Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Hydroxy-2-methyl-4H-pyran-4-one

Muhammad Ashraf Shaheen, ${ }^{\text {a }}$ Christian G. Hartinger, ${ }^{\text {b }}$ M. Nawaz Tahir, ${ }^{\text {c* }}$ Ahmad Awan Shafiq ${ }^{\text {d }}$ and Bernhard K. Keppler ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Sargodha, Sargodha, Pakistan, ${ }^{\mathbf{b}}$ Institute of Inorganic Chemistry, University of Vienna, Whaeringer Strasse 42, A-1090 Vienna, Austria, ${ }^{\text {c }}$ Department of Physics, University of Sargodha, Sargodha, Pakistan, and ${ }^{\text {dPAEC, PO Box No. 1114, Islamabad, Pakistan }}$
Correspondence e-mail: dmntahir_uos@yahoo.com

Received 25 January 2009; accepted 26 January 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.053 ; w R$ factor $=0.131$; data-to-parameter ratio $=17.3$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$, is a member of the pyrone family. The molecules are planar (r.m.s. deviation of the asymmetric unit is $0.0248 \AA$, whereas that of the dimer is $0.0360 \AA$) and they are dimerized due to intermolecular O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The dimers are connected to each other through hydrogen bonds involving the CH_{3} group and the hydroxy O atom. There are $\pi-\pi$ interactions between the centroids of the pyrone rings at a distance of 3.8552 (13) \AA. A $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction also exists between the carbonyl group and the centroid $C g A$ of the pyrone ring, with $\mathrm{O} \cdots C g A=$ 3.65 (1) \AA and $\mathrm{C} \cdots C g A=4.363$ (2) \AA.

Related literature

For general background, see: Aytemir et al. (1999); Erol \& Yulug (1999). For studies involving metal complexes of allomaltol, see: Ma et al. (2004); Shaheen et al. (2008, 2008a). For crystal structures of related compounds, see: Tak et al. (1994); Rahman et al. (1997).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3} & \text { Triclinic, } P \overline{1} \\
M_{r}=126.11 & a=5.4467(4) \AA
\end{array}
$$

$$
\begin{aligned}
& b=7.3301(5) \AA \\
& c=7.6945(5) \AA \\
& \alpha=105.354(3)^{\circ} \\
& \beta=98.416(4)^{\circ} \\
& \gamma=100.008(4)^{\circ} \\
& V=285.68(4) \AA^{\circ}
\end{aligned}
$$

$Z=2$

Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=296$ (2) K
$0.22 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.970, T_{\text {max }}=0.986$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.131$
$S=1.00$
1504 reflections
87 parameters

6426 measured reflections 1504 independent reflections 713 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{O} 3$	$0.87(3)$	$2.46(2)$	$2.7853(19)$	$103.1(18)$
O2-H2 $^{\mathrm{O}} \mathrm{O}^{\mathrm{i}}$	$0.87(3)$	$1.83(3)$	$2.635(2)$	$152(2)$
$\mathrm{C}^{\mathrm{H}-\mathrm{H} 6 A \cdots{ }^{\mathrm{ii}}}$	0.96	2.42	$3.378(3)$	173

Symmetry codes: (i) $-x-1,-y,-z+1$; (ii) $x, y, z-1$; (iii) $x-1, y, z$.
Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2715).

References

Aytemir, M. D., Uzbay, T. \& Erol, D. D. (1999). Drug Res. 49, 250-254
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Erol, D. D. \& Yulug, N. (1999). Eur. J. Med. Chem. 29, 893-895
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ma, Y., Luo, W., Quinn, P. J., Liu, Z. \& Hider, R. C. (2004). J. Med. Chem. 47, 6349-6362.
Rahman, A., Nasreen, A., Akhtar, F., Shekhani, M. S., Clardy, J., Parvez, M. \& Choudhary, M. I. (1997). J. Nat. Prod. 60, 472-474.
Shaheen, M. A., Berger, I., Alexey, A. N., Hartinger, C. G., Koroteev, M. P., Nifant, E. E. \& Keppler, B. K. (2008). Chem. Biodivers. 5, 1640-1644.
Shaheen, M. A., Kandioller, W., Maria-Grazia, M. F., Alexey, A. N., Hartinger, C. G. \& Keppler, B. K. (2008a). Chem. Biodivers. 5, 2060-2066.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tak, H., Fronczek, F. R. \& Fischer, N. H. (1994). Spectrosc. Lett. 27, 14311435.

supporting information

Acta Cryst. (2009). E65, o437 [doi:10.1107/S1600536809003158]

5-Hydroxy-2-methyl-4H-pyran-4-one

Muhammad Ashraf Shaheen, Christian G. Hartinger, M. Nawaz Tahir, Ahmad Awan Shafiq and Bernhard K. Keppler

S1. Comment

A variety of compounds with a $4(1 H)$-pyridinone structure have been synthesized and their biological activities studied extensively (Aytemir et al., 1999; Erol \& Yulug, 1999). Allomaltol, the title compound (I), (Fig. 1) and its derivatives have been exploited as iron chelators (Ma et al., 2004). Ruthenium and osmium complexes of allomaltol were found to be effective in catalyzing the hydration of chloroacetonitriles (Shaheen et al., 2008, 2008a).

The crystal structures of 3-Hydroxy-4-pyrone (Tak et al., 1994) has been published which have same heterocyclic ring as of title compound. 3-Hydroxy-2-methyl-4H-pyran-4-one (Rahman et al., 1997) has also been published which is chemical isomer of (I) but have different position of CH_{3}. The title compound has been prepared for various purposes such as complexation and as an intermediate ligand.
The heterocyclic ring is not regular as it has two $\mathrm{C}-\mathrm{C}[1.426$ (3), 1.446 (3) \AA], two $\mathrm{C}=\mathrm{C}[1.323$ (3), 1.334 (3) \AA] and two C-O [1.352 (3), 1.358 (3) \AA], bonds respectively. Due to intra as well as intermolecular H-bonds (Table 1), the molecules are dimerized with central four-membered $[\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O} \cdots \mathrm{H}]$ ring, (Fig. 2). The dimers are linked to each other through H-bond between CH_{3} and hydroxy groups. The molecules may be stabilized due to $\pi-\pi$ interaction between the centroids of the ring $\mathrm{A}(\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 5)$. The distance between the centroids of CgA and $\mathrm{CgA}^{\mathrm{i}}\left[\mathrm{Symmetry}^{\text {code: }} \mathrm{i}=-x, 1-y, 1\right.$ $-z]$ is $3.8552(13) \AA$. There exist a $\mathrm{C} 3=\mathrm{O} 3 \cdots \pi$ interaction (Table 1), as well.

S2. Experimental

A mixture of 2-chloromethyl-5-hydroxy-4-pyron ($1.0 \mathrm{~g}, 0.6 \mathrm{mmol}$) and zinc dust ($0.8 \mathrm{~g}, 12 \mathrm{mmol}$) in water (20 ml) was stirred for 30 min at 323 K . Concentrated $\mathrm{HCl}(6 \mathrm{ml})$ was added dropwise to dissolve the zinc dust completely and the mixture was stirred for 3 h at 353 K . The reaction mixture was transferred to ice-water and extracted with dichloromethane, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crystals of the title compound were obtained by recrystallizing the crude product in isopropanol.

S3. Refinement

The coordinates of H atom of hydroxy group were refined. H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H , and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$, where $x=$ 1.5 for methyl H , and $x=1.2$ for other H atoms.

Figure 1
ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H atoms are shown by small circles of arbitrary radii.

Figure 2
The packing figure (PLATON: Spek, 2003) which shows that the title compound is dimersed and dimers are connected through H-bonds in helical way.
(I)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$
$M_{r}=126.11$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.4467$ (4) Å
$b=7.3301$ (5) \AA
$c=7.6945$ (5) \AA

$$
\begin{aligned}
& \alpha=105.354(3)^{\circ} \\
& \beta=98.416(4)^{\circ} \\
& \gamma=100.008(4)^{\circ} \\
& V=285.68(4) \AA^{3} \\
& Z=2 \\
& F(000)=132 \\
& D_{\mathrm{x}}=1.466 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1504 reflections
$\theta=2.8-29.1^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.40 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.970, T_{\max }=0.986$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.131$
$S=1.00$
1504 reflections
87 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$T=296 \mathrm{~K}$
Prismatic, colourless
$0.22 \times 0.20 \times 0.10 \mathrm{~mm}$

6426 measured reflections
1504 independent reflections
713 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0523 P)^{2}+0.0219 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.053 (14)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
O1	$0.2557(3)$	$0.3634(2)$	$0.37275(16)$	$0.0542(5)$
O2	$-0.1534(3)$	$0.1916(2)$	$0.64758(18)$	$0.0641(6)$
O3	$-0.4440(3)$	$0.0215(2)$	$0.29282(18)$	$0.0631(6)$
C1	$0.1595(4)$	$0.3242(3)$	$0.5153(3)$	$0.0554(8)$
C2	$-0.0705(4)$	$0.2171(3)$	$0.4961(3)$	$0.0467(7)$
C3	$-0.2315(4)$	$0.1292(3)$	$0.3153(3)$	$0.0455(7)$
C4	$-0.1223(4)$	$0.1770(3)$	$0.1711(3)$	$0.0486(7)$
C5	$0.1096(4)$	$0.2896(3)$	$0.2016(3)$	$0.0463(7)$
C6	$0.2424(4)$	$0.3492(4)$	$0.0642(3)$	$0.0624(8)$
H1	0.26084	0.37532	0.63280	0.0664^{*}
H2	$-0.299(5)$	$0.111(4)$	$0.628(3)$	0.0769^{*}

H4	-0.21633	0.12780	0.05123	0.0584^{*}
H6A	0.13508	0.29403	-0.05590	0.0936^{*}
H6B	0.28060	0.48817	0.09427	0.0936^{*}
H6C	0.39779	0.30418	0.06523	0.0936^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0501(9)$	$0.0655(10)$	$0.0377(8)$	$-0.0005(7)$	$-0.0002(6)$	$0.0131(7)$
O2	$0.0703(11)$	$0.0723(12)$	$0.0356(8)$	$-0.0115(9)$	$0.0030(7)$	$0.0143(8)$
O3	$0.0506(10)$	$0.0853(12)$	$0.0440(8)$	$-0.0041(9)$	$0.0051(7)$	$0.0182(8)$
C1	$0.0612(15)$	$0.0605(15)$	$0.0346(10)$	$0.0001(12)$	$-0.0004(10)$	$0.0117(10)$
C2	$0.0540(14)$	$0.0473(13)$	$0.0343(10)$	$0.0071(11)$	$0.0035(9)$	$0.0101(9)$
C3	$0.0410(13)$	$0.0519(14)$	$0.0391(11)$	$0.0078(11)$	$0.0038(9)$	$0.0099(9)$
C4	$0.0457(13)$	$0.0612(15)$	$0.0327(9)$	$0.0077(11)$	$0.0027(9)$	$0.0089(10)$
C5	$0.0454(13)$	$0.0544(14)$	$0.0343(10)$	$0.0090(11)$	$0.0033(9)$	$0.0091(9)$
C6	$0.0547(14)$	$0.0819(17)$	$0.0488(12)$	$0.0074(12)$	$0.0110(10)$	$0.0210(12)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

O1-C1	1.358 (3)	C4-C5	1.334 (3)
O1-C5	1.352 (3)	C5-C6	1.480 (3)
$\mathrm{O} 2-\mathrm{C} 2$	1.356 (3)	C1-H1	0.9300
O3-C3	1.243 (3)	C4-H4	0.9300
$\mathrm{O} 2-\mathrm{H} 2$	0.87 (3)	C6-H6A	0.9600
C1-C2	1.323 (3)	C6-H6B	0.9600
C2-C3	1.446 (3)	C6-H6C	0.9600
C3-C4	1.426 (3)		
$\mathrm{O} 1 \cdots \mathrm{O} 3^{\text {i }}$	3.200 (2)	$\mathrm{C} 2 \cdots \mathrm{O} 1^{\text {iii }}$	3.350 (3)
$\mathrm{O} 1 \cdots \mathrm{O} 1^{\text {ii }}$	3.078 (2)	$\mathrm{C} 2 \cdots \mathrm{O} 2^{\text {vi }}$	3.405 (3)
$\mathrm{O} 1 \cdots \mathrm{C} 2^{\text {iii }}$	3.350 (3)	$\mathrm{C} 2 \cdots \mathrm{C} 1^{\text {iii }}$	3.501 (3)
$\mathrm{O} 2 \cdots \mathrm{O} 3$	2.7853 (19)	$\mathrm{C} 2 \cdots \mathrm{C} 2{ }^{\text {vi }}$	3.415 (3)
O2 $\cdots \mathrm{C}^{\text {iv }}$	3.378 (3)	C6 $\cdots{ }^{2}{ }^{\text {ix }}$	3.378 (3)
$\mathrm{O} 2 \cdots{ }^{\text {v }}$	2.635 (2)	$\mathrm{C} 3 \cdots \mathrm{H} 2^{\text {v }}$	3.00 (3)
$\mathrm{O} 2 \cdots \mathrm{C} 2{ }^{\text {vi }}$	3.405 (3)	C4 \cdots H6C ${ }^{\text {vii }}$	3.0000
$\mathrm{O} 3 \cdots{ }^{\text {v }}$	2.635 (2)	H2 $\cdots 3$	2.46 (2)
$\mathrm{O} 3 \cdots \mathrm{O}{ }^{\text {vii }}$	3.200 (2)	$\mathrm{H} 2 \cdots{ }^{\text {c }}$	1.83 (3)
O3 \cdots O2	2.7853 (19)	$\mathrm{H} 2 \cdots \mathrm{C} 3^{v}$	3.00 (3)
$\mathrm{O} 2 \cdots \mathrm{H} 6 \mathrm{~B}^{\text {iii }}$	2.9000	H4 \cdots H6A	2.4500
$\mathrm{O} 2 \cdots \mathrm{H} 6 \mathrm{~A}^{\text {iv }}$	2.4200	$\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {viii }}$	2.8200
O3 \cdots H2	2.46 (2)	H6A \cdots O2 ${ }^{\text {ix }}$	2.4200
$\mathrm{O} 3 \cdots \mathrm{H} 2^{\text {v }}$	1.83 (3)	H6A \cdots H	2.4500
O3 \cdots H4 ${ }^{\text {viii }}$	2.8200	H6B $\cdots \mathrm{O}^{\text {iii }}$	2.9000
$\mathrm{C} 1 \cdots \mathrm{C}{ }^{\text {iii }}$	3.387 (3)	H6C $\cdots{ }^{\text {c }}{ }^{\text {i }}$	3.0000
$\mathrm{C} 1 \cdots \mathrm{C} 2^{\text {iii }}$	3.501 (3)		
C1-O1-C5	118.57 (18)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	121.3 (2)

$\mathrm{C} 2-\mathrm{O} 2-\mathrm{H} 2$	$116.2(15)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	118.00
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.6(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.00
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$120.55(19)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.2(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.00
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$119.3(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.00
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$124.7(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.00
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$113.9(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.00
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$121.4(2)$	$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.00
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.5(2)$	$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.00
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$111.28(19)$	$\mathrm{CB}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.00
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$127.5(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	
		$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4$	$177.0(2)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2.6(3)$	
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$-178.3(2)$	
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.3(3)$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$		$0.7(4)$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.1(2)$	$-177.69(19)$	$2.0(4)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	$-3.3(3)$	$177.2(2)$	

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x, y, z+1$; (v) $-x-1,-y,-z+1$; (vi) $-x,-y,-z+1$; (vii) $x-1, y, z$; (viii) $-x-1$, $-y,-z$; (ix) $x, y, z-1$.

Hydrogen-bond geometry (A, ${ }^{9}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 3$	$0.87(3)$	$2.46(2)$	$2.7853(19)$	$103.1(18)$
$\mathrm{O}^{2}-\mathrm{H} 2 \cdots \mathrm{O}^{\text {v }}$	$0.87(3)$	$1.83(3)$	$2.635(2)$	$152(2)$
$\mathrm{C}^{\mathrm{V}}-\mathrm{H} 6 A \cdots \mathrm{O}^{\mathrm{ix}}$	0.9600	2.4200	$3.378(3)$	173.00
${\mathrm{C} 3-\mathrm{O} 3 \cdots \mathrm{CgA}^{\text {vii }}}$	$1.24(1)$	$3.65(1)$	$4.363(2)$	$118(1)$

[^0]
[^0]: Symmetry codes: (v) $-x-1,-y,-z+1$; (vii) $x-1, y, z$; (ix) $x, y, z-1$.

