organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Hydroxyphenyl 4-fluorobenzoate

Hyon Pil You,^a You-Soon Lee,^a Byung Hee Han,^a Sung Kwon Kang^a* and Chang Keun Sung^b

^aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and ^bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea Correspondence e-mail: skkang@cnu.ac.kr

Received 16 December 2008; accepted 3 January 2009

Key indicators: single-crystal X-ray study; T = 174 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.105; data-to-parameter ratio = 16.4.

In the title compound, $C_{13}H_9FO_3$, the dihedral angle between the two benzene rings is 59.86 (4)°. In the crystal, intermolecular $O-H\cdots H$ hydrogen bonds lead to molecular chains propagating in [010].

Related literature

For general background to whitening agents, see: Ha *et al.* (2007); Dawley *et al.* (1993); Nerya *et al.* (2003); Hong *et al.* (2008); Lee *et al.* (2007); Hussain *et al.* (2003).

Experimental

Crystal data

$C_{13}H_9FO_3$
$M_r = 232.2$
Monoclinic, $P2_1/c$
a = 24.938(5) Å
b = 5.4789 (11) Å
c = 7.6858 (15) Å
$\beta = 93.59 \ (3)^{\circ}$

```
V = 1048.1 \text{ (4) } \text{Å}^{3}

Z = 4

Mo K\alpha radiation

\mu = 0.12 \text{ mm}^{-1}

T = 174 \text{ (2) K}

0.12 \times 0.09 \times 0.06 \text{ mm}
```

Data collection

diffractometer Absorption correction: none 10972 measured reflections	2054 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$
Absorption correction: none 10972 measured reflections	$R_{\rm int} = 0.027$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.105$	H atoms treated by a mixture of independent and constrained
S = 1.05	refinement
597 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
58 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O16-H16\cdots O16^{i}$	0.82 (2)	2.12 (2)	2.9368 (9)	172 (2)
		2		

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This study was supported financially by the Research Fund of Chungnam National University in 2008

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2214).

References

- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609-610.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ha, Y. M., Chung, S. W., Song, S., Lee, H., Suh, H. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711–1715.
- Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, 049.
- Hussain, H. H., Babic, G., Durst, T., Wright, J. S., Flueraru, M., Chichirau, A. & Chepelev, L. L. (2003). J. Org. Chem. 68, 7023–7032.
- Lee, C. W., Son, E. M., Kim, H. S., Xu, P., Batmunkh, T., Lee, B.-J. & Koo, K. A. (2007). *Bioorg. Med. Chem. Lett.* **17**, 5462–5464.
- Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201–1207.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o252 [doi:10.1107/S1600536809000129]

4-Hydroxyphenyl 4-fluorobenzoate

Hyon Pil You, You-Soon Lee, Byung Hee Han, Sung Kwon Kang and Chang Keun Sung

S1. Comment

Melanin is the pigment responsible for the color of human skin and hair. Tyrosinase is the key enzyme (Ha *et al.*, 2007) that converts tyrosine to melanin and its inhibitors are the target molecules to develop and research anti-pigmentation agents for application to skin. Therefore, treatments using potent inhibitory agents on tyrosinase and melanin formation may be cosmetically useful. Most skin whitening agents currently on the market (Dawley *et al.*, 1993; Nerya *et al.*, 2003) are hydroquinone, ascorbic acid, kojic acid, arbutin, azealic acid, and glycyrrhetinic acid. They contain aromatic, methoxy, hydroxyl (Hong *et al.*, 2008; Lee *et al.*, 2007), or carbonyl functional groups in their structures, and act as a specific functional group to make the skin white by inhibiting the production of melanin. However, most skin whitening agents have some problems, due to toxicity, low stability of formulation and poor skin permeation. In the course of our work on the development of new whitening agents, to complement the inadequacy of current whitening agents and maximize the inhibitory effects of melanin creation, we have synthesized the title compound *via* a general chemical pathway (Hussain *et al.*, 2003) between hydroquinone and 4-fluorobenzoyl chloride.

The 4-fluorobenzoic acid moiety and the 4-hydroxyphenyl ring are essentially planar, with mean deviations of 0.002 and 0.004 Å, respectively, from the corresponding least-squares planes. The dihedral angle between the two benzene rings is 59.86 (4)°. The intermolecular O16—H16···O16^{*i*} [symmetry code: (*i*) -*x*+1, *y*-1/2, -*z*+3/2) hydrogen bond allows to form an extensive one-dimensional network, which stabilizes the crystal structure.

S2. Experimental

Hydroquinone and 4-fluorobenzoyl chloride were purchased from Sigma Chemical Co. and used without further purification. The title compound was prepared from the reaction of 4-fluorobenzoyl chloride (0.159 g, 1 mmol) and hydroquinone (0.132 g, 1.2 mmol) in TEA (8.0 ml). After being stirred for 8 h at 333 K, the mixture was quenched and worked up with ethyl acetate. The mixture was chromatographed on silica gel (2/1 = dichloromethane / ethylacetate) to give the title compound as colorless solid (60%, m.p. 454 K). Single crystals were obtained by slow evaporation of a solution of the title compound in ethyl alcohol and methyl alcohol at room temperature.

S3. Refinement

Atom H16 of the OH group was located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$.

F(000) = 480

 $\theta = 2.5 - 28.0^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Block, colourless

 $0.12\times0.09\times0.06~mm$

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 0.8^{\circ}$ $h = -31 \rightarrow 33$

T = 174 K

 $R_{\rm int} = 0.027$

 $k = -6 \rightarrow 7$

 $l = -10 \rightarrow 10$

 $D_{\rm x} = 1.472 \text{ Mg m}^{-3}$

Melting point: 454 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3698 reflections

Figure 1

Molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

4-Hydroxyphenyl 4-fluorobenzoate

Crystal data

C₁₃H₉FO₃ $M_r = 232.2$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 24.938 (5) Å b = 5.4789 (11) Å c = 7.6858 (15) Å $\beta = 93.59$ (3)° V = 1048.1 (4) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans 10972 measured reflections 2597 independent reflections 2054 reflections with $I > 2\sigma(I)$

Refinement

0 constraints
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 0.436P]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

F 1		1	1	• • •	• • •	• • •	1. 1	,	18	12
Fractional	atomic	coordinates	and	isofronic o	r eauwalent	isofronic	displacement	narameters	1 A	- 1
1 / actionat	aronne	coordinates	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ison opic o	, equivalent	isonopie	anspracement	parameters	(**	. /

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.17529 (5)	0.4464 (2)	0.47353 (17)	0.0219 (3)	
C2	0.13428 (5)	0.2841 (3)	0.50782 (18)	0.0249 (3)	
H2	0.1423	0.1423	0.5708	0.03*	
C3	0.08163 (6)	0.3318 (3)	0.44905 (19)	0.0275 (3)	

H3	0.0541	0.224	0.4711	0.033*
C4	0.07154 (5)	0.5443 (3)	0.35679 (18)	0.0270 (3)
C5	0.11101 (6)	0.7093 (3)	0.32085 (18)	0.0278 (3)
Н5	0.1026	0.8508	0.2581	0.033*
C6	0.16347 (6)	0.6597 (3)	0.38026 (17)	0.0250 (3)
H6	0.1908	0.7688	0.3579	0.03*
C7	0.23063 (5)	0.3826 (3)	0.54191 (18)	0.0259 (3)
08	0.24211 (4)	0.2045 (2)	0.62716 (18)	0.0523 (4)
O9	0.26681 (4)	0.55210 (17)	0.49833 (12)	0.0243 (2)
C10	0.32036 (5)	0.5229 (2)	0.56439 (16)	0.0207 (3)
C11	0.35119 (5)	0.3277 (2)	0.51648 (16)	0.0229 (3)
H11	0.3364	0.2065	0.4436	0.027*
C12	0.40460 (5)	0.3149 (2)	0.57859 (17)	0.0226 (3)
H12	0.426	0.1849	0.5474	0.027*
C13	0.42597 (5)	0.4975 (2)	0.68769 (17)	0.0215 (3)
C14	0.39464 (5)	0.6938 (2)	0.73353 (17)	0.0234 (3)
H14	0.4093	0.8157	0.806	0.028*
C15	0.34135 (5)	0.7073 (2)	0.67088 (17)	0.0225 (3)
H15	0.32	0.8385	0.7001	0.027*
O16	0.47887 (4)	0.4939 (2)	0.75328 (14)	0.0302 (3)
H16	0.4915 (8)	0.356 (4)	0.742 (3)	0.052 (6)*
F17	0.02021 (3)	0.59316 (18)	0.29800 (13)	0.0424 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0203 (6)	0.0223 (7)	0.0231 (6)	0.0016 (5)	0.0006 (5)	-0.0004 (5)
C2	0.0238 (7)	0.0220 (7)	0.0289 (7)	0.0006 (5)	0.0015 (5)	0.0022 (5)
C3	0.0209 (7)	0.0267 (7)	0.0349 (7)	-0.0026 (6)	0.0016 (5)	-0.0021 (6)
C4	0.0198 (7)	0.0289 (7)	0.0317 (7)	0.0047 (6)	-0.0043 (5)	-0.0060 (6)
C5	0.0295 (7)	0.0230 (7)	0.0302 (7)	0.0045 (6)	-0.0035 (5)	0.0010 (5)
C6	0.0249 (7)	0.0227 (7)	0.0273 (7)	-0.0019 (5)	0.0005 (5)	0.0011 (5)
C7	0.0208 (7)	0.0285 (7)	0.0284 (7)	0.0003 (6)	0.0017 (5)	0.0061 (6)
08	0.0238 (6)	0.0539 (8)	0.0787 (9)	0.0006 (5)	-0.0009 (6)	0.0418 (7)
09	0.0185 (5)	0.0237 (5)	0.0300 (5)	-0.0015 (4)	-0.0038 (4)	0.0041 (4)
C10	0.0169 (6)	0.0239 (7)	0.0210 (6)	-0.0009 (5)	-0.0015 (5)	0.0036 (5)
C11	0.0255 (7)	0.0206 (7)	0.0224 (6)	-0.0028 (5)	-0.0003 (5)	-0.0013 (5)
C12	0.0225 (7)	0.0202 (6)	0.0252 (6)	0.0020 (5)	0.0024 (5)	-0.0001 (5)
C13	0.0174 (6)	0.0231 (7)	0.0237 (6)	-0.0021 (5)	0.0003 (5)	0.0038 (5)
C14	0.0242 (7)	0.0209 (7)	0.0248 (6)	-0.0032 (5)	-0.0013 (5)	-0.0034 (5)
C15	0.0225 (7)	0.0206 (6)	0.0245 (6)	0.0019 (5)	0.0027 (5)	-0.0012 (5)
O16	0.0186 (5)	0.0288 (6)	0.0423 (6)	0.0007 (4)	-0.0052 (4)	-0.0018 (4)
F17	0.0223 (5)	0.0426 (6)	0.0605 (6)	0.0056 (4)	-0.0106 (4)	0.0019 (5)

Geometric parameters (Å, °)

C1—C2	1.3928 (19)	O9—C10	1.4078 (15)
C1—C6	1.3932 (18)	C10-C11	1.3806 (19)

C1—C7	1.4872 (18)	C10—C15	1.3824 (18)
C2—C3	1.3863 (19)	C11—C12	1.3881 (18)
С2—Н2	0.93	С11—Н11	0.93
C3—C4	1.378 (2)	C12—C13	1.3900 (18)
С3—Н3	0.93	C12—H12	0.93
C4—F17	1.3572 (15)	C13—O16	1.3826 (16)
C4—C5	1.377 (2)	C13—C14	1.3874 (19)
C5—C6	1.3854 (19)	C14—C15	1.3869 (18)
С5—Н5	0.93	C14—H14	0.93
С6—Н6	0.93	С15—Н15	0.93
C7—O8	1.2000 (17)	O16—H16	0.82 (2)
С7—О9	1.3514 (17)		
C2—C1—C6	119.93 (12)	C7—O9—C10	117.74 (10)
C2—C1—C7	117.35 (12)	C11—C10—C15	121.83 (12)
C6—C1—C7	122.72 (12)	C11—C10—O9	121.57 (12)
C3—C2—C1	120.65 (13)	C15—C10—O9	116.47 (12)
С3—С2—Н2	119.7	C10-C11-C12	119.06 (12)
C1—C2—H2	119.7	C10—C11—H11	120.5
C4—C3—C2	117.74 (13)	C12—C11—H11	120.5
С4—С3—Н3	121.1	C11—C12—C13	119.64 (12)
С2—С3—Н3	121.1	C11—C12—H12	120.2
F17—C4—C5	118.34 (13)	C13—C12—H12	120.2
F17—C4—C3	118.43 (13)	O16—C13—C14	117.27 (12)
C5—C4—C3	123.23 (13)	O16—C13—C12	122.04 (12)
C4—C5—C6	118.52 (13)	C14—C13—C12	120.68 (12)
С4—С5—Н5	120.7	C15—C14—C13	119.72 (12)
С6—С5—Н5	120.7	C15—C14—H14	120.1
C5—C6—C1	119.93 (13)	C13—C14—H14	120.1
С5—С6—Н6	120	C10—C15—C14	119.05 (12)
С1—С6—Н6	120	C10—C15—H15	120.5
O8—C7—O9	123.63 (13)	C14—C15—H15	120.5
O8—C7—C1	124.63 (13)	C13—O16—H16	109.7 (14)
O9—C7—C1	111.73 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D····A	<i>D</i> —H··· <i>A</i>
O16—H16…O16 ⁱ	0.82 (2)	2.12 (2)	2.9368 (9)	172 (2)

Symmetry code: (i) -x+1, y-1/2, -z+3/2.