V = 1369.0 (2) Å³

Mo $K\alpha$ radiation

 $0.79 \times 0.27 \times 0.09 \text{ mm}$

 $\mu = 0.30 \text{ mm}^{-1}$ T = 150 (2) K

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 5-amino-1-(4-chloro-2-nitrophenyl)-1H-pyrazole-4-carboxylate

Muhammad Zia-ur-Rehman,^a* Mark R. J. Elsegood,^b Jamil Anwar Choudary,^c Muhammad Fasih Ullah^c and Hamid Latif Siddigui^c

^aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^bChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and ^cInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan

Correspondence e-mail: rehman_pcsir@hotmail.com

Received 20 December 2008; accepted 6 January 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.096; data-to-parameter ratio = 21.3.

In the molecule of the title compound, $C_{12}H_{11}ClN_4O_4$, the pyrazole ring is coplanar with the amino and ethoxycarbonyl groups within 0.026 (2) and 0.105 (2) Å, respectively. The C_6 ring of the 4-chloro-2-nitrophenyl group is twisted by $53.58 (4)^{\circ}$ relative to the plane of the pyrazole ring. The planar structure of the pyrazole ring is stabilized by an intramolecular N-H···O hydrogen bond between its substituents. Neighbouring molecules are linked through intermolecular N-H···N and N-H···O hydrogen bonds, giving rise to one-dimensional tapes along the b axis. Molecules in the chain are linked to those of an adjacent chain through weak C-H···O interactions, forming a three-dimensional network.

Related literature

For the biological activity of pyrazole and its derivatives, see: Iovu et al. (2003); Mahajan et al. (1991); related literature, see: Akhtar et al. (2008); Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Smith et al. (2001). For the use of pyrazole-based ligands in investigating the structure-activity relationship of the active site of metalloproteins, see: Dardari et al. (2006), and in the preparation of commercially important dyestuffs, see: Baroni & Kovyrzina (1961); Neunhoeffer et al. (1959). For the synthesis and biological evaluation of heterocyclic compounds, see: Akhtar et al. (2008); Zia-ur-Rehman et al. (2006, 2008).

Experimental

Crystal data C12H11ClN4O4 M = 310.70Monoclinic, $P2_1/n$ a = 8.5899 (8) Å b = 10.2413 (9) Å c = 15.6633 (14) Å $\beta = 96.5415(13)^{\circ}$

Data collection

Bruker APEXII CCD	15944 measured reflections
diffractometer	4189 independent reflections
Absorption correction: multi-scan	3588 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2007)	$R_{\rm int} = 0.022$
$T_{\min} = 0.797, \ T_{\max} = 0.973$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.096$	independent and constrained
S = 1.04	refinement
4189 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
197 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{matrix} N4-H4A\cdots O3\\ N4-H4A\cdots O2^{i}\\ N4-H4B\cdots N3^{i}\end{matrix}}$	0.866 (16)	2.328 (16)	2.9383 (13)	127.7 (12)
	0.866 (16)	2.610 (15)	3.1356 (13)	120.1 (12)
	0.871 (15)	2.153 (16)	3.0074 (13)	166.8 (14)

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

The authors are grateful to the Pakistan Council of Scientific & Industrial Research Laboratories, Lahore, Pakistan, for the provision of necessary chemicals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2841).

References

- Akhtar, T., Hameed, S., Zia-ur-Rehman, M., Hussain Bukhari, T. & Khan, I. (2008). Acta Cryst. E64, o1388.
- Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.

Baroni, E. E. & Kovyrzina, K. A. (1961). Zh. Obshch. Khim. 31, 1641-1645.

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66.
- Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.
- Dardari, Z., Lemrani, M., Sebban, A., Bahloul, A., Hassair, M., Kitane, S., Berrada, M. & Boudouma, M. (2006). Arch. Pharm. 339, 291–298.
- Iovu, M., Zalaru, C., Dumitrascu, F., Draghici, C., Moraru, M. & Criste, E. (2003). Farmaco, 58, 301–307.
- Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–249.
- Neunhoeffer, O., Alsdorf, G. & Ulrich, H. (1959). Chem. Ber. 92, 252-256.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.
- Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). *Chem. Pharm. Bull.* 54, 1175–1178.
- Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, 01312–1313.

supporting information

Acta Cryst. (2009). E65, o275-o276 [doi:10.1107/S1600536809000488]

Ethyl 5-amino-1-(4-chloro-2-nitrophenyl)-1H-pyrazole-4-carboxylate

Muhammad Zia-ur-Rehman, Mark R. J. Elsegood, Jamil Anwar Choudary, Muhammad Fasih Ullah and Hamid Latif Siddiqui

S1. Comment

Pyrazole and its derivatives represent one of the most important classes of organic heterocyclic compounds, possessing a wide spectrum of biological activities such as antibacterial, fungicidal (Iovu *et al.*, 2003), herbicidal (Mahajan *et al.*, 1991) and antiviral (Baraldi *et al.*, 1998) activities. Some of their derivatives have been reported to possess significant antiarrhythmic & sedative (Bruno *et al.*, 1990), hypoglycemic (Cottineau *et al.*, 2002) and anti-inflammatory (Smith *et al.*, 2001) activities. In addition, pyrazole based ligands have also been used to investigate the structure-activity relationship of the active site of metalloproteins (Dardari *et al.*, 2006) and for the preparation of commercially important dyestuffs (Baroni & Kovyrzina, 1961; Neunhoeffer *et al.*, 1959). As part of our ongoing research on the synthesis and biological evaluation of heterocyclic compounds (Akhtar *et al.*, 2008; Zia-ur-Rehman *et al.*, 2006; Zia-ur-Rehman *et al.*, 2008), crystal structure of the title compound, (**I**) was determined.

In I (Fig. 1) the pyrazole ring is approximately coplanar with the amino and ethyl carboxylate groups. The C₆ ring of the 4-chloro-2-nitro phenyl group is essentially planar and is twisted by 53.58 (4)° relative to the plane of the pyrazole ring about the C6—N2 bond. The planar structure of the pyrazole ring is stabilized by an intramolecular N—H···O hydrogen bond between the amino and ethyl carboxylate substituents (Table 1). Neighbouring molecules are linked through one N —H···O intermolecular hydrogen bond giving rise to one-dimensional tapes along the *b* axis (Fig. 2, Table 1). The nitro group is twisted by 37.98 (4)° relative to the C₆ ring, driven by the desire to form the aforementioned H-bond. Each chain is cross-linked to the next through weak C–H···O interactions.

S2. Experimental

A mixture of 5-amino-1-(4-chloro-2-nitrophenyl)-1*H*-pyrazole-4-carboxylic acid (3.05 g; 10.0 mmoles), phosphoric acid (0.196 g; 2.0 mmoles) and ethyl alcohol (100 ml) was refluxed for a period of five hours. The reaction mixture was then concentrated (to a volume of 20 ml) by slow distillation of ethanol followed by cooling and addition of cold water. The precipitated solid was then filtered, washed with cold water and dried. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution of the title compound in a mixture of ethanol and water (85: 15); yield: 73.68%.

S3. Refinement

H atoms bound to C were placed in geometric positions (C—H distance = 0.95 Å) using a riding model. H atoms on N had coordinates freely refined. U_{iso} values were set to $1.2U_{eq}$ (1.5 U_{eq} for CH₃).

Figure 1

The asymmetric unit of the title compound highlighting the intramolecular H-bond. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Perspective view of the crystal packing showing hydrogen-bond interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry operator i = -x + 1/2, y - 1/2, -z + 3/2.

Ethyl 1-(4-chloro-2-nitrophenyl)-5-nitro-4, 5-dihydro-1*H*-pyrazole-4-carboxylate

Crystal data	
$C_{12}H_{11}CIN_4O_4$	$V = 1369.0 (2) \text{ Å}^3$
$M_r = 310.70$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 640
Hall symbol: -P 2yn	$D_{\rm x} = 1.508 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.5899 (8) Å	Melting point: 435 K
b = 10.2413 (9) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 15.6633 (14) Å	Cell parameters from 6502 reflections
$\beta = 96.5415 \ (13)^{\circ}$	$\theta = 2.6 - 30.6^{\circ}$

 $\mu = 0.30 \text{ mm}^{-1}$ T = 150 K

Data collection

Dura concerion	
Bruker APEXII CCD diffractometer	15944 measured reflections 4189 independent reflections
Radiation source: fine-focus sealed tube	3588 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
ω rotation with narrow frames scans	$\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Sheldrick, 2007)	$k = -14 \rightarrow 14$
$T_{\min} = 0.797, T_{\max} = 0.973$	$l = -22 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: all non-H atoms
Least-squares matrix: full	found by direct methods
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: geom except NH coords
$wR(F^2) = 0.096$	freely refined
S = 1.04	H atoms treated by a mixture of independent
4189 reflections	and constrained refinement
197 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0507P)^2 + 0.3692P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.44$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Lath, colourless

 $0.79 \times 0.27 \times 0.09 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.16661 (12)	0.37722 (10)	0.87165 (6)	0.01863 (19)	
N1	0.00154 (11)	0.39144 (9)	0.83571 (6)	0.02209 (18)	
01	-0.04727 (11)	0.32020 (9)	0.77617 (6)	0.0316 (2)	
O2	-0.07682 (10)	0.47313 (9)	0.86871 (6)	0.03110 (19)	
C2	0.19621 (13)	0.36020 (11)	0.95971 (7)	0.0216 (2)	
H2	0.1135	0.3609	0.9951	0.026*	
C3	0.35046 (14)	0.34216 (10)	0.99458 (7)	0.0224 (2)	
Cl1	0.39123 (4)	0.31052 (3)	1.103127 (17)	0.03302 (9)	
C4	0.47238 (13)	0.34677 (11)	0.94341 (7)	0.0229 (2)	
H4	0.5777	0.3370	0.9685	0.028*	
C5	0.43941 (13)	0.36565 (10)	0.85546 (7)	0.0218 (2)	
Н5	0.5227	0.3691	0.8205	0.026*	
C6	0.28554 (12)	0.37949 (10)	0.81810 (6)	0.01836 (19)	

N2	0.25381 (11)	0.40263 (9)	0.72882 (5)	0.01940 (17)
N3	0.16947 (11)	0.51311 (9)	0.69958 (6)	0.02197 (19)
C7	0.17042 (12)	0.51027 (10)	0.61560 (7)	0.0206 (2)
H7	0.1215	0.5744	0.5778	0.025*
C8	0.25215 (12)	0.40156 (10)	0.58811 (6)	0.01772 (19)
C9	0.30396 (12)	0.33322 (10)	0.66310(6)	0.01755 (19)
N4	0.39081 (12)	0.22356 (9)	0.67437 (6)	0.0241 (2)
H4A	0.4077 (18)	0.1853 (14)	0.6270 (11)	0.029*
H4B	0.3806 (18)	0.1713 (14)	0.7173 (10)	0.029*
C10	0.28074 (12)	0.36124 (10)	0.50279 (6)	0.01900 (19)
03	0.35936 (10)	0.26670 (8)	0.48774 (5)	0.02577 (17)
04	0.20696 (9)	0.43861 (8)	0.44194 (5)	0.02405 (17)
C11	0.23017 (13)	0.40996 (12)	0.35329 (7)	0.0250 (2)
H11A	0.1377	0.4396	0.3146	0.030*
H11B	0.2407	0.3145	0.3460	0.030*
C12	0.37412 (17)	0.47691 (14)	0.32935 (9)	0.0355 (3)
H12A	0.3655	0.5711	0.3389	0.053*
H12B	0.3845	0.4605	0.2686	0.053*
H12C	0.4665	0.4429	0.3649	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0220 (5)	0.0179 (4)	0.0160 (4)	0.0002 (4)	0.0023 (4)	-0.0002 (3)
N1	0.0232 (4)	0.0248 (4)	0.0183 (4)	-0.0023 (3)	0.0024 (3)	0.0032 (3)
O1	0.0339 (5)	0.0367 (5)	0.0230 (4)	-0.0084(4)	-0.0021 (3)	-0.0042 (3)
O2	0.0271 (4)	0.0339 (5)	0.0330 (5)	0.0062 (3)	0.0063 (3)	-0.0003 (4)
C2	0.0273 (5)	0.0227 (5)	0.0153 (4)	-0.0007 (4)	0.0047 (4)	-0.0004 (4)
C3	0.0319 (5)	0.0202 (5)	0.0146 (4)	0.0005 (4)	0.0007 (4)	-0.0002 (4)
Cl1	0.04426 (18)	0.03893 (17)	0.01462 (13)	0.00482 (13)	-0.00204 (11)	0.00275 (10)
C4	0.0253 (5)	0.0213 (5)	0.0213 (5)	0.0024 (4)	-0.0011 (4)	0.0009 (4)
C5	0.0243 (5)	0.0208 (5)	0.0209 (5)	0.0029 (4)	0.0054 (4)	0.0020 (4)
C6	0.0256 (5)	0.0164 (4)	0.0134 (4)	0.0016 (4)	0.0035 (4)	0.0008 (3)
N2	0.0258 (4)	0.0188 (4)	0.0142 (4)	0.0057 (3)	0.0046 (3)	0.0019 (3)
N3	0.0291 (4)	0.0192 (4)	0.0179 (4)	0.0085 (3)	0.0044 (3)	0.0019 (3)
C7	0.0237 (5)	0.0207 (5)	0.0174 (4)	0.0043 (4)	0.0030 (4)	0.0022 (4)
C8	0.0202 (4)	0.0185 (4)	0.0149 (4)	0.0013 (3)	0.0038 (3)	0.0015 (3)
C9	0.0205 (4)	0.0171 (4)	0.0156 (4)	0.0007 (3)	0.0048 (3)	0.0004 (3)
N4	0.0361 (5)	0.0188 (4)	0.0187 (4)	0.0091 (4)	0.0090 (4)	0.0037 (3)
C10	0.0193 (4)	0.0223 (5)	0.0157 (4)	-0.0012 (4)	0.0028 (3)	0.0010 (4)
O3	0.0318 (4)	0.0266 (4)	0.0196 (4)	0.0076 (3)	0.0058 (3)	-0.0015 (3)
04	0.0266 (4)	0.0313 (4)	0.0145 (3)	0.0064 (3)	0.0031 (3)	0.0029 (3)
C11	0.0238 (5)	0.0369 (6)	0.0141 (4)	-0.0005 (4)	0.0019 (4)	0.0012 (4)
C12	0.0395 (7)	0.0374 (7)	0.0321 (6)	-0.0095 (6)	0.0150 (5)	0.0001 (5)

Geometric parameters (Å, °)

C1—C2	1.3848 (14)	C7—C8	1.4096 (14)
C1—C6	1.3940 (14)	C7—H7	0.9500
C1—N1	1.4719 (14)	C8—C9	1.3958 (14)
N1-01	1.2202 (13)	C8—C10	1.4462 (14)
N1-02	1.2245 (13)	C9—N4	1.3487 (13)
C2—C3	1.3868 (16)	N4—H4A	0.866 (16)
C2—H2	0.9500	N4—H4B	0.871 (15)
C3—C4	1.3902 (16)	C10—O3	1.2188 (13)
C3—C11	1.7271 (11)	C10—O4	1.3418 (12)
C4—C5	1.3881 (15)	O4—C11	1.4549 (13)
C4—H4	0.9500	C11—C12	1.4985 (17)
C5—C6	1.3904 (15)	C11—H11A	0.9900
С5—Н5	0.9500	C11—H11B	0.9900
C6—N2	1.4140 (12)	C12—H12A	0.9800
N2-C9	1.3607 (13)	C12—H12B	0.9800
N2—N3	1.3925 (12)	C12—H12C	0.9800
N3—C7	1.3166 (13)		
C2—C1—C6	122.51 (10)	С8—С7—Н7	123.8
C2-C1-N1	116.93 (9)	C9—C8—C7	105.13 (9)
C6—C1—N1	120.55 (9)	C9—C8—C10	124.27 (9)
01—N1—O2	125.00 (10)	C7—C8—C10	130.60 (9)
01—N1—C1	117.73 (9)	N4—C9—N2	123.64 (9)
O2—N1—C1	117.26 (9)	N4—C9—C8	130.26 (9)
C1—C2—C3	117.89 (10)	N2—C9—C8	106.06 (9)
C1—C2—H2	121.1	C9—N4—H4A	114.1 (10)
С3—С2—Н2	121.1	C9—N4—H4B	120.7 (10)
C2—C3—C4	121.15 (10)	H4A—N4—H4B	115.1 (14)
C2—C3—Cl1	119.35 (9)	O3—C10—O4	123.99 (9)
C4—C3—Cl1	119.49 (9)	O3—C10—C8	124.18 (9)
C5—C4—C3	119.67 (10)	O4—C10—C8	111.82 (9)
С5—С4—Н4	120.2	C10—O4—C11	116.99 (9)
C3—C4—H4	120.2	O4—C11—C12	110.69 (10)
C4—C5—C6	120.57 (10)	O4—C11—H11A	109.5
С4—С5—Н5	119.7	C12—C11—H11A	109.5
С6—С5—Н5	119.7	O4—C11—H11B	109.5
C5—C6—C1	118.15 (9)	C12—C11—H11B	109.5
C5-C6-N2	120.01 (9)	H11A—C11—H11B	108.1
C1-C6-N2	121.74 (9)	C11—C12—H12A	109.5
C9—N2—N3	111.92 (8)	C11—C12—H12B	109.5
C9—N2—C6	128.23 (9)	H12A—C12—H12B	109.5
N3—N2—C6	119.72 (8)	C11—C12—H12C	109.5
C7—N3—N2	104.38 (8)	H12A—C12—H12C	109.5
N3—C7—C8	112.50 (9)	H12B—C12—H12C	109.5
N3—C7—H7	123.8		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-127.78 (11) 51.47 (14) 51.39 (13) -129.37 (11) -1.37 (16) 177.85 (9) 2.81 (16) -176.02 (8) -2.04 (17) 176.78 (8) -0.24 (16) 1.62 (16) 1.62 (16) 178.08 (10) -0.81 (16) 179.99 (9) -177.21 (10) 3.59 (15) 52.72 (15) -130.95 (11) -122 79 (11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.53 (12) 175.66 (9) 0.14 (12) 0.27 (12) 179.76 (10) 178.62 (10) 2.83 (17) 0.70 (12) -175.09 (10) -178.30 (11) 2.17 (18) -0.57 (11) 179.90 (10) -3.61 (17) 176.99 (11) 174.82 (10) -4.59 (16) -3.17 (15) 178.40 (9) -86 64 (13)
C1—C6—N2—C9 C5—C6—N2—N3 C1—C6—N2—N3	-130.95 (11) -122.79 (11) 53.54 (14)	C10-04-C11-C12	-86.64 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	Н…А	$D \cdots A$	D—H··· A
N4—H4 <i>A</i> ···O3	0.866 (16)	2.328 (16)	2.9383 (13)	127.7 (12)
N4—H4A···O2 ⁱ	0.866 (16)	2.610 (15)	3.1356 (13)	120.1 (12)
N4—H4 <i>B</i> ···N3 ⁱ	0.871 (15)	2.153 (16)	3.0074 (13)	166.8 (14)

Symmetry code: (i) -x+1/2, y-1/2, -z+3/2.