

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[diagua(4,4'-trimethylenedipyridine- κN)cobalt(II)]- μ -terephthalato- $\kappa^2 O^1: O^4$]

Xu-Liang Qi

Liaocheng Vocational and Technical College, LiaoCheng 252000, ShanDong, People's Republic of China Correspondence e-mail: g200801@sina.com

Received 12 December 2008; accepted 22 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.070; wR factor = 0.179; data-to-parameter ratio = 13.2.

The title compound, $[Co(C_8H_4O_4)(C_{13}H_{14}N_2)_2(H_2O)_2]_n$, was obtained by the reaction of CoCl₂, 4,4'-trimethylenedipyridine and terephthalic acid in a 1:1:1 ratio. The octahedrally coordinated cobalt ions are bridged by 4,4'-trimethylenedipyridine ligands, generating a chain. These chains are further linked by $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds, giving a three-dimensional network.

Related literature

For a related structure, see Manna et al. (2005).

V = 1589.9 (5) Å³

Mo $K\alpha$ radiation

8438 measured reflections

2726 independent reflections

2167 reflections with $I > 2\sigma(I)$

 $\mu = 0.59 \text{ mm}^{-1}$

T = 293 (2) K $0.20 \times 0.14 \times 0.08 \text{ mm}$

 $R_{\rm int} = 0.068$

Z = 2

Experimental

Crystal data

 $[Co(C_8H_4O_4)(C_{13}H_{14}N_2)_2(H_2O)_2]$ $M_r = 655.60$ Monoclinic, $P2_1/c$ a = 11.232 (2) Å b = 9.3784 (19) Å c = 15.182 (3) Å $\beta = 96.19(3)^{\circ}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.891, T_{\max} = 0.954$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ 207 parameters $wR(F^2) = 0.179$ H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.05 \text{ e} \text{ Å}^{-3}$ S = 1.13 $\Delta \rho_{\rm min} = -0.62 \text{ e} \text{ Å}^{-3}$ 2726 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} \hline O3 - H3A \cdots N2^{i} \\ O3 - H3B \cdots O2^{ii} \end{array} $	0.93	1.90	2.820 (5)	171
	1.03	1.71	2.704 (4)	161

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2833).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Manna, S. C., Konar, S., Zangrando, E., Okamoto, K., Ribas, J. & Chaudhuri, N. R. (2005). Eur. J. Inorg. Chem. pp. 4646-4654.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m135 [doi:10.1107/S1600536808043584]

catena-Poly[[diaqua(4,4'-trimethylenedipyridine- κN)cobalt(II)]- μ -terephthalato- $\kappa^2 O^1: O^4$]

Xu-Liang Qi

S1. Comment

Co is six-coordinated by two terephthalate O atoms, two N atoms of 4,4'-trimethylenedipyridines and two water molecules in a distorted octahedral fashion. The Co—O and Co—N bond lengthes are in the normal range. The 4,4'-trimethylenedipyridine and terephthalate ligands adopt bidentate coordinated modes. As shown in Fig. 2, a chain structure is formed. These chains are further linked by O—H…O and O—H…N hydrogen bonds to generate a three-dimensional network.

S2. Experimental

 $CoCl_2(1.0 \text{ mmol})$, terephthalic acid (1 mmol), and 4,4'-trimethylenedipyridine (1 mmol) were dissolved in water (10 ml). The solution was heated in a 25 ml Teflon lined reaction vessel at 433 K for *ca* 3 days and then cooled to room temperature. Purple crystals were obtained in a yield of 65%.

S3. Refinement

All non-water H atoms were positioned geometrically and refined by using a riding model with C—H = 0.93–0.96 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$, the water H atoms are firstly found, then refined freely.

Figure 1

An *ORTEP* view of the Co centre and its surrounding ligands with 50% displacement ellipsoids for non-H atoms. Symmetry code: (A) -x,-y,-z

Figure 2

Partial packing diagram of the title compound.

catena-Poly[[diaqua(4,4'-trimethylenedipyridine- κN)cobalt(II)]- μ -terephthalato- $\kappa^2 O^1:O^4$]

Crystal data

 $[Co(C_8H_4O_4)(C_{13}H_{14}N_2)_2(H_2O)_2]$ $M_r = 655.60$ Monoclinic, $P2_1/c$ a = 11.232 (2) Å b = 9.3784 (19) Å c = 15.182 (3) Å $\beta = 96.19$ (3)° V = 1589.9 (5) Å³ Z = 2

Data collection

Bruker SMART 1K CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.192 pixels mm⁻¹ Thin–slice ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\min} = 0.891, T_{\max} = 0.954$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.179$ S = 1.132726 reflections 207 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 686 $D_x = 1.369 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3657 reflections $\theta = 1.4-27.9^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$ T = 293 KBlock, purple $0.20 \times 0.14 \times 0.08 \text{ mm}$

8438 measured reflections 2726 independent reflections 2167 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -11 \rightarrow 13$ $k = -8 \rightarrow 11$ $l = -17 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0794P)^2 + 1.059P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.05$ e Å⁻³ $\Delta\rho_{min} = -0.62$ e Å⁻³

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.0000	0.0000	0.0000	0.0323 (3)
01	0.1776 (3)	-0.0428 (3)	-0.0026 (2)	0.0398 (8)
02	0.2160 (3)	-0.0377 (4)	-0.1445 (2)	0.0560 (10)
O3	0.0130 (3)	-0.0481 (3)	0.1394 (2)	0.0409 (8)
N1	0.0522 (3)	0.2209 (4)	0.0279 (2)	0.0369 (9)
N2	0.7841 (4)	0.5278 (5)	0.2442 (3)	0.0562 (12)
C1	0.0265 (4)	0.2912 (5)	0.1005 (3)	0.0451 (11)
H1	-0.0263	0.2493	0.1359	0.054*
C2	0.0747 (4)	0.4234 (5)	0.1253 (3)	0.0479 (12)
H2	0.0544	0.4674	0.1765	0.057*
C3	0.1530 (4)	0.4901 (5)	0.0739 (3)	0.0378 (10)
C4	0.1764 (4)	0.4190 (5)	-0.0026 (3)	0.0443 (11)
H4	0.2263	0.4604	-0.0405	0.053*
C5	0.1259 (4)	0.2869 (5)	-0.0226 (3)	0.0449 (12)
Н5	0.1441	0.2415	-0.0739	0.054*
C6	0.2111 (4)	0.6317 (5)	0.1003 (4)	0.0541 (14)
H6A	0.1600	0.6837	0.1367	0.065*
H6B	0.2183	0.6877	0.0474	0.065*
C7	0.3359 (4)	0.6137 (5)	0.1519 (4)	0.0544 (14)
H7A	0.3618	0.7056	0.1764	0.065*
H7B	0.3290	0.5496	0.2013	0.065*
C8	0.4310 (5)	0.5574 (6)	0.0989 (4)	0.0612 (15)
H8A	0.4361	0.6191	0.0482	0.073*
H8B	0.4073	0.4634	0.0767	0.073*
С9	0.5539 (4)	0.5470 (5)	0.1508 (3)	0.0436 (11)
C10	0.6121 (4)	0.4186 (5)	0.1644 (4)	0.0516 (13)
H10	0.5755	0.3347	0.1429	0.062*
H3B	-0.0679	-0.0089	0.1545	0.09 (2)*
H3A	0.0837	-0.0307	0.1753	0.10 (2)*
C11	0.7261 (4)	0.4149 (6)	0.2103 (4)	0.0553 (14)
H11	0.7639	0.3268	0.2176	0.066*
C12	0.6140 (5)	0.6664 (6)	0.1852 (4)	0.0579 (14)
H12	0.5787	0.7559	0.1780	0.070*
C13	0.7273 (5)	0.6521 (6)	0.2307 (4)	0.0602 (15)
H13	0.7660	0.7341	0.2531	0.072*
C14	0.2472 (4)	-0.0357 (4)	-0.0632 (3)	0.0364 (10)
C15	0.3786 (3)	-0.0193 (4)	-0.0300 (3)	0.0314 (9)
C16	0.4142 (4)	0.0107 (4)	0.0580 (3)	0.0365 (10)
H16	0.3566	0.0188	0.0974	0.044*
C17	0.4659 (4)	-0.0292 (4)	-0.0888 (3)	0.0366 (10)
H17	0.4436	-0.0482	-0.1484	0.044*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0153 (5)	0.0487 (5)	0.0327 (5)	-0.0044 (3)	0.0010 (3)	0.0013 (3)
01	0.0221 (16)	0.0495 (18)	0.048 (2)	-0.0006 (12)	0.0036 (14)	0.0055 (13)
O2	0.0219 (18)	0.099 (3)	0.046 (2)	-0.0012 (16)	0.0005 (15)	-0.0105 (18)
O3	0.0268 (17)	0.0538 (19)	0.041 (2)	-0.0043 (13)	-0.0021 (14)	0.0020 (14)
N1	0.028 (2)	0.041 (2)	0.042 (2)	-0.0028 (15)	0.0054 (16)	-0.0006 (16)
N2	0.033 (2)	0.089 (4)	0.046 (3)	0.002 (2)	-0.0009 (19)	0.011 (2)
C1	0.035 (3)	0.054 (3)	0.047 (3)	-0.003(2)	0.009 (2)	-0.001 (2)
C2	0.041 (3)	0.058 (3)	0.044 (3)	0.004 (2)	0.000 (2)	-0.009(2)
C3	0.024 (2)	0.043 (2)	0.044 (3)	0.0035 (18)	-0.0083 (18)	-0.001(2)
C4	0.036 (3)	0.048 (3)	0.049 (3)	-0.011 (2)	0.003 (2)	0.003 (2)
C5	0.038 (3)	0.049 (3)	0.049 (3)	-0.009(2)	0.008 (2)	0.000 (2)
C6	0.034 (3)	0.048 (3)	0.077 (4)	0.000 (2)	-0.009 (2)	-0.011 (2)
C7	0.037 (3)	0.056 (3)	0.068 (4)	0.001 (2)	-0.006 (2)	-0.019 (3)
C8	0.039 (3)	0.078 (4)	0.062 (4)	0.001 (3)	-0.012 (3)	-0.014 (3)
C9	0.032 (3)	0.053 (3)	0.045 (3)	0.003 (2)	-0.002 (2)	-0.002 (2)
C10	0.044 (3)	0.049 (3)	0.062 (4)	-0.006 (2)	0.006 (2)	0.007 (2)
C11	0.041 (3)	0.064 (4)	0.062 (4)	0.012 (3)	0.009 (3)	0.022 (3)
C12	0.046 (3)	0.054 (3)	0.071 (4)	0.004 (2)	-0.009 (3)	-0.005 (3)
C13	0.045 (3)	0.069 (4)	0.064 (4)	-0.016 (3)	-0.008 (3)	-0.006(3)
C14	0.020 (2)	0.043 (3)	0.046 (3)	-0.0023 (17)	0.0015 (19)	0.0016 (19)
C15	0.018 (2)	0.037 (2)	0.039 (3)	0.0000 (16)	0.0010 (17)	-0.0018 (17)
C16	0.018 (2)	0.054 (3)	0.039 (3)	-0.0029 (18)	0.0095 (18)	-0.0022 (19)
C17	0.023 (2)	0.046 (3)	0.040 (3)	-0.0013 (17)	0.0032 (18)	-0.0042 (18)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Co1–O1 ⁱ	2.039 (3)	С6—Н6А	0.9700
Co101	2.039 (3)	C6—H6B	0.9700
Co1-O3 ⁱ	2.154 (3)	C7—C8	1.500 (7)
Co1—O3	2.154 (3)	C7—H7A	0.9700
Co1—N1 ⁱ	2.183 (3)	C7—H7B	0.9700
Co1—N1	2.183 (3)	C8—C9	1.517 (7)
O1-C14	1.271 (5)	C8—H8A	0.9700
O2—C14	1.247 (6)	C8—H8B	0.9700
O3—H3B	1.0283	C9—C10	1.375 (7)
ОЗ—НЗА	0.9271	C9—C12	1.381 (7)
N1-C5	1.339 (5)	C10—C11	1.390 (7)
N1-C1	1.342 (6)	C10—H10	0.9300
N2-C11	1.318 (7)	C11—H11	0.9300
N2-C13	1.334 (7)	C12—C13	1.388 (7)
C1—C2	1.389 (7)	C12—H12	0.9300
C1—H1	0.9300	C13—H13	0.9300
C2—C3	1.386 (7)	C14—C15	1.515 (6)
С2—Н2	0.9300	C15—C16	1.381 (6)
C3—C4	1.388 (6)	C15—C17	1.398 (6)

C3—C6	1.515 (6)	C16—C17 ⁱⁱ	1.389 (6)
C4—C5	1.383 (6)	C16—H16	0.9300
C4—H4	0.9300	C17—C16 ⁱⁱ	1.389 (6)
С5—Н5	0.9300	С17—Н17	0.9300
C6—C7	1.540 (7)		
Ol ¹ —Col—Ol	180.00 (16)	С7—С6—Н6В	109.1
$O1^{i}$ —Co1—O3 ⁱ	90.88 (12)	H6A—C6—H6B	107.9
01—Co1—O3 ⁱ	89.12 (12)	C8—C7—C6	115.3 (5)
O1 ⁱ —Co1—O3	89.12 (12)	С8—С7—Н7А	108.5
O1—Co1—O3	90.88 (12)	С6—С7—Н7А	108.5
O3 ⁱ —Co1—O3	180.00 (16)	С8—С7—Н7В	108.5
O1 ⁱ —Co1—N1 ⁱ	86.99 (12)	С6—С7—Н7В	108.5
O1—Co1—N1 ⁱ	93.01 (12)	H7A—C7—H7B	107.5
O3 ⁱ —Co1—N1 ⁱ	91.14 (12)	С7—С8—С9	113.9 (4)
O3—Co1—N1 ⁱ	88.86 (12)	С7—С8—Н8А	108.8
O1 ⁱ —Co1—N1	93.01 (12)	С9—С8—Н8А	108.8
O1—Co1—N1	86.99 (12)	C7—C8—H8B	108.8
O3 ⁱ —Co1—N1	88.86 (12)	C9—C8—H8B	108.8
O3—Co1—N1	91.14 (12)	H8A—C8—H8B	107.7
N1 ⁱ —Co1—N1	180.0 (2)	C10—C9—C12	116.7 (5)
C14—O1—Co1	133.1 (3)	C10—C9—C8	121.7 (4)
$C_01 - O3 - H3B$	100.2	C12—C9—C8	121.6 (4)
Col - O3 - H3A	120.2	C9-C10-C11	119.6(5)
H3B-O3-H3A	121.8	C9-C10-H10	120.2
C5-N1-C1	116 4 (4)	C11—C10—H10	120.2
C5-N1-Co1	119.8 (3)	N_{-C11}	1244(5)
C1-N1-Co1	123 3 (3)	N2-C11-H11	117.8
$C_{11} = N_{2} = C_{13}$	1157(4)	C10-C11-H11	117.8
N1-C1-C2	123 3 (4)	C9-C12-C13	119.6(5)
N1-C1-H1	118.4	C9-C12-H12	120.2
$C_2 - C_1 - H_1$	118.4	C_{13} C_{12} H_{12}	120.2
C_{3} C_{2} C_{1}	120.2 (4)	N_{2} C_{13} C_{12}	120.2 124.0(5)
$C_3 - C_2 - H_2$	110.0	N2H13	118.0
C_{1} C_{2} H_{2}	110.0	$C_{12} C_{13} H_{13}$	118.0
$C_{1} = C_{2} = C_{12}$	116.3 (4)	02 - C14 - 01	125.9(4)
$C_2 = C_3 = C_4$	121.9(4)	02 - C14 - C15	123.9(4)
$C_2 = C_3 = C_0$	121.9(4) 121.8(4)	02 - C14 - C15	119.4(4)
$C_{4} = C_{3} = C_{0}$	121.0(4) 120.2(4)	$C_{14} = C_{15}$	114.7(4)
$C_5 = C_4 = C_5$	120.2 (4)	$C_{10} = C_{13} = C_{17}$	110.8(4)
$C_3 = C_4 = H_4$	119.9	C17 C15 C14	120.8(4)
C_{3}	119.9	C17 - C13 - C14	120.4(4)
N1 C5 U5	125.5 (4)	C13 - C10 - C1/"	121.3 (4)
INI - US - HS	110.2	C13 - C10 - H10	119.5
C4—C5—H5	118.2	$C1/^{-}$ $C10$ $H10$	119.5
	112.4 (4)		119.9 (4)
С3—С6—Н6А	109.1	C16"—C17—H17	120.1
С/—С6—Н6А	109.1	C15—C17—H17	120.1
С3—С6—Н6В	109.1		

-175 (95)	C2—C3—C6—C7	94.5 (5)
2.6 (4)	C4—C3—C6—C7	-84.7 (6)
-177.4 (4)	C3—C6—C7—C8	68.8 (6)
93.7 (4)	C6—C7—C8—C9	177.5 (4)
-86.3 (4)	C7—C8—C9—C10	118.4 (5)
-130.3 (3)	C7—C8—C9—C12	-62.9 (7)
49.7 (3)	C12—C9—C10—C11	-0.5 (7)
-39.5 (3)	C8—C9—C10—C11	178.3 (5)
140.5 (3)	C13—N2—C11—C10	-1.2 (8)
82 (48)	C9-C10-C11-N2	1.1 (8)
58.2 (4)	C10—C9—C12—C13	0.0 (8)
-121.8 (4)	C8—C9—C12—C13	-178.7 (5)
149.1 (4)	C11—N2—C13—C12	0.7 (8)
-30.9 (4)	C9—C12—C13—N2	-0.2 (9)
-90 (48)	Co1-01-C14-02	-21.8 (7)
-1.9 (7)	Co1-01-C14-C15	156.4 (3)
169.9 (3)	O2-C14-C15-C16	167.4 (4)
0.5 (7)	O1—C14—C15—C16	-10.9 (6)
1.5 (7)	O2—C14—C15—C17	-10.2 (6)
-177.7 (4)	O1—C14—C15—C17	171.5 (4)
-2.1 (7)	C17—C15—C16—C17 ⁱⁱ	-0.8 (7)
177.1 (4)	C14—C15—C16—C17 ⁱⁱ	-178.5 (4)
1.2 (7)	C16—C15—C17—C16 ⁱⁱ	0.8 (7)
-170.8 (4)	C14—C15—C17—C16 ⁱⁱ	178.5 (4)
0.8 (7)		
	$\begin{array}{c} -175 \ (95) \\ 2.6 \ (4) \\ -177.4 \ (4) \\ 93.7 \ (4) \\ -86.3 \ (4) \\ -130.3 \ (3) \\ 49.7 \ (3) \\ -39.5 \ (3) \\ 140.5 \ (3) \\ 82 \ (48) \\ 58.2 \ (4) \\ -121.8 \ (4) \\ 149.1 \ (4) \\ -30.9 \ (4) \\ -90 \ (48) \\ -1.9 \ (7) \\ 169.9 \ (3) \\ 0.5 \ (7) \\ 1.5 \ (7) \\ -177.7 \ (4) \\ -2.1 \ (7) \\ 177.1 \ (4) \\ 1.2 \ (7) \\ -170.8 \ (4) \\ 0.8 \ (7) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H3A···N2 ⁱⁱⁱ	0.93	1.90	2.820 (5)	171
O3—H3 <i>B</i> ···O2 ⁱ	1.03	1.71	2.704 (4)	161

Symmetry codes: (i) -*x*, -*y*, -*z*; (iii) -*x*+1, *y*-1/2, -*z*+1/2.