

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2-Thienyl)-4,5-dihydro-1*H*-imidazole. Corrigendum

Reza Kia,^a‡ Hoong-Kun Fun^a*§ and Hadi Kargar^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 5 May 2009; accepted 18 May 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.027; wR factor = 0.080; data-to-parameter ratio = 32.3.

Consideration of a previous unrecognized twinning of the original investigated crystal of the title compound [Kia et al. (2009). Acta Cryst. E65, o301] led to improved reliability factors and to a slightly higher precision for all geometric parameters. The crystal under investigation was twinned by pseudo-merohedry with $[100, 0\overline{1}0, 00\overline{1}]$ as the twin matrix and a refined twin domain fraction of 0.9610 (5):0.0390 (5). The results of the new crystal structure refinement are given here.

Experimental

Crystal data C7H8N2S $M_r = 152.21$ Monoclinic, $P2_1/c$ a = 6.1321 (2) Å b = 11.5663 (3) Å c = 10.0098 (3) Å $\beta = 90.154 \ (1)^{\circ}$

V = 709.95 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 100 K0.54 \times 0.28 \times 0.22 mm 28316 measured reflections

 $R_{\rm int} = 0.021$

3100 independent reflections

3040 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.825, T_{\rm max} = 0.922$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of
$wR(F^2) = 0.080$	independent and constrained
S = 1.15	refinement
3100 reflections	$\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$
96 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{matrix} N1-H1\cdots N2^{i}\\ C3-H3A\cdots N2^{i}\end{matrix}}$	0.857 (16)	2.130 (16)	2.9803 (10)	171.5 (16)
	0.95	2.59	3.4815 (11)	156

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2233).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin USA

Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o301. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-5471-2009.

[§] Thomson Reuters ResearcherID: A-3561-2009.

Acta Cryst. (2009). E65, e15 [https://doi.org/10.1107/S1600536809018790]

2-(2-Thienyl)-4,5-dihydro-1H-imidazole. Corrigendum

Reza Kia, Hoong-Kun Fun and Hadi Kargar

2-(2-Thienyl)-4,5-dihydro-1H-imidazole

Crystal data

C₇H₈N₂S $M_r = 152.21$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.1321 (2) Å b = 11.5663 (3) Å c = 10.0098 (3) Å $\beta = 90.154$ (1)° V = 709.95 (4) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.825, T_{\max} = 0.922$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.080$ S = 1.153100 reflections 96 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 320 $D_x = 1.424 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9869 reflections $\theta = 2.5-34.3^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.54 \times 0.28 \times 0.22 \text{ mm}$

28316 measured reflections 3100 independent reflections 3040 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 35.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 17$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 0.2148P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.52$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ Ζ х v **S**1 0.46976 (3) 0.141639 (18) 0.59512(2) 0.01527 (6) N2 0.06708 (11) 0.29657 (6) 0.61145 (7) 0.01355 (11) N1 0.30384 (6) 0.83752 (7) 0.04589(11) 0.01323 (11) C1 0.63940 (14) 0.05379 (8) 0.68566 (9) 0.01780(15) H1A 0.7552 0.0101 0.6480 0.021* C2 0.58842 (14) 0.05399(7) 0.81867 (9) 0.01659 (14) H2A 0.020* 0.6646 0.0100 0.8839 0.84861 (8) C3 0.40890(13) 0.12729(7)0.01337 (13) H3A 0.3524 0.1382 0.9360 0.016* C4 0.32621 (12) 0.18073 (6) 0.73587(7)0.01149 (12) C5 0.14267 (12) 0.26046 (6) 0.72548(7)0.01079 (11) C6 -0.15422(13)0.36275 (7) 0.79460 (8) 0.01479 (14) H6A -0.17230.4380 0.8404 0.018* H6B -0.28480.3144 0.8103 0.018* C7 -0.11001(13)0.37870(7) 0.64400 (8) 0.01491 (13) H7A -0.24250.3611 0.5911 0.018* H7B -0.06430.4591 0.6248 0.018* H10.058(3)0.2686 (14) 0.9125 (16) 0.025 (4)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01701 (9)	0.01822 (10)	0.01059 (9)	0.00444 (6)	0.00195 (6)	-0.00027 (6)
N2	0.0150 (3)	0.0168 (3)	0.0088 (2)	0.0027 (2)	-0.0001 (2)	0.0007 (2)
N1	0.0146 (3)	0.0166 (3)	0.0084 (2)	0.0032 (2)	0.0013 (2)	0.0004 (2)
C1	0.0174 (3)	0.0179 (3)	0.0181 (4)	0.0052 (3)	0.0000 (3)	-0.0017 (3)
C2	0.0188 (3)	0.0151 (3)	0.0159 (3)	0.0033 (3)	-0.0028 (3)	0.0004 (2)
C3	0.0164 (3)	0.0128 (3)	0.0109 (3)	0.0005 (2)	-0.0005 (2)	0.0004 (2)
C4	0.0132 (3)	0.0117 (3)	0.0096 (3)	0.0006 (2)	0.0003 (2)	-0.0002(2)
C5	0.0119 (3)	0.0114 (3)	0.0090 (3)	-0.0006(2)	0.0006 (2)	-0.0005 (2)
C6	0.0138 (3)	0.0178 (3)	0.0127 (3)	0.0027 (2)	0.0021 (2)	0.0005 (2)
C7	0.0147 (3)	0.0179 (3)	0.0121 (3)	0.0035 (2)	0.0001 (2)	0.0020 (2)

Geometric parameters (Å, °)

S1—C1	1.7120 (9)	C2—H2A	0.9500	
S1—C4	1.7236 (8)	C3—C4	1.3819 (11)	
N2—C5	1.2996 (10)	С3—НЗА	0.9500	
N2—C7	1.4798 (11)	C4—C5	1.4586 (10)	
N1—C5	1.3657 (10)	C6—C7	1.5435 (12)	
N1-C6	1.4669 (11)	C6—H6A	0.9900	
N1—H1	0.858 (16)	C6—H6B	0.9900	
C1—C2	1.3684 (13)	C7—H7A	0.9900	
C1—H1A	0.9500	C7—H7B	0.9900	
C2—C3	1.4221 (12)			
C1—S1—C4	91.94 (4)	C5—C4—S1	120.21 (5)	
C5—N2—C7	105.85 (6)	N2	116.64 (7)	
C5—N1—C6	107.17 (6)	N2-C5-C4	122.62 (7)	
C5—N1—H1	120.4 (11)	N1C5C4	120.71 (6)	
C6—N1—H1	123.3 (11)	N1—C6—C7	101.10 (6)	
C2-C1-S1	111.96 (6)	N1—C6—H6A	111.6	
C2—C1—H1A	124.0	С7—С6—Н6А	111.6	
S1—C1—H1A	124.0	N1—C6—H6B	111.6	
C1—C2—C3	112.65 (7)	С7—С6—Н6В	111.6	
C1—C2—H2A	123.7	H6A—C6—H6B	109.4	
C3—C2—H2A	123.7	N2—C7—C6	105.62 (6)	
C4—C3—C2	112.15 (7)	N2—C7—H7A	110.6	
С4—С3—Н3А	123.9	С6—С7—Н7А	110.6	
С2—С3—НЗА	123.9	N2—C7—H7B	110.6	
C3—C4—C5	128.49 (7)	С6—С7—Н7В	110.6	
C3—C4—S1	111.29 (6)	H7A—C7—H7B	108.7	
C4—S1—C1—C2	0.09 (7)	C6—N1—C5—N2	12.15 (9)	
S1—C1—C2—C3	-0.35 (10)	C6—N1—C5—C4	-169.84 (7)	
C1—C2—C3—C4	0.50 (11)	C3—C4—C5—N2	-173.20 (8)	
C2—C3—C4—C5	179.29 (8)	S1—C4—C5—N2	6.50 (10)	
C2—C3—C4—S1	-0.43 (9)	C3—C4—C5—N1	8.92 (12)	
C1—S1—C4—C3	0.20 (7)	S1—C4—C5—N1	-171.38 (6)	
C1—S1—C4—C5	-179.55 (7)	C5—N1—C6—C7	-17.77 (8)	
C7—N2—C5—N1	0.30 (9)	C5—N2—C7—C6	-11.91 (9)	
C7—N2—C5—C4	-177.67 (7)	N1—C6—C7—N2	17.89 (8)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —Н··· <i>A</i>
N1—H1···N2 ⁱ	0.857 (16)	2.130 (16)	2.9803 (10)	171.5 (16)
C3— $H3A$ ···N2 ⁱ	0.95	2.59	3.4815 (11)	156

Symmetry code: (i) x, -y+1/2, z+1/2.

27675 measured reflections

 $R_{\rm int} = 0.021$

3100 independent reflections

3040 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2-Thienyl)-4,5-dihydro-1H-imidazole

Reza Kia,^a Hoong-Kun Fun^{a*} and Hadi Kargar^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 8 January 2009; accepted 9 January 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.128; data-to-parameter ratio = 34.1.

In title compound, $C_7H_8N_2S$, the five-membered rings are twisted by a dihedral angle of $5.17 (10)^{\circ}$. Two intermolecular $N-H \cdots N$ and $C-H \cdots N$ hydrogen bonds to the same acceptor N atom form seven-membered rings, producing $R_2^1(7)$ ring motifs. These interactions link neighbouring molecules into one-dimensional chains extended along the caxis. The crystal structure is further stabilized by weak intermolecular $C-H\cdots\pi$ interactions.

Related literature

For reference geometrical data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure and the synthesis, see, Kia et al. (2008); Stibrany et al. (2004). For the applications of imidazoline derivatives, see, for example: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al. (1995); Corey & Grogan (1999).

Experimental

Crystal data C7H8N2S $M_{\rm m} = 152.21$ Monoclinic, $P2_1/c$ a = 6.1321 (2) Å b = 11.5663 (3) Å c = 10.0098 (3) Å $\beta = 90.154 \ (1)^{\circ}$

V = 709.95 (4) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.37 \text{ mm}^{-1}$
T = 100.0 (1) K
$0.54 \times 0.28 \times 0.22$ mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.825, T_{\rm max} = 0.922$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	91 parameters
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.24	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
3100 reflections	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond	geometry ((A, '	")
---------------	------------	-------	----

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N1 \cdots N2^{i}$ $C3 - H3A \cdots N2^{i}$ $C6 - H6A \cdots Cg1^{ii}$ $C6 - H6B \cdots Cg1^{iii}$	0.75 0.95 0.99 0.99	2.23 2.60 2.89 2.83	2.977 (2) 3.482 (2) 3.539 (2) 3.691 (2)	171 155 124 146

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) x - 1, y, z. Cg1 is the centroid of the S1/C1-C4 (thiophen) ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and RK thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for the financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/ PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2706).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Blancafort, P. (1978). Drugs Future, 3, 592-592.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chan, S. (1993). Clin. Sci. 85, 671-677.
- Corey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157-160.
- Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.
- Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, **52**, 11153–11162.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527-0529

Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597-603.

Vizi, E. S. (1986). Med. Res. Rev. 6, 431-449.

Acta Cryst. (2009). E65, o301 [doi:10.1107/S1600536809001068]

2-(2-Thienyl)-4,5-dihydro-1*H*-imidazole

Reza Kia, Hoong-Kun Fun and Hadi Kargar

S1. Comment

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities including antihypertensive (Blancafort 1978), antihyperglycemic (Chan 1993), antidepressive (Vizi 1986), antihypercholesterolemic (Li *et al.*, 1996) and antiinflammatory properties (Ueno *et al.*, 1995). These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). Due to these important applications of imidazolines, here we report the crystal structure of the title compound (I).

In the title compound (I) (Fig. 1), bond lengths (Allen *et al.* 1987) and angles are within the normal ranges and are comparable with the related structures (Stibrany *et al.* 2004; Kia *et al.*, 2008). The two five-membered rings are not coplanar to each other and twisted by a dihedral angle of 5.17 (10)°. Two intermolecular N—H···N and C—H···N hydrogen bonds involving a nitrogen atom as an acceptor form seven-membered rings, producing, $R^{I}_{2}(7)$ ring motifs (Table 1). These interactions link neighbouring molecules into 1-D extended chains along the *c* axis (, Fig. 2). The crystal structure is further stabilized by weak intermolecular C—H··· π interactions [C6—H6A···*Cg*1ⁱ and C6—H6B···*Cg*1ⁱⁱ: (i) -x, 1/2 + y, 3/2 - z, (ii) -1 + x, y, z; *Cg*1 is the centroid of the S1/C1–C4 thiophene ring.

S2. Experimental

The synthetic method was based on the previous work (Stibrany *et al.* 2004), except that 10 mmol of 2-cyano-thiophene and 40 mmol of ethylenediamine was used. Single crystals suitable for *X*-ray diffraction were obtained by evaporation of a toluene solution at room temperature.

S3. Refinement

The hydrogen atom bound to N1 was located from the difference Fourier map and constrained to refine with the respective parent atom, see Table 1. The rest of the hydrogen atoms were positioned gemetrically and refined in a riding model approximation with C—H = 0.95–0.99 Å and U_{iso} (H) = 1.2 U_{eq} (C).

Figure 1

The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.

Figure 2

The crystal packing of (I), viewed down the *b*-axis showing 1-D infinite chain along the *c*-axis by intermolecular N— H…N and C—H…N interactions. The intermolecular interactions are shown as dashed lines.

2-(2-Thienyl)-4,5-dihydro-1*H*-imidazole

Crystal data	
$C_7H_8N_2S$	F(000) = 320
$M_r = 152.21$	$D_{\rm x} = 1.424 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9869 reflections
a = 6.1321 (2) Å	$\theta = 2.5 - 34.3^{\circ}$
b = 11.5663 (3) Å	$\mu = 0.37 \text{ mm}^{-1}$
c = 10.0098 (3) Å	T = 100 K
$\beta = 90.154 \ (1)^{\circ}$	Block, colourless
V = 709.95 (4) Å ³	$0.54 \times 0.28 \times 0.22 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.825, T_{\max} = 0.922$	27675 measured reflections 3100 independent reflections 3040 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 35.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 17$ $l = -15 \rightarrow 15$
<i>Refinement</i>	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.24	H-atom parameters constrained
3100 reflections	$w = 1/[\sigma^2(F_o^2) + 1.7551P]$
91 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.62 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.46967 (8)	0.14161 (4)	0.59514 (4)	0.01548 (10)	
0.0669 (2)	0.29635 (14)	0.61122 (15)	0.0137 (2)	
0.0460 (2)	0.30376 (14)	0.83746 (14)	0.0133 (2)	
0.0584	0.2724	0.9026	0.016*	
0.6387 (3)	0.05389 (17)	0.6858 (2)	0.0180 (3)	
0.7542	0.0100	0.6482	0.022*	
0.5888 (3)	0.05418 (16)	0.81838 (19)	0.0169 (3)	
0.6655	0.0103	0.8835	0.020*	
0.4092 (3)	0.12742 (15)	0.84860 (17)	0.0136 (3)	
0.3530	0.1385	0.9360	0.016*	
0.3260 (3)	0.18060 (14)	0.73589 (16)	0.0117 (3)	
0.1427 (3)	0.26052 (14)	0.72556 (16)	0.0109 (3)	
-0.1543 (3)	0.36276 (17)	0.79447 (17)	0.0154 (3)	
-0.1724	0.4380	0.8403	0.018*	
-0.2849	0.3144	0.8101	0.018*	
	$\begin{array}{c} x \\ 0.46967 (8) \\ 0.0669 (2) \\ 0.0460 (2) \\ 0.0584 \\ 0.6387 (3) \\ 0.7542 \\ 0.5888 (3) \\ 0.6655 \\ 0.4092 (3) \\ 0.3530 \\ 0.3260 (3) \\ 0.1427 (3) \\ -0.1543 (3) \\ -0.1724 \\ -0.2849 \end{array}$	x y $0.46967 (8)$ $0.14161 (4)$ $0.0669 (2)$ $0.29635 (14)$ $0.0460 (2)$ $0.30376 (14)$ 0.0584 0.2724 $0.6387 (3)$ $0.05389 (17)$ 0.7542 0.0100 $0.5888 (3)$ $0.05418 (16)$ 0.6655 0.0103 $0.4092 (3)$ $0.12742 (15)$ 0.3530 0.1385 $0.3260 (3)$ $0.18060 (14)$ $0.1427 (3)$ $0.26052 (14)$ $-0.1543 (3)$ $0.36276 (17)$ -0.724 0.4380 -0.2849 0.3144	xyz $0.46967(8)$ $0.14161(4)$ $0.59514(4)$ $0.0669(2)$ $0.29635(14)$ $0.61122(15)$ $0.0460(2)$ $0.30376(14)$ $0.83746(14)$ 0.0584 0.2724 0.9026 $0.6387(3)$ $0.05389(17)$ $0.6858(2)$ 0.7542 0.0100 0.6482 $0.5888(3)$ $0.05418(16)$ $0.81838(19)$ 0.6655 0.0103 0.8835 $0.4092(3)$ $0.12742(15)$ $0.84860(17)$ 0.3530 0.1385 0.9360 $0.3260(3)$ $0.18060(14)$ $0.72556(16)$ $-0.1543(3)$ $0.36276(17)$ $0.79447(17)$ -0.1724 0.4380 0.8403 -0.2849 0.3144 0.8101	xyz $U_{iso}*/U_{eq}$ 0.46967 (8)0.14161 (4)0.59514 (4)0.01548 (10)0.0669 (2)0.29635 (14)0.61122 (15)0.0137 (2)0.0460 (2)0.30376 (14)0.83746 (14)0.0133 (2)0.05840.27240.90260.016*0.6387 (3)0.05389 (17)0.6858 (2)0.0180 (3)0.75420.01000.64820.022*0.5888 (3)0.05418 (16)0.81838 (19)0.0169 (3)0.66550.01030.88350.020*0.4092 (3)0.12742 (15)0.84860 (17)0.0136 (3)0.35300.13850.93600.016*0.3260 (3)0.18060 (14)0.73589 (16)0.0117 (3)0.1427 (3)0.26052 (14)0.72556 (16)0.0109 (3)-0.1543 (3)0.36276 (17)0.79447 (17)0.0154 (3)-0.17240.43800.84030.018*-0.28490.31440.81010.018*

C7	-0.1097 (3)	0.37874 (16)	0.64419 (17)	0.0151 (3)
H7A	-0.2423	0.3615	0.5912	0.018*
H7B	-0.0634	0.4591	0.6252	0.018*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01727 (19)	0.01847 (19)	0.01071 (17)	0.00446 (15)	0.00185 (13)	-0.00026 (14)
N2	0.0153 (6)	0.0161 (6)	0.0098 (6)	0.0027 (5)	0.0003 (4)	0.0009 (5)
N1	0.0148 (6)	0.0170 (6)	0.0080 (5)	0.0029 (5)	0.0016 (4)	0.0004 (5)
C1	0.0166 (7)	0.0181 (8)	0.0192 (8)	0.0057 (6)	-0.0001 (6)	-0.0015 (6)
C2	0.0186 (7)	0.0155 (7)	0.0167 (7)	0.0029 (6)	-0.0034 (6)	0.0009 (6)
C3	0.0164 (7)	0.0129 (7)	0.0113 (6)	-0.0001 (5)	-0.0002(5)	0.0004 (5)
C4	0.0131 (6)	0.0120 (6)	0.0100 (6)	0.0005 (5)	-0.0003 (5)	-0.0005 (5)
C5	0.0120 (6)	0.0113 (6)	0.0094 (6)	-0.0011 (5)	0.0005 (5)	-0.0004(5)
C6	0.0143 (7)	0.0186 (7)	0.0132 (7)	0.0030 (6)	0.0019 (5)	0.0007 (6)
C7	0.0152 (7)	0.0181 (7)	0.0120 (7)	0.0035 (6)	0.0000 (5)	0.0018 (5)

Geometric parameters (Å, °)

S1—C1	1.7099 (19)	C2—H2A	0.9500
S1—C4	1.7239 (17)	C3—C4	1.381 (2)
N2—C5	1.302 (2)	С3—НЗА	0.9500
N2—C7	1.480 (2)	C4—C5	1.459 (2)
N1—C5	1.364 (2)	C6—C7	1.541 (2)
N1—C6	1.468 (2)	C6—H6A	0.9900
N1—H1N1	0.7501	C6—H6B	0.9900
C1—C2	1.362 (3)	С7—Н7А	0.9900
C1—H1A	0.9500	С7—Н7В	0.9900
C2—C3	1.423 (3)		
C1 = S1 = C4	91.82 (9)	C5 - C4 - S1	120 22 (12)
$C_{1} = C_{1}$	$105\ 57\ (14)$	N2-C5-N1	116 78 (15)
C5-N1-C6	107.14 (14)	N2-C5-C4	122 49 (15)
C5—N1—H1N1	119.6	N1-C5-C4	120.71 (14)
C6—N1—H1N1	124.2	N1—C6—C7	101.03 (13)
C2C1S1	112.21 (14)	N1—C6—H6A	111.6
C2—C1—H1A	123.9	С7—С6—Н6А	111.6
S1—C1—H1A	123.9	N1—C6—H6B	111.6
C1—C2—C3	112.63 (16)	С7—С6—Н6В	111.6
C1—C2—H2A	123.7	H6A—C6—H6B	109.4
С3—С2—Н2А	123.7	N2C7C6	105.80 (14)
C4—C3—C2	112.08 (15)	N2—C7—H7A	110.6
С4—С3—Н3А	124.0	С6—С7—Н7А	110.6
С2—С3—НЗА	124.0	N2—C7—H7B	110.6
C3—C4—C5	128.52 (15)	С6—С7—Н7В	110.6
C3—C4—S1	111.26 (13)	H7A—C7—H7B	108.7

C4—S1—C1—C2	-0.16 (16)	C6—N1—C5—N2	11.9 (2)
S1—C1—C2—C3	-0.2 (2)	C6—N1—C5—C4	-169.73 (15)
C1—C2—C3—C4	0.5 (2)	C3—C4—C5—N2	-173.27 (18)
C2—C3—C4—C5	179.52 (17)	S1—C4—C5—N2	6.9 (2)
C2—C3—C4—S1	-0.60 (19)	C3—C4—C5—N1	8.5 (3)
C1—S1—C4—C3	0.44 (14)	S1—C4—C5—N1	-171.36 (13)
C1—S1—C4—C5	-179.67 (15)	C5—N1—C6—C7	-17.79 (18)
C7—N2—C5—N1	0.6 (2)	C5—N2—C7—C6	-12.26 (19)
C7—N2—C5—C4	-177.67 (15)	N1—C6—C7—N2	18.12 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	D··· A	D—H···A	
N1—H1N1····N2 ⁱ	0.75	2.23	2.977 (2)	171	
C3—H3A····N2 ⁱ	0.95	2.60	3.482 (2)	155	
C6—H6A····Cg1 ⁱⁱ	0.99	2.89	3.539 (2)	124	
C6—H6 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.99	2.83	3.691 (2)	146	

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*, *y*+1/2, -*z*+3/2; (iii) *x*-1, *y*, *z*.