 (6)	0.1884 (2)	0.6182 (2)	0.0556 (9)
H24	0.4423	0.2150	0.5930	0.067*
C25	0.6208 (7)	0.1840 (2)	0.7120 (2)	0.0613 (9)
H25	0.5180	0.2084	0.7502	0.074*
C26	0.8194 (7)	0.1435 (3)	0.7497 (2)	0.0622 (10)
H26	0.8460	0.1403	0.8130	0.075*
C27	0.9781 (6)	0.1077 (2)	0.6946 (2)	0.0567 (8)
H27	1.1115	0.0810	0.7197	0.068*
C28	0.9305 (6)	0.1132 (2)	0.6021 (2)	0.0482 (8)
C29	0.7319 (5)	0.1524 (2)	0.5624 (2)	0.0456 (8)
C30	0.5699 (6)	0.1654 (2)	0.3983 (2)	0.0530 (8)
H30	0.4411	0.1931	0.4183	0.064*
C31	0.5698 (6)	0.1515 (2)	0.3022 (2)	0.0528 (8)
H31	0.7001	0.1279	0.2790	0.063*
C32	0.3890 (6)	0.1712 (2)	0.2440 (2)	0.0559 (9)
H32	0.2614	0.1940	0.2699	0.067*
C33	0.3687 (6)	0.1611 (2)	0.1446 (2)	0.0522 (8)
C34	0.5387 (7)	0.1255 (3)	0.0959 (3)	0.0687 (10)
H34	0.6731	0.1050	0.1268	0.082*
C35	0.5111 (8)	0.1201 (3)	0.0017 (3)	0.0817 (12)
H35	0.6266	0.0957	-0.0305	0.098*
C36	0.3149 (9)	0.1503 (3)	-0.0446 (3)	0.0852 (13)
H36	0.2974	0.1468	-0.1081	0.102*
C37	0.1474 (8)	0.1852 (3)	0.0019 (3)	0.0829 (13)
H37	0.0140	0.2058	-0.0297	0.099*
C38	0.1718 (6)	0.1907 (3)	0.0951 (2)	0.0672 (10)
H38	0.0538	0.2148	0.1262	0.081*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0485 (14)	0.0618 (19)	0.0516 (16)	0.0099 (13)	-0.0044(12)	-0.0011 (13)
C2	0.0476 (17)	0.0503 (19)	0.0489 (19)	-0.0030 (15)	0.0037 (15)	0.0000 (15)

O2	0.0579 (14)	0.0837 (19)	0.0471 (14)	0.0140 (13)	0.0039 (11)	-0.0010 (13)
C3	0.0504 (18)	0.0450 (19)	0.0457 (19)	-0.0058 (14)	0.0016 (15)	-0.0018 (14)
C4	0.0536 (18)	0.062 (2)	0.055 (2)	0.0036 (17)	0.0005 (16)	-0.0079 (17)
C5	0.074 (2)	0.078 (3)	0.056 (2)	0.000 (2)	0.0158 (19)	-0.0088 (19)
C6	0.087 (3)	0.084 (3)	0.042 (2)	-0.002 (2)	0.0042 (19)	-0.0036 (19)
C7	0.072 (2)	0.062 (2)	0.049 (2)	0.0020 (18)	-0.0097 (17)	0.0047 (17)
C8	0.0557 (18)	0.0449 (18)	0.049 (2)	-0.0053 (15)	-0.0015 (15)	-0.0026 (15)
C9	0.0484 (17)	0.0418 (17)	0.0475 (19)	-0.0043 (15)	-0.0019 (14)	0.0002 (15)
C10	0.0512 (18)	0.052 (2)	0.051 (2)	0.0020 (16)	0.0014 (15)	0.0002 (16)
C11	0.0520 (18)	0.055 (2)	0.052 (2)	0.0042 (16)	0.0013 (16)	0.0052 (17)
C12	0.058 (2)	0.061 (2)	0.050 (2)	0.0075 (17)	0.0041 (16)	0.0026 (17)
C13	0.0572 (19)	0.057 (2)	0.0453 (19)	-0.0013 (17)	-0.0037 (15)	0.0055 (16)
C14	0.070 (2)	0.070 (2)	0.056 (2)	0.0124 (19)	0.0078 (18)	0.0073 (19)
C15	0.097 (3)	0.083 (3)	0.066 (3)	0.005 (2)	0.024 (2)	0.000 (2)
C16	0.113 (4)	0.096 (3)	0.053 (2)	-0.009 (3)	-0.002 (3)	-0.011 (2)
C17	0.089 (3)	0.113 (4)	0.062 (3)	-0.005 (3)	-0.017 (2)	-0.002 (3)
C18	0.062 (2)	0.087 (3)	0.055 (2)	0.002 (2)	-0.0039 (17)	-0.006 (2)
N21	0.0479 (15)	0.0640 (19)	0.0480 (16)	0.0086 (13)	-0.0024 (12)	-0.0002 (14)
C22	0.0486 (17)	0.0484 (19)	0.0497 (19)	-0.0011 (14)	-0.0016 (14)	0.0023 (14)
O22	0.0573 (13)	0.0792 (17)	0.0421 (13)	0.0106 (12)	0.0067 (10)	-0.0029 (11)
C23	0.0466 (17)	0.0457 (18)	0.0442 (18)	-0.0005 (14)	0.0008 (14)	0.0038 (14)
C24	0.055 (2)	0.059 (2)	0.054 (2)	0.0009 (16)	0.0071 (16)	-0.0014 (16)
C25	0.065 (2)	0.068 (2)	0.052 (2)	-0.0025 (18)	0.0134 (17)	-0.0099 (18)
C26	0.083 (2)	0.063 (2)	0.0400 (19)	-0.003 (2)	0.0013 (17)	-0.0005 (17)
C27	0.062 (2)	0.060 (2)	0.0467 (19)	0.0022 (17)	-0.0053 (15)	-0.0006 (17)
C28	0.0514 (18)	0.0470 (18)	0.0459 (18)	-0.0026 (16)	0.0016 (15)	-0.0043 (15)
C29	0.0500 (17)	0.0451 (18)	0.0416 (18)	-0.0027 (15)	0.0026 (14)	-0.0012 (15)
C30	0.0478 (17)	0.059 (2)	0.053 (2)	0.0019 (16)	0.0040 (15)	0.0051 (17)
C31	0.0538 (18)	0.058 (2)	0.0463 (19)	0.0003 (17)	-0.0006 (15)	0.0047 (16)
C32	0.0533 (19)	0.063 (2)	0.052 (2)	0.0010 (17)	0.0059 (16)	0.0080 (17)
C33	0.0563 (19)	0.053 (2)	0.0476 (19)	-0.0018 (17)	0.0057 (15)	0.0025 (15)
C34	0.070 (2)	0.076 (3)	0.060 (2)	0.008 (2)	0.0065 (19)	0.008 (2)
C35	0.090 (3)	0.092 (3)	0.066 (2)	0.010 (3)	0.020 (2)	-0.008 (2)
C36	0.105 (3)	0.104 (3)	0.045 (2)	-0.005 (3)	-0.001 (2)	-0.002 (2)
C37	0.085 (3)	0.105 (3)	0.056 (2)	0.010 (3)	-0.013 (2)	-0.001 (2)
C38	0.063 (2)	0.080 (3)	0.057 (2)	0.0100 (19)	-0.0065 (18)	0.000 (2)

Geometric parameters (Å, °)

N1—C2	1.355 (4)	N21—C22	1.362 (4)	
N1—C8	1.392 (4)	N21—C28	1.407 (4)	
N1—H1	0.8600	N21—H21	0.8600	
C2—O2	1.232 (3)	C22—O22	1.230 (4)	
C2—C3	1.487 (4)	C22—C23	1.501 (4)	
C3—C10	1.348 (4)	C23—C30	1.341 (4)	
С3—С9	1.464 (4)	C23—C29	1.460 (4)	
C4—C5	1.380 (5)	C24—C25	1.380 (5)	
C4—C9	1.383 (5)	C24—C29	1.386 (4)	

C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.380 (6)	C25—C26	1.392 (5)
С5—Н5	0.9300	С25—Н25	0.9300
C6—C7	1.383 (5)	C26—C27	1.386 (5)
С6—Н6	0.9300	С26—Н26	0.9300
C7—C8	1.374 (4)	C27—C28	1.366 (4)
С7—Н7	0.9300	С27—Н27	0.9300
C8—C9	1.402 (4)	C28—C29	1.394 (4)
C10—C11	1.426 (5)	C30—C31	1.423 (4)
C10—H10	0.9300	С30—Н30	0.9300
C11—C12	1.328 (4)	C31—C32	1.341 (4)
C11—H11	0.9300	C31—H31	0.9300
C12—C13	1.469 (4)	C32—C33	1.460 (4)
C12—H12	0.9300	С32—Н32	0.9300
C13—C18	1.384 (5)	C33—C34	1.377 (5)
C13—C14	1.386 (5)	C33—C38	1.388 (5)
C14—C15	1.370 (5)	C34—C35	1.380 (5)
C14—H14	0.9300	С34—Н34	0.9300
C15—C16	1.371 (6)	C35—C36	1.368 (6)
C15—H15	0.9300	С35—Н35	0.9300
C16—C17	1.360 (7)	C36—C37	1.344 (6)
C16—H16	0.9300	С36—Н36	0.9300
C17—C18	1.374 (5)	С37—С38	1.365 (5)
С17—Н17	0.9300	С37—Н37	0.9300
C18—H18	0.9300	C38—H38	0.9300
C2—N1—C8	111.8 (3)	C22—N21—C28	111.2 (3)
C2—N1—H1	124.1	C22—N21—H21	124.4
C8—N1—H1	124.1	C28—N21—H21	124.4
O2—C2—N1	124.9 (3)	O22—C22—N21	125.1 (3)
O2—C2—C3	128.2 (3)	O22—C22—C23	128.1 (3)
N1—C2—C3	106.8 (3)	N21—C22—C23	106.7 (3)
C10—C3—C9	128.0 (3)	C30—C23—C29	128.7 (3)
C10—C3—C2	126.5 (3)	C30—C23—C22	125.9 (3)
C9—C3—C2	105.4 (3)	C29—C23—C22	105.2 (3)
C5—C4—C9	118.9 (3)	C25—C24—C29	118.8 (3)
C5—C4—H4	120.6	C25—C24—H24	120.6
C9—C4—H4	120.6	С29—С24—Н24	120.6
C4—C5—C6	120.5 (4)	C24—C25—C26	120.5 (3)
C4—C5—H5	119.7	С24—С25—Н25	119.7
С6—С5—Н5	119.7	C26—C25—H25	119.7
C5—C6—C7	121.9 (3)	C27—C26—C25	121.2 (3)
С5—С6—Н6	119.0	C27—C26—H26	119.4
С7—С6—Н6	119.0	C25—C26—H26	119.4
C8—C7—C6	117.1 (3)	C28—C27—C26	117.3 (3)
С8—С7—Н7	121.4	C28—C27—H27	121.4
С6—С7—Н7	121.4	C26—C27—H27	121.4
C7—C8—N1	129.3 (3)	C27—C28—C29	122.8 (3)
	(-)		

С7—С8—С9	122.0 (3)	C27—C28—N21	128.3 (3)
N1—C8—C9	108.7 (3)	C29—C28—N21	108.9 (3)
C4—C9—C8	119.5 (3)	C24—C29—C28	119.3 (3)
C4—C9—C3	133.2 (3)	C24—C29—C23	132.8 (3)
C8—C9—C3	107.2 (3)	C28—C29—C23	107.9 (3)
C3—C10—C11	126.4 (3)	C23—C30—C31	127.7 (3)
С3—С10—Н10	116.8	С23—С30—Н30	116.1
C11—C10—H10	116.8	С31—С30—Н30	116.1
C12—C11—C10	122.2 (3)	C32—C31—C30	122.5 (3)
C12—C11—H11	118.9	С32—С31—Н31	118.7
C10—C11—H11	118.9	С30—С31—Н31	118.7
C11—C12—C13	127.7 (3)	C31—C32—C33	127.7 (3)
C11—C12—H12	116.2	С31—С32—Н32	116.1
C13—C12—H12	116.2	С33—С32—Н32	116.1
C18—C13—C14	117.8 (3)	C34—C33—C38	117.4 (3)
C18—C13—C12	118.8 (3)	C34—C33—C32	123.4 (3)
C14—C13—C12	123.4 (3)	C38—C33—C32	119.2 (3)
C15—C14—C13	120.3 (4)	C33—C34—C35	120.5 (4)
C15—C14—H14	119.8	С33—С34—Н34	119.8
C13—C14—H14	119.8	С35—С34—Н34	119.8
C14—C15—C16	121.1 (4)	C36—C35—C34	120.4 (4)
C14—C15—H15	119.5	С36—С35—Н35	119.8
C16—C15—H15	119.5	С34—С35—Н35	119.8
C17—C16—C15	119.3 (4)	C37—C36—C35	119.8 (4)
C17—C16—H16	120.4	С37—С36—Н36	120.1
C15—C16—H16	120.4	С35—С36—Н36	120.1
C16—C17—C18	120.2 (4)	C36—C37—C38	120.4 (4)
С16—С17—Н17	119.9	С36—С37—Н37	119.8
C18—C17—H17	119.9	С38—С37—Н37	119.8
C17—C18—C13	121.3 (4)	C37—C38—C33	121.5 (4)
C17—C18—H18	119.3	С37—С38—Н38	119.3
C13—C18—H18	119.3	C33—C38—H38	119.3

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N21—H21···O2 ⁱ	0.86	2.03	2.852 (3)	159
N1—H1···O22 ⁱⁱ	0.86	2.07	2.893 (3)	161

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) *x*-1, *y*+1, *z*.