metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4,4'-Di-tert-butyl-2,2'-bipyridine- $\kappa^2 N, N'$)bis(nitrato- $\kappa^2 O, O'$)copper(II)

Xin Xiao,^a Zai-Ying Rao,^a Yun-Qiang Zhang,^a Sai-Feng Xue^a and Zhu Tao^b*

^aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and ^bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China

Correspondence e-mail: gyhxxiaoxin@163.com

Received 11 January 2009; accepted 12 January 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.030; wR factor = 0.074; data-to-parameter ratio = 14.1.

In the crystal of the title compound, $[Cu(NO_3)_2(C_{18}H_{24}N_2)]$, the Cu^{II} ion is coordinated by two N atoms of the bipyridine ligand and four O atoms from the two nitrate anions in a distorted octahedral fashion. The dihedral angle between the planes of the two pyridine rings is $11.52 (10)^{\circ}$. In the crystal structure, weak C-H···O interactions may help to establish the packing.

Related literature

For general background, see: Noro et al. (2000); Yaghi et al. (1998); Huertas et al. (2001); Qin et al. (2002).

Experimental

Crystal data	
$[Cu(NO_3)_2(C_{18}H_{24}N_2)]$ M _r = 455.96 Orthorhombic, $P2_12_12_1$	a = 9.8265 (16) Å b = 13.247 (2) Å c = 16.138 (3) Å

V = 2100.7 (6) Å³ 7 - 4Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector	1106
diffractometer	3642
Absorption correction: multi-scan	3450
(SADABS; Bruker, 2005)	$R_{\rm int}$
$T_{\min} = 0.759, \ T_{\max} = 0.837$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$]
$wR(F^2) = 0.074$	
S = 1.05	
3642 reflections	
258 parameters	
1 restraint	1

 $\mu = 1.08 \text{ mm}^{-1}$ T = 173 (2) K $0.27 \times 0.25 \times 0.17 \text{ mm}$

11065 measured reflections
3642 independent reflections
3450 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.022$

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.81 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1522 Friedel pairs Flack parameter: 0.012 (13)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$C1-H1\cdots O4^{i}$	0.93	2.46	3.124 (3)	129		
Symmetry code: (i) $-x + 1$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.						

Data collection: SMART (Bruker, 2002); cell refinement: SAINT

(Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (No. 2007-005) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2708).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Huertas, S., Hissler, M., McGarrah, J. E., Lachicotte, R. J. & Eisenberg, R. (2001). Inorg. Chem. 40, 1183-1188.
- Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.
- Qin, Z. Q., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967-3974.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res 31 474-484

supporting information

Acta Cryst. (2009). E65, m202 [doi:10.1107/S1600536809001457]

$(4,4'-\text{Di-}tert-\text{butyl-}2,2'-\text{bipyridine-}\kappa^2N,N')$ bis(nitrato- κ^2O,O')copper(II)

Xin Xiao, Zai-Ying Rao, Yun-Qiang Zhang, Sai-Feng Xue and Zhu Tao

S1. Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro *et al.*, 2000; Yaghi *et al.*, 1998). And 4,4'- di-*tert*-butyl-2,2'-bipyridine has been used as a ligand in coordination chemistry (Huertas *et al.*, 2001; Qin *et al.*, 2002). We report here the crystal structure of the title copper(II)complex, (I), containing a bipyridine ligand.

In the crystal of (I), the Cu^{II} ion is coordinated by two N atoms of the 4,4'-di-*tert*-butyl-2,2'-bipyridine ligand and four O atoms from the two nitrate anions. The dihedral angle between the planes of two pyridine rings is 11.52 (10)°. The title compound forms intermolecular H bond whereas the protonated C1 atom act as hydrogen-bond donor and O4 atom act as hydrogen-bond acceptor, the distance of the C1—H1···O4 hydrogen bonds is 3.124 (3) Å (Table 1). Weak C—H···O interactions may help to establish the packing.

S2. Experimental

A solution of 4,4'-di-*tert*-butyl-2,2'-bipyridine (0.15 g, 0.56 mmol) in ethanol (50 ml) was added to a solution of $Cu(N0_3)_2$, (0.09 g, 0.56 mmol) in H₂O (20 ml), and the resulting blue solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, blue crystals of (I) were isolated.

S3. Refinement

H atoms were placed in calculated positions and refined as riding, with C—H = 0.93- and 0.96 Å, and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

(4,4'-Di-tert-butyl-2,2'-bipyridine- $\kappa^2 N, N'$)bis(nitrato- $\kappa^2 O, O'$)copper(II)

Crystal data	
$[Cu(NO_3)_2(C_{18}H_{24}N_2)]$ $M_r = 455.96$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.8265 (16) Å b = 13.247 (2) Å c = 16.138 (3) Å V = 2100.7 (6) Å ³ Z = 4	F(000) = 948 $D_x = 1.442 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2120 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 1.08 \text{ mm}^{-1}$ T = 173 K Block, blue $0.27 \times 0.25 \times 0.17 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{min} = 0.759$, $T_{max} = 0.837$ 11065 measured reflections 3642 independent reflections 3450 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.022$	
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.0^{\circ}$	
$h = -11 \rightarrow 11$	

Refinement

Kejinemeni	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 + 0.8717P]$
<i>S</i> = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3642 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
258 parameters	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1522 Freidel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.012 (13)
map	

 $k = -15 \rightarrow 15$ $l = -19 \rightarrow 17$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.58577 (3)	0.98172 (2)	0.72968 (2)	0.02515 (10)
O2	0.3672 (2)	1.0193 (2)	0.66313 (14)	0.0434 (6)
01	0.4195 (2)	0.89792 (15)	0.74670 (14)	0.0387 (5)
O4	0.5221 (2)	1.08313 (16)	0.81065 (13)	0.0328 (5)
N2	0.7365 (2)	1.06673 (17)	0.68765 (15)	0.0243 (5)
N4	0.5626 (2)	1.05068 (18)	0.88143 (15)	0.0300 (6)
05	0.6358 (2)	0.97414 (17)	0.88213 (13)	0.035
N1	0.6896 (2)	0.87411 (17)	0.67467 (15)	0.0242 (5)
N3	0.3281 (3)	0.9442 (2)	0.70369 (17)	0.0381 (6)
O6	0.5273 (3)	1.0950 (2)	0.94430 (15)	0.0558 (7)
C15	1.0722 (3)	1.2220 (2)	0.56813 (19)	0.0308 (7)
C6	0.8337 (3)	1.0146 (2)	0.64671 (16)	0.0225 (6)
C11	0.9809 (3)	0.6535 (2)	0.58589 (19)	0.0279 (6)
O3	0.2114 (2)	0.9132 (2)	0.7046 (2)	0.0649 (9)
C2	0.7514 (3)	0.7040 (2)	0.64459 (18)	0.0275 (6)
H2	0.7265	0.6363	0.6436	0.033*
C3	0.8801 (3)	0.7323 (2)	0.61767 (18)	0.0233 (6)
C8	0.9527 (3)	1.1675 (2)	0.61021 (18)	0.0253 (6)
C7	0.9411 (3)	1.0624 (2)	0.60741 (17)	0.0252 (6)
H7	1.0057	1.0245	0.5791	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5	0.8133 (3)	0.9040 (2)	0.64572 (17)	0.0225 (6)
C4	0.9100 (3)	0.83539 (19)	0.61865 (16)	0.0223 (5)
H4	0.9948	0.8580	0.6011	0.027*
C1	0.6602 (3)	0.7753 (2)	0.67289 (19)	0.0281 (6)
H1	0.5752	0.7541	0.6914	0.034*
C10	0.7481 (3)	1.1682 (2)	0.69174 (19)	0.0290 (6)
H10	0.6821	1.2047	0.7202	0.035*
C17	1.1679 (4)	1.2577 (3)	0.6369 (2)	0.0507 (10)
H17A	1.2445	1.2919	0.6128	0.076*
H17B	1.1993	1.2006	0.6681	0.076*
H17C	1.1202	1.3032	0.6730	0.076*
C9	0.8536 (3)	1.2190 (2)	0.65550 (19)	0.0302 (7)
H9	0.8594	1.2888	0.6611	0.036*
C14	1.1222 (3)	0.6979 (3)	0.5698 (2)	0.0400 (8)
H14A	1.1817	0.6459	0.5498	0.060*
H14B	1.1580	0.7251	0.6205	0.060*
H14C	1.1155	0.7507	0.5292	0.060*
C13	0.9948 (3)	0.5689 (2)	0.6509 (2)	0.0397 (8)
H13A	1.0577	0.5189	0.6312	0.060*
H13B	0.9076	0.5381	0.6600	0.060*
H13C	1.0276	0.5969	0.7020	0.060*
C16	1.1495 (3)	1.1522 (3)	0.5092 (2)	0.0410 (8)
H16A	1.2235	1.1885	0.4844	0.062*
H16B	1.0890	1.1287	0.4667	0.062*
H16C	1.1845	1.0955	0.5396	0.062*
C12	0.9251 (4)	0.6105 (3)	0.5041 (2)	0.0440 (8)
H12A	0.9871	0.5607	0.4829	0.066*
H12B	0.9154	0.6641	0.4645	0.066*
H12C	0.8380	0.5798	0.5139	0.066*
C18	1.0207 (4)	1.3135 (3)	0.5182 (3)	0.0512 (10)
H18A	1.0965	1.3467	0.4923	0.077*
H18B	0.9755	1.3598	0.5547	0.077*
H18C	0.9581	1.2910	0.4764	0.077*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.02290 (16)	0.02379 (17)	0.02875 (18)	0.00229 (14)	0.00540 (15)	-0.00019 (15)
O2	0.021	0.0581 (15)	0.0509 (13)	0.0047 (11)	-0.0042 (9)	0.0038 (14)
01	0.0287 (10)	0.0327 (11)	0.0548 (15)	-0.0013 (9)	0.0091 (10)	0.0042 (9)
O4	0.0379 (11)	0.0321 (12)	0.0285 (11)	0.0100 (9)	0.0039 (10)	0.0011 (10)
N2	0.0264 (12)	0.0209 (12)	0.0256 (12)	0.0016 (10)	0.0028 (10)	0.0006 (10)
N4	0.0287 (13)	0.0328 (14)	0.0283 (13)	0.0002 (11)	0.0005 (11)	-0.0032 (11)
05	0.033	0.034	0.038	0.0127 (10)	-0.0048 (9)	0.0036 (10)
N1	0.0248 (11)	0.0220 (13)	0.0260 (13)	-0.0020 (10)	0.0038 (10)	0.0000 (10)
N3	0.0263 (13)	0.0424 (16)	0.0455 (17)	0.0029 (11)	0.0057 (10)	-0.0132 (13)
O6	0.0737 (18)	0.0623 (17)	0.0313 (14)	0.0154 (14)	0.0022 (13)	-0.0100 (12)
C15	0.0309 (16)	0.0254 (15)	0.0361 (17)	-0.0065 (14)	-0.0001 (15)	0.0046 (12)

C6	0.0253 (13)	0.0220 (14)	0.0201 (13)	0.0005 (12)	0.0013 (11)	0.0000 (12)
C11	0.0330 (15)	0.0207 (15)	0.0299 (16)	0.0024 (13)	0.0008 (13)	-0.0045 (12)
O3	0.0275 (13)	0.0736 (19)	0.094 (2)	-0.0068 (12)	-0.0036 (13)	-0.0171 (17)
C2	0.0291 (14)	0.0201 (14)	0.0332 (17)	-0.0039 (12)	0.0012 (13)	-0.0010 (12)
C3	0.0286 (16)	0.0214 (14)	0.0200 (14)	0.0008 (11)	-0.0055 (12)	0.0007 (11)
C8	0.0287 (15)	0.0230 (15)	0.0242 (16)	-0.0037 (11)	-0.0047 (12)	0.0036 (12)
C7	0.0239 (15)	0.0255 (14)	0.0262 (15)	-0.0011 (11)	0.0027 (12)	-0.0024 (12)
C5	0.0246 (13)	0.0227 (15)	0.0202 (14)	-0.0013 (11)	0.0003 (12)	-0.0016 (12)
C4	0.0206 (12)	0.0243 (14)	0.0218 (13)	-0.0023 (12)	0.0018 (13)	-0.0016 (11)
C1	0.0258 (15)	0.0240 (15)	0.0344 (17)	-0.0039 (12)	0.0010 (13)	-0.0002 (13)
C10	0.0345 (15)	0.0232 (15)	0.0295 (16)	0.0059 (13)	0.0041 (13)	-0.0012 (12)
C17	0.045 (2)	0.056 (2)	0.051 (2)	-0.0223 (18)	-0.0037 (18)	-0.0033 (19)
C9	0.0381 (16)	0.0187 (15)	0.0339 (17)	-0.0004 (12)	-0.0017 (14)	-0.0016 (13)
C14	0.0333 (18)	0.0337 (18)	0.053 (2)	0.0072 (14)	0.0107 (15)	-0.0022 (16)
C13	0.0459 (19)	0.0285 (17)	0.045 (2)	0.0100 (15)	-0.0019 (16)	0.0064 (15)
C16	0.0365 (17)	0.0393 (19)	0.047 (2)	-0.0091 (15)	0.0115 (16)	0.0047 (16)
C12	0.051 (2)	0.043 (2)	0.0384 (18)	0.0096 (18)	-0.0011 (17)	-0.0151 (14)
C18	0.047 (2)	0.040 (2)	0.067 (3)	-0.0033 (17)	0.0112 (19)	0.0231 (19)

Geometric parameters (Å, °)

Cu1—N1	1.965 (2)	C8—C9	1.396 (4)
Cu1—O4	1.976 (2)	C8—C7	1.398 (4)
Cu1—N2	1.980 (2)	С7—Н7	0.9300
Cu1—O1	1.994 (2)	C5—C4	1.385 (4)
O2—N3	1.251 (4)	C4—H4	0.9300
O1—N3	1.290 (3)	C1—H1	0.9300
O4—N4	1.284 (3)	C10—C9	1.368 (4)
N2—C6	1.351 (3)	C10—H10	0.9300
N2-C10	1.350 (4)	C17—H17A	0.9600
N4—O6	1.223 (3)	C17—H17B	0.9600
N4—O5	1.243 (3)	C17—H17C	0.9600
N1-C1	1.340 (4)	С9—Н9	0.9300
N1-C5	1.360 (4)	C14—H14A	0.9600
N3—O3	1.218 (3)	C14—H14B	0.9600
C15—C16	1.528 (4)	C14—H14C	0.9600
C15—C17	1.531 (5)	C13—H13A	0.9600
С15—С8	1.536 (4)	C13—H13B	0.9600
C15—C18	1.541 (4)	C13—H13C	0.9600
С6—С7	1.385 (4)	C16—H16A	0.9600
C6—C5	1.479 (4)	C16—H16B	0.9600
C11—C3	1.528 (4)	C16—H16C	0.9600
C11—C14	1.530 (4)	C12—H12A	0.9600
C11—C12	1.539 (4)	C12—H12B	0.9600
C11—C13	1.541 (4)	C12—H12C	0.9600
C2—C1	1.380 (4)	C18—H18A	0.9600
C2—C3	1.389 (4)	C18—H18B	0.9600
С2—Н2	0.9300	C18—H18C	0.9600

C3—C4	1.396 (4)		
N1 $C_{\rm H}1$ $O4$	162 02 (0)	CA C5 C6	124 1 (2)
N1 = Cu1 = 04	103.03 (9) 82.40 (0)	$C_{4} = C_{5} = C_{6}$	124.1(2) 120.0(3)
$M = Cu1 = M^2$	82.49(9)	$C_{5} = C_{4} = C_{5}$	120.0 (3)
$V_{1} = C_{1} = N_{2}$	94.41(9)	$C_3 = C_4 = H_4$	120.0
NI = CuI = OI	94.62 (9)	$C_3 - C_4 - H_4$	120.0 122.4(2)
$V_{1} = C_{1} = O_{1}$	91.39(9) 167.52(10)	NI = CI = C2	122.4 (5)
$N_2 = Cu1 = O1$	107.33(10) 102.37(17)	NI - CI - HI	110.0
$N_{3} = O_{1} = C_{u1}$	105.37(17) 105.23(16)	$C_2 = C_1 = H_1$	110.0 122.2(2)
N4 - O4 - Cul	103.25(10) 118.2(2)	$N_2 = C_{10} = C_{9}$	122.2 (3)
$C_0 = N_2 = C_{10}$	110.2(2)	$N_2 = C_{10} = H_{10}$	110.9
$C_0 N_2 - C_{UI}$	113.90 (18)		118.9
C10—N2—Cul	12/.8(2)	C15 - C17 - H17A	109.5
06—N4—03	123.3 (3)		109.5
06—N4—04	119.3 (2)	HI/A - CI/-HI/B	109.5
05—N4—04	11/.4 (2)		109.5
CI_NI_C5	118.0 (2)	H1/A—C1/—H1/C	109.5
CI—NI—Cul	127.3 (2)	HI/B = CI/= HI/C	109.5
C5—NI—Cul	114.09 (18)	C10—C9—C8	120.8 (3)
O3—N3—O2	124.3 (3)	C10—C9—H9	119.6
O3—N3—O1	119.2 (3)	С8—С9—Н9	119.6
O2—N3—O1	116.5 (2)	C11—C14—H14A	109.5
C16—C15—C17	109.4 (3)	C11—C14—H14B	109.5
C16—C15—C8	111.8 (2)	H14A—C14—H14B	109.5
C17—C15—C8	107.1 (3)	C11—C14—H14C	109.5
C16—C15—C18	108.3 (3)	H14A—C14—H14C	109.5
C17—C15—C18	109.7 (3)	H14B—C14—H14C	109.5
C8—C15—C18	110.5 (3)	C11—C13—H13A	109.5
N2—C6—C7	121.9 (3)	C11—C13—H13B	109.5
N2—C6—C5	114.6 (2)	H13A—C13—H13B	109.5
C7—C6—C5	123.5 (3)	C11—C13—H13C	109.5
C3—C11—C14	112.4 (2)	H13A—C13—H13C	109.5
C3—C11—C12	108.1 (3)	H13B—C13—H13C	109.5
C14—C11—C12	108.7 (3)	C15—C16—H16A	109.5
C3—C11—C13	109.0 (2)	C15—C16—H16B	109.5
C14—C11—C13	108.4 (3)	H16A—C16—H16B	109.5
C12—C11—C13	110.3 (3)	C15—C16—H16C	109.5
C1—C2—C3	120.6 (3)	H16A—C16—H16C	109.5
C1—C2—H2	119.7	H16B—C16—H16C	109.5
С3—С2—Н2	119.7	C11—C12—H12A	109.5
C2—C3—C4	116.9 (3)	C11—C12—H12B	109.5
C2—C3—C11	120.7 (2)	H12A—C12—H12B	109.5
C4—C3—C11	122.4 (3)	C11—C12—H12C	109.5
C9—C8—C7	116.5 (3)	H12A—C12—H12C	109.5
C9—C8—C15	122.4 (3)	H12B—C12—H12C	109.5
C7—C8—C15	121.0 (3)	C15—C18—H18A	109.5
C6—C7—C8	120.2 (3)	C15—C18—H18B	109.5
С6—С7—Н7	119.9	H18A—C18—H18B	109.5

supporting information

С8—С7—Н7	119.9	C15—C18—H18C	109.5
N1—C5—C4	122.0 (3)	H18A—C18—H18C	109.5
N1—C5—C6	113.9 (2)	H18B—C18—H18C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C1—H1····O4 ⁱ	0.93	2.46	3.124 (3)	129

Symmetry code: (i) -x+1, y-1/2, -z+3/2.