Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diethyl 6H,12H-5,11-methanodibenzo-[b,f][1,5]diazocine-1,7-dicarboxylate

M. Delower H. Bhuiyan, ${ }^{\text {a }}$ Jack K. Clegg ${ }^{\text {b }}$ and Andrew C. Try ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, and ${ }^{\text {b }}$ Crystal Structure Analysis Facility, School of Chemistry, F11, The University of Sydney, NSW 2006, Australia
Correspondence e-mail: andrew.try@mq.edu.au
Received 17 December 2008; accepted 17 December 2008
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.036 ; w R$ factor $=0.099$; data-to-parameter ratio $=17.2$.

In the molecule of the title compound, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$, the 1,7diethyl ester analogue of Tröger's base, the dihedral angle between the two benzene rings is 93.16 (3) ${ }^{\circ}$; the molecule is C_{2} symmetric.

Related literature

For background to the synthesis of Tröger's base products, see: Hansson et al. (2003); Solano et al. (2005); Bhuiyan et al. (2007); Didier \& Sergeyev (2007); Zhu et al. (2008); Vande Velde et al. (2008). For related structures, see: Faroughi et al. (2006); Bhuiyan et al. (2006).

Experimental

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=366.41$
Monoclinic, $C 2 / c$
$a=14.306$ (3) A
$b=9.251$ (2) A
$c=15.081$ (4) \AA
$\beta=118.149$ (4) ${ }^{\circ}$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.856, T_{\text {max }}=0.980$
8475 measured reflections
2135 independent reflections
1925 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
124 parameters
$w R\left(F^{2}\right)=0.099$
H -atom parameters constrained
$S=1.04$
2135 reflections
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and WinGX32 (Farrugia, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors thank the Australian Research Council for a Discovery Project grant to ACT (DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant to ACT and the award of an iMURS grant to MDHB.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2169).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bhuiyan, M. D. H., Jensen, P. \& Try, A. C. (2007). Acta Cryst. E63, 04393.
Bhuiyan, M. D. H., Try, A. C., Klepetko, J. \& Turner, P. (2006). Acta Cryst. E62, o4887-o4888.
Didier, D. \& Sergeyev, S. (2007). Eur. J. Org. Chem. pp. 3905-3910.
Faroughi, M., Try, A. C. \& Turner, P. (2006). Acta Cryst. E62, o3479-o3480.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hansson, A. P., Jensen, J., Wendt, O. F. \& Wärnmark, K. (2003). Eur. J. Org. Chem. pp. 3179-3188.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. \& Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510-3517.

Vande Velde, C. M. L., Didier, D., Blockhuys, F. \& Sergeyev, S. (2008). Acta Cryst. E64, 0538.
Zhu, K.-X., Craig, D. C. \& Try, A. C. (2008). Acta Cryst. E64, o1797.

supporting information

Acta Cryst. (2009). E65, o187 [doi:10.1107/S1600536808042967]

Diethyl 6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-1,7-dicarboxylate M. Delower H. Bhuiyan, Jack K. Clegg and Andrew C. Try

S1. Comment

Dibenzo Tröger's base analogues are formed from the acid catalysed condensation of an aniline with either formaldehyde or formaldehyde equivalents. It was a long-held belief that a para-substituent was required on the aniline to prevent polymerization during the Tröger's base reaction and that the presence of an electron-withdrawing group would result in neglible yields of Tröger's base products. These beliefs have been proved to be incorrect, with the synthesis of tetranitro(Bhuiyan et al., 2007) and octafluoro- (Vande Velde et al., 2008) analogues (in yields of 11% and 37%, respectively), and the synthesis of Tröger's base analogues from 2-and 3-substituted anilines lacking a substitutent in the para-position (Hansson et al., 2003), and even from aniline itself (Didier \& Sergeyev, 2007). The title compound is another example of a Tröger's base analogue unsubstituted in the 2,8-positions. An important feature of all Tröger's base analogues is the Vshaped structure of the compounds. The dihedral angle between the aromatic rings has been measured for over 25 simple dibenzo Tröger's base analogues and has been found to lie between 82° (Solano et al., 2005) and 110° (Zhu et al., 2008). The X-ray structures of two related Tröger's base esters have also been reported (Faroughi et al., 2006; Bhuiyan et al., 2006). It is noteworthy that the title compound was the sole Tröger's base analogue isolated from the reaction and results from carbon-carbon bond formation at the more hindered ortho-site, relative to the aniline amino group.
The title compound, Fig. 1, crystallizes in space group $C 2 / c$ and it was prepared as outlined in Fig. 2.

S2. Experimental

Ethyl 3-aminobenzoate ($2.0 \mathrm{~g}, 12.1 \mathrm{mmol}$) and paraformaldehyde ($582 \mathrm{mg}, 19.38 \mathrm{mmol}$) were dissolved in trifluoroacetic $\operatorname{acid}(75 \mathrm{ml})$ and the mixture was stirred under an argon atmosphere in the dark 7 days. The reaction mixture was then basified with a solution of concentrated ammonia (80 ml) in water (120 ml). A saturated sodium hydrogen carbonate solution (100 ml) was added and the crude material was extracted into ethyl acetate ($3 \times 75 \mathrm{ml}$). The combined organic layers were washed with brine $(100 \mathrm{ml})$, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to yield an orange solid. The crude material was purified by recrystallization from hexane to afford the title compound (760 mg , 34%) as a white solid and a racemic mixture, m.p. 441-443 K.
Single crystals of the title compound were produced by slow evaporation of a dichloromethane solution.

S3. Refinement

C -bound H atoms were included in idealized positions and refined using a riding model. Methylene, aromatic and methyl $\mathrm{C}-\mathrm{H}$ bond lengths were fixed at $0.99,0.95$ and $0.98 \AA$, respectively. $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for methylene and aromatic H atoms, and at $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms.

Figure 1
View of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50\% probability level. Symmetry code used to generate equivalent atoms: 2-x, y, 1.5-z.

Figure 2

Synthetic scheme for the synthesis of the title compound showing the numbering system used in naming the compound.
Diethyl 6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine- 1,7-dicarboxylate

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=366.41$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=14.306$ (3) \AA
$b=9.251(2) \AA$
$c=15.081(4) \AA$
$\beta=118.149$ (4) ${ }^{\circ}$
$V=1759.8(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.856, T_{\text {max }}=0.980$
$F(000)=776$
$D_{\mathrm{x}}=1.383 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 441 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5209 reflections
$\theta=2.7-28.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Shard, colourless
$0.47 \times 0.30 \times 0.19 \mathrm{~mm}$

8475 measured reflections

2135 independent reflections
1925 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-19 \rightarrow 19$
$k=-12 \rightarrow 11$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.099$
$S=1.04$
2135 reflections
124 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to $150(\mathrm{~K})$ under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
C1	$0.83967(10)$	$0.37215(14)$	$1.11492(10)$	$0.0346(3)$	
H1A	0.7669	0.4024	1.0692	0.052^{*}	0.052^{*}
H1B	0.8563	0.3944	1.1844	0.052^{*}	
H1C	0.8465	0.2679	1.1081	$0.0291(2)$	
C2	$0.91539(9)$	$0.45165(12)$	$1.08889(8)$	0.035^{*}	
H2A	0.9125	0.5564	1.1007	0.035^{*}	
H2B	0.9886	0.4177	1.1328	$0.0217(2)$	
C3	$0.92507(8)$	$0.30443(11)$	$0.96454(8)$	$0.0205(2)$	
C4	$0.88028(8)$	$0.27735(11)$	$0.85453(8)$	$0.0194(2)$	
C5	$0.92893(8)$	$0.17644(10)$	$0.81900(8)$	$0.0201(2)$	
C6	$0.87857(8)$	$0.14597(11)$	$0.71558(8)$	$0.0238(2)$	
C7	$0.78414(8)$	$0.21655(12)$	$0.65048(8)$	0.029^{*}	
H7	0.7503	0.1941	0.5808	$0.0262(2)$	
C8	$0.73945(8)$	$0.31834(12)$	$0.68617(8)$	0.031^{*}	
H8	0.6764	0.3673	0.6411	$0.0242(2)$	
C9	$0.78727(8)$	$0.34861(12)$	$0.78832(8)$	0.029^{*}	
H9	0.7566	0.4180	0.8133	$0.0211(2)$	0.025^{*}
C10	$1.03523(8)$	$0.10512(11)$	$0.88716(8)$	0.025^{*}	$0.0236(3)$
H10A	1.0846	0.1783	0.9335	0.028^{*}	
H10B	1.0250	0.0294	0.9282		
C11	1.0000	$-0.05009(15)$	0.7500	0.50	
H11A	0.9674	-0.1129	0.7810		
H					

					0.50
H11B	1.0326	-0.1129	0.7190	0.028^{*}	
N1	$0.91816(7)$	$0.03970(9)$	$0.67236(6)$	$0.0214(2)$	
O1	$0.88792(6)$	$0.42718(8)$	$0.98415(6)$	$0.02669(19)$	
O2	$0.98621(6)$	$0.22448(9)$	$1.02960(6)$	$0.0285(2)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0422(7)$	$0.0347(6)$	$0.0350(6)$	$-0.0024(5)$	$0.0249(5)$	$-0.0045(5)$
C2	$0.0339(6)$	$0.0266(5)$	$0.0284(5)$	$-0.0023(4)$	$0.0161(5)$	$-0.0066(4)$
C3	$0.0205(5)$	$0.0209(5)$	$0.0272(5)$	$-0.0007(4)$	$0.0142(4)$	$0.0015(4)$
C4	$0.0195(5)$	$0.0198(5)$	$0.0247(5)$	$-0.0003(4)$	$0.0124(4)$	$0.0025(4)$
C5	$0.0178(4)$	$0.0174(4)$	$0.0246(5)$	$-0.0002(3)$	$0.0113(4)$	$0.0032(4)$
C6	$0.0186(4)$	$0.0182(4)$	$0.0256(5)$	$-0.0032(4)$	$0.0121(4)$	$0.0005(4)$
C7	$0.0192(5)$	$0.0274(5)$	$0.0234(5)$	$-0.0028(4)$	$0.0090(4)$	$0.0014(4)$
C8	$0.0182(5)$	$0.0294(5)$	$0.0293(5)$	$0.0037(4)$	$0.0097(4)$	$0.0062(4)$
C9	$0.0210(5)$	$0.0240(5)$	$0.0305(5)$	$0.0039(4)$	$0.0146(4)$	$0.0033(4)$
C10	$0.0208(5)$	$0.0206(5)$	$0.0230(5)$	$0.0031(4)$	$0.0113(4)$	$0.0027(4)$
C11	$0.0254(7)$	$0.0177(6)$	$0.0296(7)$	0.000	$0.0145(6)$	0.000
N1	$0.0215(4)$	$0.0191(4)$	$0.0257(4)$	$-0.0021(3)$	$0.0128(4)$	$-0.0009(3)$
O1	$0.0322(4)$	$0.0230(4)$	$0.0277(4)$	$0.0043(3)$	$0.0165(3)$	$0.0007(3)$
O2	$0.0307(4)$	$0.0292(4)$	$0.0258(4)$	$0.0078(3)$	$0.0135(3)$	$0.0048(3)$

Geometric parameters ($A,{ }^{\circ}$)

C1-C2	1.5065 (17)	C6-C7	1.4014 (14)
C1-H1A	0.9800	C6-N1	1.4354 (13)
C1-H1B	0.9800	C7-C8	1.3820 (16)
C1-H1C	0.9800	C7-H7	0.9500
C2-O1	1.4544 (13)	C8-C9	1.3876 (16)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C8-H8	0.9500
C2-H2B	0.9900	C9—H9	0.9500
$\mathrm{C} 3-\mathrm{O} 2$	1.2103 (13)	C10-N1 ${ }^{\text {i }}$	1.4770 (13)
C3-O1	1.3445 (13)	C10-H10A	0.9900
C3-C4	1.4909 (15)	C10-H10B	0.9900
C4-C9	1.3959 (14)	$\mathrm{C} 11-\mathrm{N} 1$	1.4623 (12)
C4-C5	1.4124 (14)	C11-H11A	0.9900
C5-C6	1.4039 (15)	C11-H11B	0.9900
C5-C10	1.5262 (13)		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C8-C7-H7	119.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C6-C7-H7	119.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C7-C8-C9	119.58 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C7-C8-H8	120.2
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C9-C8-H8	120.2
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C8-C9-C4	120.20 (10)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	110.36 (9)	C8-C9-H9	119.9
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.6	C4-C9-H9	119.9

supporting information

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.6
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 1$	$123.18(10)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$124.49(10)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$112.31(9)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5$	$120.99(10)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$	$118.74(9)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.21(9)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$117.88(9)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$	$119.18(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$122.88(9)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.31(9)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1$	$117.22(9)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$122.43(9)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.98(10)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$159.42(10)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-19.11(13)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-17.78(16)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$163.70(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-2.43(14)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$174.70(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$174.85(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-8.01(14)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$1.21(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$-176.18(9)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$-176.64(8)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$5.97(14)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$178.76(9)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-1.62(16)$

$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 5$	$111.09(8)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.4
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.4
$\mathrm{~N} 1 \mathrm{i}^{\mathrm{i}} \mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.4
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.4
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	108.0
$\mathrm{~N} 1-\mathrm{C} 11-\mathrm{N} 1$	$110.77(11)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{~N} 1 \mathrm{i}^{\mathrm{i}} \mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{~N} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	108.1
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 11$	$111.33(8)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 10^{\mathrm{i}}$	$112.54(8)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 10^{\mathrm{i}}$	$107.39(7)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2$	$115.98(8)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$0.40(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$1.66(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$-175.52(10)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{N} 1^{\mathrm{i}}$	$13.93(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{N} 1^{\mathrm{i}}$	$-163.33(9)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 11$	$-165.60(8)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 11$	$12.31(12)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 10^{\mathrm{i}}$	$73.76(11)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 10^{\mathrm{i}}$	$-108.32(10)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 6$	$-51.41(6)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 10^{\mathrm{i}}$	$72.21(6)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2$	$-7.03(15)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2$	$171.51(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3$	$-83.19(12)$

Symmetry code: (i) $-x+2, y,-z+3 / 2$.

