

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Bromophenyl)-2-{5-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4-phenyl-4H-1,2,4-triazol-3-ylsulfanyl}ethanone

Shan-Mei Xiao

College of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: xiaoshanmei@gmail.com

Received 7 December 2008; accepted 6 January 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.101; data-to-parameter ratio = 14.3.

The title compound, $C_{22}H_{20}BrN_5OS$, is a potent new fungicide. The planes of the phenyl and pyrozole rings are almost perpendicular, making a dihedral angle of 86.5 $(4)^{\circ}$. There are two non-classical intermolecular C-H···O and C-H···N hydrogen bonds in the crystal structure.

Related literature

For background to heterocyclic compounds, see: Gong et al. (2008); Liu et al. (2007). For the synthesis, see: He et al. (2008).

14.564 (4) Å

Experimental

Crystal data

C ₂₂ H ₂₀ BrN ₅ OS	<i>b</i> = 9.173 (2) Å
$M_r = 482.40$	c = 14.564 (4) Å
Triclinic, P1	$\alpha = 94.561 \ (4)^{\circ}$
a = 8.705 (2) Å	$\beta = 97.659 \ (4)^{\circ}$

```
\gamma = 103.086 \ (4)^{\circ}
V = 1115.3 (5) Å<sup>3</sup>
Z = 2
Mo K\alpha radiation
```

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.592, T_{\rm max} = 0.674$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 273 parameters $wR(F^2) = 0.101$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$ 3914 reflections

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6B\cdotsO1^{i}$	0.97	2.45	3.365 (3) 3.420 (3)	157
C15-1115DN4	0.97	2.50	3.429 (3)	101

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) -x + 1, -y + 2, -z.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2115).

References

Bruker. (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Gong, Y., Barbay, J. K., Buntinx, M., Li, J., Van Wauweb, J., Claes, C., Van Lommen, G., Hornby, P. J. & He, W. (2008). Bioorg. Med. Chem. Lett. 18, 3852-3855.
- He, F. Q., Liu, X. H., Wang, B. L. & Li, Z. M. (2008). Heteroat. Chem. 19, 21-27. Liu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H. & Li, Z. M. (2007).

Bioorg. Med. Chem. Lett. 17, 3784-3788.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $\mu = 1.96 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int} = 0.021$

 $0.28 \times 0.24 \times 0.20 \text{ mm}$

5704 measured reflections

3914 independent reflections 2419 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, o273 [doi:10.1107/S1600536809000403]

1-(4-Bromophenyl)-2-{5-[(3,5-dimethyl-1*H*-pyrazol-1-yl)methyl]-4phenyl-4*H*-1,2,4-triazol-3-ylsulfanyl}ethanone

Shan-Mei Xiao

S1. Comment

A variety of pyrazole and triazole heterocyclics could exhibit many activities. Meanwhile, heterocyclic compounds is an important developmental direction in medical (Gong *et al.*, 2008) and pesticidal (Liu *et al.*, 2007) chemistry.

In view of these facts and in continuation of our interest in the agriculture, we attempted to synthesize a series of amide derivatives, some of which have comparatively high fungicidal activity.

The molecular structure of title compound is showing in Fig.1. The x-ray analysis reveals that acetyl group is a planar with thio-ether group. The pyrozole ring is vertical with the benzene ring [dihedral angle $93.5 (4)^{\circ}$]. The packing of the structure is due to the weak intermolecular C-H..O and C-H..N H-bonds (Table 1. and Fig 2.).

S2. Experimental

The compound 5-((3,5-Dimethyl-1*H*-pyrazol-1-yl)methyl)-4-phenyl-4*H*-1,2,4 -triazole-3-thiol was synthesized according to the reference (He *et al.*, 2008). Then added *p*-bromo-phenacyl bromide, potassium carbonate anhydrous and *N*,*N*-Dimethyl formamide was stirred at room temperature for 5 h, giving the title compound. Colorless single crystals suitable for x-ray diffraction were obtained by recrystallization from a mixture of ethyl acetate and petroleum ether.

S3. Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H=0.93 Å, aliphatic C—H=0.97 (2) Å, N—H=0.86 Å, $U_{iso}(H) = 1.2U_{eq}(C)$].

Figure 1

The structure of (I) with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Partial packing diagram for (I). The dotted lines show the C-H-O bond.

Figure 3

The formation of the title compound.

1-(4-Bromophenyl)-2-{5-[(3,5-dimethyl-1*H*-pyrazol-1-yl)methyl]-4-phenyl- 4*H*-1,2,4-triazol-3-ylsulfanyl}ethanone

Crystal data	
$C_{22}H_{20}BrN_5OS$	Z = 2
$M_r = 482.40$	F(000) = 492
Triclinic, P1	$D_{\rm x} = 1.436 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.705 (2) Å	Cell parameters from 1669 reflections
b = 9.173 (2) Å	$\theta = 2.6 - 23.0^{\circ}$
c = 14.564 (4) Å	$\mu = 1.96 \text{ mm}^{-1}$
$\alpha = 94.561 \ (4)^{\circ}$	T = 294 K
$\beta = 97.659 \ (4)^{\circ}$	Rhombic, colorless
$\gamma = 103.086 \ (4)^{\circ}$	$0.28 \times 0.24 \times 0.20 \text{ mm}$
$V = 1115.3 (5) Å^3$	

Data collection

Bruker SMART CCD area-detector	5704 measured reflections
diffractometer	3914 independent reflections
Radiation source: fine-focus sealed tube	2419 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.021$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -10 \rightarrow 10$
$T_{\min} = 0.592, T_{\max} = 0.674$	$l = -17 \rightarrow 6$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.02	H-atom parameters constrained
3914 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 0.4689P]$
273 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.39$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.37$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

r	11	7	IT */IT
λ	<u>y</u>	2	U _{iso} / U _{eq}
0.29289 (6)	0.67651 (6)	-0.50744 (3)	0.0905 (2)
0.55698 (11)	0.71293 (10)	0.09603 (6)	0.0490 (3)
0.6651 (3)	0.6235 (2)	-0.07550 (16)	0.0513 (6)
1.0999 (3)	1.1534 (3)	0.3101 (2)	0.0510 (7)
1.1688 (3)	1.0707 (3)	0.25343 (19)	0.0454 (7)
0.8643 (4)	1.0825 (3)	0.07347 (19)	0.0501 (7)
0.7096 (3)	0.9911 (3)	0.05655 (19)	0.0499 (7)
0.8674 (3)	0.8715 (3)	0.13335 (16)	0.0364 (6)
1.1192 (6)	1.2185 (5)	0.4789 (3)	0.0941 (15)
1.0703	1.2973	0.4597	0.141*
1.2134	1.2611	0.5236	0.141*
1.0455	1.1474	0.5066	0.141*
1.1639 (5)	1.1397 (4)	0.3953 (3)	0.0590 (10)
1.2727 (5)	1.0505 (4)	0.3942 (3)	0.0640 (11)
1.3327	1.0254	0.4456	0.077*
1.2744 (4)	1.0070 (4)	0.3029 (3)	0.0548 (10)
	x 0.29289 (6) 0.55698 (11) 0.6651 (3) 1.0999 (3) 1.1688 (3) 0.8643 (4) 0.7096 (3) 0.8674 (3) 1.1192 (6) 1.0703 1.2134 1.0455 1.1639 (5) 1.2727 (5) 1.3327 1.2744 (4)	xy $0.29289 (6)$ $0.67651 (6)$ $0.55698 (11)$ $0.71293 (10)$ $0.6651 (3)$ $0.6235 (2)$ $1.0999 (3)$ $1.1534 (3)$ $1.1688 (3)$ $1.0707 (3)$ $0.8643 (4)$ $1.0825 (3)$ $0.7096 (3)$ $0.9911 (3)$ $0.8674 (3)$ $0.8715 (3)$ $1.1192 (6)$ $1.2185 (5)$ 1.0703 1.2973 1.2134 1.2611 1.0455 1.1474 $1.1639 (5)$ $1.1397 (4)$ $1.2727 (5)$ 1.0254 $1.2744 (4)$ $1.0070 (4)$	xyz $0.29289 (6)$ $0.67651 (6)$ $-0.50744 (3)$ $0.55698 (11)$ $0.71293 (10)$ $0.09603 (6)$ $0.6651 (3)$ $0.6235 (2)$ $-0.07550 (16)$ $1.0999 (3)$ $1.1534 (3)$ $0.3101 (2)$ $1.1688 (3)$ $1.0707 (3)$ $0.25343 (19)$ $0.8643 (4)$ $1.0825 (3)$ $0.07347 (19)$ $0.7096 (3)$ $0.9911 (3)$ $0.05655 (19)$ $0.8674 (3)$ $0.8715 (3)$ $0.13335 (16)$ $1.1192 (6)$ $1.2185 (5)$ $0.4789 (3)$ 1.0703 1.2973 0.4597 1.2134 1.2611 0.5236 1.0455 1.1474 0.5066 $1.1639 (5)$ $1.1397 (4)$ $0.3953 (3)$ $1.2727 (5)$ $1.0505 (4)$ $0.3942 (3)$ 1.3327 1.0254 0.4456 $1.2744 (4)$ $1.0070 (4)$ $0.3029 (3)$

C5	1.3679 (5)	0.9113 (5)	0.2587 (3)	0.0835 (14)
H5A	1.2977	0.8172	0.2309	0.125*
H5B	1.4481	0.8926	0.3052	0.125*
H5C	1.4182	0.9623	0.2115	0.125*
C6	1.1288 (4)	1.0667 (4)	0.1533 (2)	0.0507 (9)
H6A	1.1863	1.0030	0.1228	0.061*
H6B	1.1632	1.1676	0.1360	0.061*
C7	0.9553 (4)	1.0093 (3)	0.1199 (2)	0.0405 (8)
C8	0.7156 (4)	0.8664 (3)	0.0931 (2)	0.0398 (8)
C9	0.9262 (4)	0.7495 (3)	0.1701 (2)	0.0363 (7)
C10	0.9932 (4)	0.6635 (4)	0.1140 (3)	0.0571 (10)
H10	1.0027	0.6845	0.0533	0.069*
C11	1.0469 (5)	0.5443 (4)	0.1486 (3)	0.0730 (12)
H11	1.0928	0.4846	0.1112	0.088*
C12	1.0322 (5)	0.5149 (4)	0.2383 (3)	0.0658 (11)
H12	1.0665	0.4340	0.2613	0.079*
C13	0.9675 (5)	0.6034 (4)	0.2940 (3)	0.0635 (11)
H13	0.9603	0.5840	0.3552	0.076*
C14	0.9126 (4)	0.7216 (4)	0.2602 (2)	0.0514 (9)
H14	0.8671	0.7813	0.2978	0.062*
C15	0.4513 (4)	0.7061 (4)	-0.0201 (2)	0.0461 (9)
H15A	0.3481	0.6353	-0.0262	0.055*
H15B	0.4326	0.8047	-0.0291	0.055*
C16	0.5408 (4)	0.6597 (3)	-0.0953 (2)	0.0395 (8)
C17	0.4720 (4)	0.6607 (3)	-0.1940 (2)	0.0420 (8)
C18	0.3491 (4)	0.7294 (4)	-0.2204 (2)	0.0509 (9)
H18	0.3023	0.7726	-0.1749	0.061*
C19	0.2954 (4)	0.7345 (4)	-0.3134 (3)	0.0587 (10)
H19	0.2140	0.7820	-0.3308	0.070*
C20	0.3635 (5)	0.6689 (4)	-0.3794 (2)	0.0557 (10)
C21	0.4837 (5)	0.5963 (4)	-0.3557 (3)	0.0638 (11)
H21	0.5276	0.5505	-0.4015	0.077*
C22	0.5363 (4)	0.5937 (4)	-0.2631 (3)	0.0547 (10)
H22	0.6173	0.5457	-0.2463	0.066*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1110 (4)	0.1126 (4)	0.0534 (3)	0.0427 (3)	0.0014 (3)	0.0149 (3)
S 1	0.0501 (6)	0.0487 (5)	0.0493 (5)	0.0125 (4)	0.0070 (4)	0.0112 (4)
01	0.0395 (14)	0.0570 (15)	0.0614 (15)	0.0204 (12)	0.0066 (12)	0.0070 (12)
N1	0.0537 (19)	0.0510 (18)	0.0496 (19)	0.0163 (15)	0.0084 (15)	0.0027 (15)
N2	0.0429 (17)	0.0426 (16)	0.0494 (18)	0.0079 (14)	0.0068 (14)	0.0046 (14)
N3	0.067 (2)	0.0359 (16)	0.0486 (17)	0.0156 (16)	0.0042 (16)	0.0102 (14)
N4	0.058 (2)	0.0389 (17)	0.0548 (18)	0.0192 (16)	0.0013 (15)	0.0076 (14)
N5	0.0454 (17)	0.0327 (15)	0.0344 (15)	0.0150 (13)	0.0064 (13)	0.0061 (12)
C1	0.111 (4)	0.114 (4)	0.057 (3)	0.031 (3)	0.015 (3)	-0.008(3)
C2	0.063 (3)	0.059 (2)	0.052 (2)	0.011 (2)	0.007 (2)	0.005 (2)

C3	0.068 (3)	0.059 (3)	0.058 (3)	0.013 (2)	-0.010 (2)	0.011 (2)
C4	0.045 (2)	0.043 (2)	0.074 (3)	0.0081 (18)	0.004 (2)	0.005 (2)
C5	0.067 (3)	0.070 (3)	0.117 (4)	0.033 (2)	0.003 (3)	-0.001 (3)
C6	0.057 (2)	0.048 (2)	0.047 (2)	0.0074 (18)	0.0164 (18)	0.0065 (17)
C7	0.050(2)	0.0356 (19)	0.0362 (18)	0.0082 (17)	0.0104 (16)	0.0041 (15)
C8	0.051 (2)	0.0351 (19)	0.0361 (18)	0.0185 (17)	0.0032 (16)	0.0019 (15)
C9	0.0392 (19)	0.0319 (17)	0.0402 (19)	0.0122 (15)	0.0063 (15)	0.0078 (15)
C10	0.072 (3)	0.056 (2)	0.052 (2)	0.033 (2)	0.012 (2)	0.0057 (19)
C11	0.085 (3)	0.059 (3)	0.085 (3)	0.043 (2)	0.010 (3)	0.000 (2)
C12	0.064 (3)	0.048 (2)	0.087 (3)	0.023 (2)	-0.005 (2)	0.024 (2)
C13	0.076 (3)	0.063 (3)	0.055 (2)	0.020 (2)	0.006 (2)	0.027 (2)
C14	0.062 (2)	0.054 (2)	0.044 (2)	0.0220 (19)	0.0124 (18)	0.0119 (17)
C15	0.044 (2)	0.043 (2)	0.053 (2)	0.0147 (17)	0.0041 (17)	0.0054 (16)
C16	0.036 (2)	0.0261 (17)	0.055 (2)	0.0050 (15)	0.0059 (17)	0.0036 (15)
C17	0.040 (2)	0.0376 (19)	0.048 (2)	0.0095 (16)	0.0066 (17)	0.0050 (16)
C18	0.050 (2)	0.054 (2)	0.051 (2)	0.0198 (19)	0.0067 (18)	-0.0005 (18)
C19	0.058 (2)	0.059 (2)	0.063 (3)	0.027 (2)	-0.002 (2)	0.007 (2)
C20	0.061 (2)	0.058 (2)	0.048 (2)	0.013 (2)	0.006 (2)	0.0078 (19)
C21	0.069 (3)	0.077 (3)	0.052 (2)	0.029 (2)	0.014 (2)	0.002 (2)
C22	0.054 (2)	0.060 (2)	0.057 (2)	0.027 (2)	0.0087 (19)	0.0051 (19)

Geometric parameters (Å, °)

Br1—C20	1.896 (3)	С6—Н6В	0.9700
S1—C8	1.742 (3)	C9—C10	1.365 (4)
S1—C15	1.803 (3)	C9—C14	1.372 (4)
O1-C16	1.208 (3)	C10—C11	1.387 (5)
N1-C2	1.319 (4)	C10—H10	0.9300
N1—N2	1.362 (4)	C11—C12	1.371 (5)
N2-C4	1.356 (4)	C11—H11	0.9300
N2C6	1.449 (4)	C12—C13	1.363 (5)
N3—C7	1.306 (4)	C12—H12	0.9300
N3—N4	1.395 (4)	C13—C14	1.380 (5)
N4—C8	1.308 (4)	C13—H13	0.9300
N5—C8	1.361 (4)	C14—H14	0.9300
N5—C7	1.365 (4)	C15—C16	1.514 (4)
N5—C9	1.443 (4)	C15—H15A	0.9700
C1—C2	1.506 (5)	C15—H15B	0.9700
C1—H1A	0.9600	C16—C17	1.484 (4)
C1—H1B	0.9600	C17—C22	1.382 (4)
C1—H1C	0.9600	C17—C18	1.387 (4)
C2—C3	1.385 (5)	C18—C19	1.381 (5)
C3—C4	1.360 (5)	C18—H18	0.9300
С3—Н3	0.9300	C19—C20	1.363 (5)
C4—C5	1.491 (5)	C19—H19	0.9300
С5—Н5А	0.9600	C20—C21	1.382 (5)
С5—Н5В	0.9600	C21—C22	1.369 (5)
С5—Н5С	0.9600	C21—H21	0.9300

supporting information

C6—H6A 0.9700 C8—S1—C15 98.77 (15) C10—C9—N5 119. C2—N1—N2 104.6 (3) C14—C9—N5 119. C4—N2—N1 111.8 (3) C9—C10—C11 119. C4—N2—C6 129.2 (3) C9—C10—H10 120. N1—N2—C6 118.9 (3) C11—C10—H10 120. C7—N3—N4 107.4 (3) C12—C11—C10 119. C8—N4—N3 106.9 (3) C12—C11—H11 120. C8—N5—C7 105.1 (2) C10—C11—H11 120.	$ \begin{array}{c} 1 (3) \\ 5 (3) \\ 2 (3) \\ 4 \\ 4 \\ 7 (4) \\ 1 \\ 1 \\ 4 (3) \\ 3 \\ 4 \\ 4 (4) \end{array} $
C8—S1—C15 98.77 (15) C10—C9—N5 119. C2—N1—N2 104.6 (3) C14—C9—N5 119. C4—N2—N1 111.8 (3) C9—C10—C11 119. C4—N2—C6 129.2 (3) C9—C10—H10 120. N1—N2—C6 118.9 (3) C11—C10—H10 120. C7—N3—N4 107.4 (3) C12—C11—C10 119. C8—N4—N3 106.9 (3) C12—C11—H11 120. C8—N5—C7 105.1 (2) C10—C11—H11 120.	1 (3) 5 (3) 2 (3) 4 7 (4) 1 1 (3) 3 3 4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (3) 5 (3) 2 (3) 4 4 7 (4) 1 1 4 (3) 3 3 4 (4)
C2—N1—N2 104.6 (3) C14—C9—N5 119. C4—N2—N1 111.8 (3) C9—C10—C11 119. C4—N2—C6 129.2 (3) C9—C10—H10 120. N1—N2—C6 118.9 (3) C11—C10—H10 120. C7—N3—N4 107.4 (3) C12—C11—C10 119. C8—N4—N3 106.9 (3) C12—C11—H11 120. C8—N5—C7 105.1 (2) C10—C11—H11 120.	5 (3) 2 (3) 4 4 7 (4) 1 1 4 (3) 3 3 4 (4)
C4—N2—N1111.8 (3)C9—C10—C11119.C4—N2—C6129.2 (3)C9—C10—H10120.N1—N2—C6118.9 (3)C11—C10—H10120.C7—N3—N4107.4 (3)C12—C11—C10119.C8—N4—N3106.9 (3)C12—C11—H11120.C8—N5—C7105.1 (2)C10—C11—H11120.	2 (3) 4 4 7 (4) 1 4 (3) 3 3 4 (4)
C4—N2—C6129.2 (3)C9—C10—H10120.N1—N2—C6118.9 (3)C11—C10—H10120.C7—N3—N4107.4 (3)C12—C11—C10119.C8—N4—N3106.9 (3)C12—C11—H11120.C8—N5—C7105.1 (2)C10—C11—H11120.	4 4 7 (4) 1 1 4 (3) 3 3 4 (4)
N1—N2—C6118.9 (3)C11—C10—H10120.C7—N3—N4107.4 (3)C12—C11—C10119.C8—N4—N3106.9 (3)C12—C11—H11120.C8—N5—C7105.1 (2)C10—C11—H11120.	4 7 (4) 1 1 4 (3) 3 3 4 (4)
C7-N3-N4107.4 (3)C12-C11-C10119.C8-N4-N3106.9 (3)C12-C11-H11120.C8-N5-C7105.1 (2)C10-C11-H11120.	7 (4) 1 1 1 (3) 3 3 4 (4)
C8—N4—N3106.9 (3)C12—C11—H11120.C8—N5—C7105.1 (2)C10—C11—H11120.	1 1 4 (3) 3 3 4 (4)
C8—N5—C7 105.1 (2) C10—C11—H11 120.	1 4 (3) } }
	4 (3) } } 4 (4)
C8—N5—C9 127.1 (3) C13—C12—C11 120.	3 3 1 (4)
C7—N5—C9 127.3 (3) C13—C12—H12 119.	3 1 (4)
C2—C1—H1A 109.5 C11—C12—H12 119.	1 (4)
C2—C1—H1B 109.5 C12—C13—C14 120.	• (•)
H1A—C1—H1B 109.5 C12—C13—H13 119.	3
C2—C1—H1C 109.5 C14—C13—H13 119.	3
H1A—C1—H1C 109.5 C9—C14—C13 118.)(3)
H1B-C1-H1C 109.5 C9-C14-H14 120.	5
N1—C2—C3 111.3 (3) C13—C14—H14 120.	5
N1-C2-C1 120.7 (4) C16-C15-S1 112.)(2)
C3—C2—C1 127.9 (4) C16—C15—H15A 109.)
C4—C3—C2 106.4 (3) S1—C15—H15A 109.)
C4—C3—H3 126.8 C16—C15—H15B 109.)
C2—C3—H3 126.8 S1—C15—H15B 109.)
N2—C4—C3 105.9 (3) H15A—C15—H15B 107.	3
N2-C4-C5 123.3 (4) O1-C16-C17 120.) (3)
C3-C4-C5 130.9 (4) $O1-C16-C15$ 121.	(3)
C4—C5—H5A 109.5 C17—C16—C15 118.	(3)
C4—C5—H5B 109.5 C22—C17—C18 118.	1(3)
H5A—C5—H5B 109.5 C22—C17—C16 118.	5 (3)
C4—C5—H5C 109.5 C18—C17—C16 123.	(3)
H5A—C5—H5C 109.5 C19—C18—C17 120.	7 (3)
H5B-C5-H5C 109.5 C19-C18-H18 119.	5
N2-C6-C7 112.5 (3) C17-C18-H18 119.	5
N2—C6—H6A 109.1 C20—C19—C18 119.4) (3)
С7—С6—Н6А 109.1 С20—С19—Н19 120.	5
N2—C6—H6B 109.1 C18—C19—H19 120.	5
C7—C6—H6B 109.1 C19—C20—C21 121.	3 (3)
H6A—C6—H6B 107.8 C19—C20—Br1 119	5(3)
N3-C7-N5 110.1 (3) C21-C20-Br1 118	5(3)
N3-C7-C6 125.2 (3) C22-C21-C20 118.	3 (3)
N5-C7-C6 124.7 (3) C22-C21-H21 120.)
N4—C8—N5 110.5 (3) C20—C21—H21 120)
N4—C8—S1 127.3 (3) C21—C22—C17 121	7 (3)
N5—C8—S1 122.2 (2) C21—C22—H22 119	(-)
C10—C9—C14 121.4 (3) C17—C22—H22 119.	l

C2 N1 N2 $C4$	0.2(4)	C15 C1 C9 N5	1412(2)
C_2 —NI—N2—C4	-0.2 (4)	C15—S1—C8—N5	-141.3(3)
C2-N1-N2-C6	-177.5(3)	C8—N5—C9—C10	93.5 (4)
C7—N3—N4—C8	-0.5 (3)	C7—N5—C9—C10	-76.7 (4)
N2—N1—C2—C3	0.3 (4)	C8—N5—C9—C14	-86.0 (4)
N2—N1—C2—C1	179.0 (3)	C7—N5—C9—C14	103.8 (4)
N1—C2—C3—C4	-0.2 (5)	C14—C9—C10—C11	0.7 (5)
C1—C2—C3—C4	-178.9 (4)	N5-C9-C10-C11	-178.7 (3)
N1—N2—C4—C3	0.0 (4)	C9-C10-C11-C12	-0.1 (6)
C6—N2—C4—C3	177.0 (3)	C10-C11-C12-C13	-1.1 (6)
N1—N2—C4—C5	-179.6 (3)	C11—C12—C13—C14	1.5 (6)
C6—N2—C4—C5	-2.6 (5)	C10-C9-C14-C13	-0.3 (5)
C2-C3-C4-N2	0.1 (4)	N5-C9-C14-C13	179.2 (3)
C2—C3—C4—C5	179.7 (4)	C12—C13—C14—C9	-0.9 (6)
C4—N2—C6—C7	124.9 (4)	C8—S1—C15—C16	68.2 (2)
N1—N2—C6—C7	-58.3 (4)	S1-C15-C16-O1	4.1 (4)
N4—N3—C7—N5	0.9 (3)	S1-C15-C16-C17	-175.6 (2)
N4—N3—C7—C6	-179.1 (3)	O1—C16—C17—C22	11.7 (5)
C8—N5—C7—N3	-0.9 (3)	C15—C16—C17—C22	-168.6 (3)
C9—N5—C7—N3	171.0 (3)	O1—C16—C17—C18	-166.4 (3)
C8—N5—C7—C6	179.0 (3)	C15—C16—C17—C18	13.2 (4)
C9—N5—C7—C6	-9.0 (5)	C22-C17-C18-C19	-1.8 (5)
N2-C6-C7-N3	122.0 (3)	C16—C17—C18—C19	176.3 (3)
N2—C6—C7—N5	-58.0 (4)	C17—C18—C19—C20	0.9 (5)
N3—N4—C8—N5	-0.1 (3)	C18—C19—C20—C21	0.6 (6)
N3—N4—C8—S1	178.2 (2)	C18-C19-C20-Br1	-179.3 (3)
C7—N5—C8—N4	0.6 (3)	C19—C20—C21—C22	-1.2 (6)
C9—N5—C8—N4	-171.4 (3)	Br1-C20-C21-C22	178.8 (3)
C7—N5—C8—S1	-177.8 (2)	C20-C21-C22-C17	0.3 (6)
C9—N5—C8—S1	10.3 (4)	C18—C17—C22—C21	1.2 (5)
C15—S1—C8—N4	40.6 (3)	C16—C17—C22—C21	-177.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C6—H6 <i>B</i> ···O1 ⁱ	0.97	2.45	3.365 (3)	157
C15—H15 <i>B</i> ···N4 ⁱⁱ	0.97	2.50	3.429 (3)	161

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*; (ii) -*x*+1, -*y*+2, -*z*.