

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua(iminodiacetato- $\kappa^3 O, N, O'$)(1,10phenanthroline- $\kappa^2 N, N'$)zinc(II) sesquihydrate

Hwa Loong Ng,^a Chew Hee Ng^a and Seik Weng Ng^b*

^aFaculty of Engineering & Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53100 Kuala Lumpur, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 10 December 2008; accepted 11 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.048; wR factor = 0.146; data-toparameter ratio = 15.6.

The iminodiacetate dianion in the title compound, $[Zn(C_4H_5NO_4)(C_{12}H_8N_2)(H_2O)]$ ·1.5H₂O, chelates to the Zn^{II} center with its N and two O atoms. The metal atom is also chelated by the N-heterocycle and coordinated by one water molecule, leading to a distorted octahedral environment. The dianion, and coordinated and uncoordinated water molecules interact through $O-H \cdots O$ hydrogen bonds, generating a three-dimensional network. One of the two uncoordinated water molecules has half-site occupancy. The crystal studied was a non-merohedral twin with a 15% twin component.

Related literature

For the structure of zinc bis[iminodiacetate(1-)] tetrahydrate, see: Sinkha et al. (1975). For the dihydrated adenine adduct of zinc iminodiacetate, see: Morel et al. (2003). For the use of PLATON to separate twin fractions from diffraction data, see: Spek (2003).

Experimental

Crystal data

$[Z_n(C_4H_5NO_4)(C_{12}H_8N_2)(H_2O)]$ -	$\beta = 91.845 \ (1)^{\circ}$
1.5H ₂ O	$\gamma = 92.190 \ (1)^{\circ}$
$M_r = 421.70$	V = 806.56(2)
Triclinic, P1	Z = 2
a = 6.5989 (1) Å	Mo Kα radiation
b = 10.6440 (1) Å	$\mu = 1.57 \text{ mm}^{-1}$
c = 11.5456 (2) Å	T = 100 (2) K
$\alpha = 95.156 \ (1)^{\circ}$	$0.35 \times 0.25 \times 0.25 \times 0.000$

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.610, \ T_{\rm max} = 0.799$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.146$ S = 1.223640 reflections 233 parameters

6.56 (2) Å³ radiation 57 mm^{-1} 0(2) K $0.25 \times 0.15 \text{ mm}$

7242 measured reflections 3640 independent reflections 3455 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

72 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.02 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.88 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1w−H11···O1 ⁱ	0.84	2.17	2.801 (4)	132
$O1w-H12\cdots O3^{ii}$	0.84	1.92	2.757 (4)	172
$O2w-H21\cdots O2^{i}$	0.84	1.98	2.815 (5)	177
O2w−H22···O4 ⁱⁱⁱ	0.84	1.92	2.756 (5)	177
O3w−H31···O2w	0.84	1.94	2.780 (9)	174
Symmetry codes:	(i) $x + 1$,	y, z; (ii)	-x + 1, -y + 1,	-z + 2; (iii)

-x + 1, -y + 2, -z + 2.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank Universiti Tunku Abdul Rahman and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2469).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Morel, C., Choquesillo-Lazarte, D., Alarcón-Payer, C., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Inorg. Chem. Commun. 11, 1354-1357

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sinkha, U.-Ch., Kramarenko, F. G., Polynova, T. N., Porai-Koshits, M. A. & Mitrofanova, N. D. (1975). Zh. Strukt. Khim. 16, 144-145.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m89 [doi:10.1107/S1600536808042141]

Aqua(iminodiacetato- $\kappa^3 O, N, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) sesquihydrate

Hwa Loong Ng, Chew Hee Ng and Seik Weng Ng

S1. Experimental

An methanol solution of zinc(II) nitrate hexahydrate (0.30 g, 1 mmol) and 1,10-phenanthroline (0.20 g, 1 mmol) was mixed with an aqueous solution of iminodiacetic acid (0.14 g, 1 mmol) and sodium hydroxide (0.08 g, 2 mmol). The mixture was briefly heated. The cool solution yielded a white solid. This was recrystallized from a water-methanol mixture to give colorless crystals.

S2. Refinement

Carbon- and nitrogen-bound hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å, N–H 0.88 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2 times $U_{eq}(C \text{ or } N)$. The water H-atoms were placed in chemically-sensible positions on the basis of hydrogen bonding, but were not refined; their temperature factors were tied by a factor of 1.5.

For the three phenanthroline groups, the central six-membered ring was refined as a rigid hexagon of 1.39 Å sides. The temperature factors of the carbon atoms of this fused-ring system were restrained to be nearly isotropic.

The O3w atom gave a large temperature factor when allowed to refined at full occupancy. The occupancy could be refined, and this refined to nearly 0.5. As such, the occupancy was then fixed as exactly 0.5. This water molecule was within hydrogen bonding distance of only one other acceptor atom.

The structure is a non-merohedral twin. *PLATON* (Spek, 2003) was used to de-twin the structure. The twin component refined to 15%; the inclusion of the twin law lowered the *R* index from 6.4%. More importantly, it improved the weighting scheme. The final difference Fourier map was now diffuse, with the largest peak of slightly over 1 e Å⁻³ in the vicinity of C12.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $Zn(H_2O)(C_4H_5NO_4)(C_{12}H_8N_2)$ 1.5H₂O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The O3*w* water molecule, which lies on a general position, has 0.5 occupancy.

Aqua(iminodiacetato- $\kappa^3 O, N, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) sesquihydrate

Crystal data	
$[Zn(C_4H_5NO_4)(C_{12}H_8N_2)(H_2O)]$ ·1.5H ₂ O	Z = 2
$M_r = 421.70$	F(000) = 434
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.736 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.5989 (1) Å	Cell parameters from 6223 reflections
b = 10.6440(1) Å	$\theta = 2.5 - 28.3^{\circ}$
c = 11.5456 (2) Å	$\mu = 1.57 \text{ mm}^{-1}$
$\alpha = 95.156 \ (1)^{\circ}$	T = 100 K
$\beta = 91.845 \ (1)^{\circ}$	Block, colorless
$\gamma = 92.190 \ (1)^{\circ}$	$0.35 \times 0.25 \times 0.15 \text{ mm}$
$V = 806.56 (2) \text{ Å}^3$	
Data collection	
Bruker SMART APEX	7242 measured reflections
diffractometer	3640 independent reflections
Radiation source: fine-focus sealed tube	3455 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.610, \ T_{\max} = 0.799$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
<i>S</i> = 1.22	H-atom parameters constrained
3640 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2 + 4.8628P]$
233 parameters	where $P = (F_o^2 + 2F_c^2)/3$
72 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.02 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.88 \text{ e } \text{\AA}^{-3}$

ractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)
--

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		r	12	7	17*/17	Occ. (<1)
211 $0.30200 (17)$ $0.3035 (2)$ $0.4403 (47)$ $0.0105 (15)$ 01 $-0.0016 (5)$ $0.7036 (3)$ $0.8533 (3)$ $0.0154 (6)$ 02 $-0.1646 (5)$ $0.8841 (3)$ $0.8519 (4)$ $0.0242 (8)$ 03 $0.3125 (5)$ $0.6228 (3)$ $1.0256 (3)$ $0.0137 (6)$ 04 $0.3975 (5)$ $0.7409 (3)$ $1.1911 (3)$ $0.0168 (7)$ 01W $0.6167 (5)$ $0.5782 (3)$ $0.8400 (3)$ $0.0137 (6)$ H11 0.6902 0.6376 0.8795 $0.021*$ 02W $0.5864 (6)$ $1.0151 (3)$ $0.7055 (3)$ $0.0270 (8)$ H21 0.6601 0.9737 0.7475 $0.040*$ H22 0.5886 1.0902 0.7349 $0.440*$ O3W $0.7199 (12)$ $1.0113 (7)$ $0.4793 (7)$ $0.287 (16)$ 0.50 H31 0.6705 1.0115 0.5455 $0.043*$ 0.50 N1 $0.3717 (6)$ $0.8255 (3)$ $0.8921 (3)$ $0.0155 (8)$ H1 0.4735 0.8496 0.8507 $0.019*$ N2 $0.1966 (5)$ $0.4443 (4)$ $0.7994 (3)$ $0.0142 (7)$ N3 $0.3044 (5)$ $0.6254 (4)$ $0.8650 (5)$ $0.0207 (10)$ H2A 0.2137 0.9349 0.7901 $0.025*$ C3 $0.4372 (7)$ $0.8867 (4)$ $1.0155 (4)$ $0.0178 (9)$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 $0.3754 (6)$ $0.7252 (4)$ $0.8842 (4)$ $0.0127 (8)$ C5 0		0 30260 (7)	y 0.63033 (5)	<u> </u>	0.01073 (15)	. (1)
01 0.00010 (0) 0.00010 (0) 0.00010 (0) 0.00010 (0) 02 $-0.1646(5)$ 0.8841 (3) 0.8519 (4) 0.0242 (8) 03 0.3125 (5) 0.6228 (3) 1.0256 (3) 0.0137 (6) 01W 0.6167 (5) 0.5782 (3) 0.8460 (3) 0.0137 (6) 111 0.6020 0.6376 0.8795 0.021* 112 0.6294 0.5131 0.8812 0.0270 (8) 121 0.6601 0.9737 0.7475 0.040* 122 0.5886 1.0902 0.7349 0.404* 03W 0.7199 (12) 1.0113 (7) 0.4793 (7) 0.0287 (16) 0.50 131 0.6705 1.0115 0.5455 0.43* 0.50 132 0.7870 1.0790 0.4740 0.043* 0.50 131 0.6705 1.0115 0.5455 0.043* 0.50 131 0.4705 0.8496 0.8507 0.019* 1.015 N1 0.3717 (6) 0.8225 (3) 0.8508 (4) 0.0153 (8) 1.015 C1 -0.062		-0.0016(5)	0.03033(3) 0.7036(3)	0.84083(4) 0.8533(3)	0.01073(13)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	-0.1646(5)	0.7030(3)	0.8535(3)	0.0134(0)	
C5 0.12.5 (3) 0.022.8 (3) 1.02.0 (5) 0.0178 (0) O4 0.3975 (5) 0.7409 (3) 1.1911 (3) 0.0158 (7) O1W 0.6167 (5) 0.5782 (3) 0.8460 (3) 0.0137 (6) H11 0.6902 0.6376 0.8795 0.021* O2W 0.5864 (6) 1.0151 (3) 0.7055 (3) 0.02070 (8) H21 0.6601 0.9737 0.7475 0.040* H22 0.5886 1.0902 0.7349 0.040* O3W 0.7199 (12) 1.0113 (7) 0.4793 (7) 0.0287 (16) 0.50 H31 0.6705 1.0115 0.5455 0.043* 0.50 H32 0.7870 1.0790 0.4740 0.043* 0.50 H1 0.4735 0.8496 0.8507 0.019* 1.019 N2 0.1966 (5) 0.443 (4) 0.7994 (3) 0.0142 (7) 1.013 (8) C2 0.1934 (7) 0.8288 (4) 0.8505 (5) 0.0207 (10) 1.026 H2A 0.2137 0.9349 0.7901 0.025* 1.0216 1.0216 <td>02</td> <td>-0.1040(3)</td> <td>0.6041(3)</td> <td>0.0319(4)</td> <td>0.0242(6)</td> <td></td>	02	-0.1040(3)	0.6041(3)	0.0319(4)	0.0242(6)	
04 0.375 (5) 0.749 (5) 1.1911 (5) 0.0166 (7) 01W 0.6167 (5) 0.5782 (3) 0.8460 (3) 0.0137 (6) H11 0.6902 0.6376 0.8795 $0.021*$ H12 0.6294 0.5131 0.8812 0.0270 (8) H21 0.6601 0.9737 0.7475 $0.040*$ O3W 0.7199 (12) 1.0113 (7) 0.4793 (7) 0.0287 (16) 0.50 H31 0.6705 1.0115 0.5455 $0.043*$ 0.50 H1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8) 11111 N1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0142 (7) N3 N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7) N3 N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7) C1 C1 -0.0062 (7) 0.8288 (4) 0.8650 (5) 0.0207 (10) H2A 0.2137 0.9349 0.7901 $0.025*$ C2 0.1347	03	0.3123(3)	0.0228(3)	1.0230(3)	0.0137(0)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 01W	0.3975(3)	0.7409(3)	1.1911(3)	0.0108(7)	
H11 0.8902 0.6376 0.875 0.021° H12 0.6294 0.5131 0.8812 0.021° O2W 0.5864 (6) 1.0151 (3) 0.7055 (3) 0.0270 (8)H21 0.6601 0.9737 0.7475 0.040^{*} O3W 0.7199 (12) 1.0113 (7) 0.4793 (7) 0.0287 (16) 0.50 H31 0.6705 1.0115 0.5455 0.043^{*} 0.50 H32 0.7870 1.0790 0.4740 0.043^{*} 0.50 H1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8)H1 0.4735 0.8496 0.8507 0.019^{*} N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7)N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0153 (8)C2 0.1934 (7) 0.8895 (4) 0.8650 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 0.025^{*} C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3B 0.5869 0.8478 1.0206 0.021^{*} C4 0.3754 (6) 0.7252 (4) 0.8671 (4) 0.0149 (8)C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.3802 0.9485 0.018^{*} C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9)H6 0.0424 0.1735 0.8760 0.024^{*} C7 0.864 (7) 0.1993	U1 W	0.0107 (3)	0.3782 (3)	0.8400 (5)	0.0137 (0)	
H12 0.6294 0.5131 0.8812 0.011^{*} O2W 0.5864 (6) 1.0151 (3) 0.7055 (3) 0.0270 (8)H21 0.6601 0.9737 0.7475 0.040^* O3W 0.7199 (12) 1.0113 (7) 0.4793 (7) 0.0287 (16) 0.50 H31 0.6705 1.0115 0.5455 0.043^* 0.50 H32 0.7870 1.0790 0.4740 0.043^* 0.50 N1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8)H1 0.4735 0.8496 0.8507 0.019^* N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7)N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7)C1 -0.0062 (7) 0.8228 (4) 0.8568 (4) 0.0153 (8)C2 0.1934 (7) 0.8985 (4) 0.8650 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 0.025^* C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3B 0.5869 0.8478 1.0206 0.021^* C4 0.3754 (6) 0.7252 (4) 0.8671 (4) 0.0127 (8)C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.1355 0.3802 0.9485 0.018^* C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9)H6 0.0424 0.1735 0.8760 0.024^* C7 0.864 (7) <td></td> <td>0.6902</td> <td>0.6376</td> <td>0.8795</td> <td>0.021*</td> <td></td>		0.6902	0.6376	0.8795	0.021*	
02w 0.5864 (6) 1.0151 (3) 0.7055 (3) 0.0270 (8)H21 0.6601 0.9737 0.7475 $0.040*$ H22 0.5886 1.0902 0.7349 $0.040*$ O3W 0.7199 (12) 1.0113 (7) 0.4793 (7) 0.0287 (16) 0.50 H31 0.6705 1.0115 0.5455 $0.043*$ 0.50 H32 0.7870 1.0790 0.4740 $0.043*$ 0.50 N1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8)H1 0.4735 0.8496 0.8507 $0.019*$ N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7)N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7)C1 -0.0062 (7) 0.8228 (4) 0.8650 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 $0.025*$ H2B 0.1849 0.9696 0.9259 $0.025*$ C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 0.3754 (6) 0.7252 (4) 0.8671 (4) 0.0127 (8)C5 0.1390 (6) 0.3577 (4) 0.8760 $0.024*$ C6 0.0828 (7) 0.2336 (5) 0.7068 (4) 0.0198 (9)H5 0.1355 0.3802 0.9485 $0.018*$ C6 0.0828 (7) 0.2336 (5) $0.$	HI2	0.6294	0.5131	0.8812	0.021*	
H21 0.6001 0.9757 0.7475 0.040° H22 0.5886 1.0902 0.7349 0.040° O3W 0.7199 (12) 1.0113 (7) 0.4793 (7) 0.0287 (16) 0.50 H31 0.6705 1.0115 0.5455 0.043^{\ast} 0.50 H32 0.7870 1.0790 0.4740 0.043^{\ast} 0.50 N1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8)H1 0.4735 0.8496 0.8507 0.019^{\ast} N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0157 (7)C1 -0.0062 (7) 0.8228 (4) 0.8568 (4) 0.0153 (8)C2 0.1934 (7) 0.8985 (4) 0.8568 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 0.025^{\ast} H2B 0.1849 0.9696 0.9259 0.025^{\ast} C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 0.021^{\ast} C4 0.3754 (6) 0.7252 (4) 1.0842 (4) 0.0127 (8)C5 0.1390 (6) 0.3577 (4) 0.8475 0.0200 (9)H5 0.1355 0.3802 0.9485 0.018^{\ast} C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9)H6 0.0424 0.1735 0.8760 0.024^{\ast} C7 0.0864 (7) 0.1993 (5) 0.7068 (4) 0.0198 (9)H7 0.0504 <t< td=""><td>02W</td><td>0.5864 (6)</td><td>1.0151 (3)</td><td>0.7055 (3)</td><td>0.0270(8)</td><td></td></t<>	02W	0.5864 (6)	1.0151 (3)	0.7055 (3)	0.0270(8)	
H22 0.5886 1.0902 0.7349 0.040^* O3W $0.7199 (12)$ $1.0113 (7)$ $0.4793 (7)$ $0.0287 (16)$ 0.50 H31 0.6705 1.0115 0.5455 0.043^* 0.50 H32 0.7870 1.0790 0.4740 0.043^* 0.50 N1 $0.3717 (6)$ $0.8255 (3)$ $0.8921 (3)$ $0.0155 (8)$ H1 0.4735 0.8496 0.8507 0.019^* N2 $0.1966 (5)$ $0.4443 (4)$ $0.7994 (3)$ $0.0157 (7)$ C1 $-0.0062 (7)$ $0.8228 (4)$ $0.8568 (4)$ $0.0153 (8)$ C2 $0.1934 (7)$ $0.8985 (4)$ $0.8650 (5)$ $0.0207 (10)$ H2A 0.2137 0.9349 0.7901 0.025^* C3 $0.4372 (7)$ $0.8367 (4)$ $1.0155 (4)$ $0.0178 (9)$ H3A 0.3811 0.9141 1.0538 0.021^* H3B 0.5869 0.8478 1.0206 0.021^* C4 $0.3754 (6)$ $0.7252 (4)$ $1.0842 (4)$ $0.0127 (8)$ C5 $0.1390 (6)$ $0.3577 (4)$ $0.8671 (4)$ $0.0149 (8)$ H5 0.1355 0.3802 0.9485 0.018^* C6 $0.0828 (7)$ $0.2336 (5)$ $0.8242 (5)$ $0.0200 (9)$ H6 0.0424 0.1735 0.8760 0.024^* C7 $0.0864 (7)$ $0.1993 (5)$ $0.7068 (4)$ $0.0198 (9)$ H7 0.0504 0.1151 $0.67929 (18)$ $0.0146 (8)$ C8 $0.1450 (5)$ 0	H21	0.6601	0.9737	0.7475	0.040*	
0.7199(12) $1.0113(7)$ $0.4793(7)$ $0.0287(16)$ 0.50 H31 0.6705 1.0115 0.5455 $0.043*$ 0.50 H32 0.7870 1.0790 0.4740 $0.043*$ 0.50 N1 $0.3717(6)$ $0.8255(3)$ $0.8921(3)$ $0.0155(8)$ H1 0.4735 0.8496 0.8507 $0.019*$ N2 $0.1966(5)$ $0.4443(4)$ $0.7994(3)$ $0.0142(7)$ N3 $0.3044(5)$ $0.6254(4)$ $0.6611(3)$ $0.0157(7)$ C1 $-0.0062(7)$ $0.8228(4)$ $0.8568(4)$ $0.0153(8)$ C2 $0.1934(7)$ $0.8985(4)$ $0.8650(5)$ $0.0207(10)$ H2A 0.2137 0.9349 0.7901 $0.025*$ C3 $0.4372(7)$ $0.8367(4)$ $1.0155(4)$ $0.0178(9)$ H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 $0.3754(6)$ $0.7252(4)$ $1.0842(4)$ $0.0127(8)$ C5 $0.1390(6)$ $0.3577(4)$ $0.8671(4)$ $0.0149(8)$ H5 0.1355 0.3802 0.9485 $0.018*$ C6 $0.0828(7)$ $0.2336(5)$ $0.8242(5)$ $0.0200(9)$ H6 0.0424 0.1735 0.8760 $0.024*$ C7 $0.0864(7)$ $0.1993(5)$ $0.7068(4)$ $0.0198(9)$ H7 0.0504 0.1151 $0.6729(18)$ $0.0146(8)$ C8 $0.1450(5)$ $0.2916(2)$ $0.6729(2)$ $0.0186(9)$	H22	0.5886	1.0902	0.7349	0.040*	0.50
H31 0.6705 1.0115 0.5455 0.043^* 0.50 H32 0.7870 1.0790 0.4740 0.043^* 0.50 N1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8)H1 0.4735 0.8496 0.8507 0.019^* N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7)N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7)C1 -0.0062 (7) 0.8228 (4) 0.8568 (4) 0.0153 (8)C2 0.1934 (7) 0.8985 (4) 0.8650 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 0.025^* C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 0.021^* C4 0.3754 (6) 0.7252 (4) 1.0842 (4) 0.0127 (8)C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.1355 0.3802 0.9485 0.018^* C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9)H6 0.0424 0.1735 0.8760 0.024^* C7 0.0864 (7) 0.1993 (5) 0.7068 (4) 0.0198 (9)H7 0.0504 0.1151 0.6768 0.024^* C8 0.1450 (5) 0.2216 (2) 0.6299 (2) 0.0186 (9)	03W	0.7199 (12)	1.0113 (7)	0.4793 (7)	0.0287 (16)	0.50
H32 0.7870 1.0790 0.4740 0.043* 0.50 N1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8) H1 0.4735 0.8496 0.8507 0.019* N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7) N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7) C1 -0.0062 (7) 0.8228 (4) 0.8568 (4) 0.0153 (8) C2 0.1934 (7) 0.8985 (4) 0.8650 (5) 0.0207 (10) H2A 0.2137 0.9349 0.7901 0.025* C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9) H3A 0.3811 0.9141 1.0538 0.021* H3B 0.5869 0.8478 1.0206 0.0127 (8) C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8) H5 0.1355 0.3802 0.9485 0.018* C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9) H6 0.0424 0.1735 0.8760 0.024*	H31	0.6705	1.0115	0.5455	0.043*	0.50
N1 0.3717 (6) 0.8255 (3) 0.8921 (3) 0.0155 (8)H1 0.4735 0.8496 0.8507 $0.019*$ N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7)N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7)C1 -0.0062 (7) 0.8228 (4) 0.8568 (4) 0.0153 (8)C2 0.1934 (7) 0.8985 (4) 0.8650 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 $0.025*$ H2B 0.1849 0.9696 0.9259 $0.025*$ C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 0.3754 (6) 0.7252 (4) 1.0842 (4) 0.1127 (8)C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.1355 0.3802 0.9485 $0.018*$ C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9)H6 0.0424 0.1735 0.8760 $0.024*$ C7 0.0864 (7) 0.1993 (5) 0.7068 (4) 0.0198 (9)H7 0.0504 0.1151 0.67929 (18) 0.0146 (8)C8 0.1450 (5) 0.2216 (2) 0.6299 (2) 0.0186 (9)	H32	0.7870	1.0790	0.4740	0.043*	0.50
H1 0.4735 0.8496 0.8507 $0.019*$ N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7)N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7)C1 -0.0062 (7) 0.8228 (4) 0.8568 (4) 0.0153 (8)C2 0.1934 (7) 0.8985 (4) 0.8650 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 $0.025*$ C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 0.3754 (6) 0.7252 (4) 1.0842 (4) 0.0149 (8)H5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.1355 0.3802 0.9485 0.0200 (9)H6 0.0424 0.1735 0.8760 $0.024*$ C7 0.0864 (7) 0.1993 (5) 0.7068 (4) 0.0198 (9)H7 0.0504 0.1151 0.67929 (18) 0.0146 (8)C8 0.1450 (5) 0.2916 (2) 0.6299 (2) 0.0186 (9)	N1	0.3717 (6)	0.8255 (3)	0.8921 (3)	0.0155 (8)	
N2 0.1966 (5) 0.4443 (4) 0.7994 (3) 0.0142 (7)N3 0.3044 (5) 0.6254 (4) 0.6611 (3) 0.0157 (7)C1 -0.0062 (7) 0.8228 (4) 0.8568 (4) 0.0153 (8)C2 0.1934 (7) 0.8985 (4) 0.8650 (5) 0.0207 (10)H2A 0.2137 0.9349 0.7901 $0.025*$ C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 0.3754 (6) 0.7252 (4) 1.0842 (4) 0.0127 (8)C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.1355 0.3802 0.9485 0.0200 (9)H6 0.0424 0.1735 0.8760 $0.024*$ C7 0.0864 (7) 0.1993 (5) 0.7068 (4) 0.0198 (9)H7 0.0504 0.1151 0.6768 $0.024*$ C9 0.1450 (5) 0.2916 (2) 0.6299 (2) 0.0186 (9)	H1	0.4735	0.8496	0.8507	0.019*	
N3 $0.3044(5)$ $0.6254(4)$ $0.6611(3)$ $0.0157(7)$ C1 $-0.0062(7)$ $0.8228(4)$ $0.8568(4)$ $0.0153(8)$ C2 $0.1934(7)$ $0.8985(4)$ $0.8650(5)$ $0.0207(10)$ H2A 0.2137 0.9349 0.7901 $0.025*$ H2B 0.1849 0.9696 0.9259 $0.025*$ C3 $0.4372(7)$ $0.8367(4)$ $1.0155(4)$ $0.0178(9)$ H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 $0.3754(6)$ $0.7252(4)$ $1.0842(4)$ $0.0127(8)$ C5 $0.1390(6)$ $0.3577(4)$ $0.8671(4)$ $0.0149(8)$ H5 0.1355 0.3802 0.9485 $0.018*$ C6 $0.0828(7)$ $0.2336(5)$ $0.8242(5)$ $0.0200(9)$ H6 0.0424 0.1735 0.8760 $0.024*$ C7 $0.0864(7)$ $0.1993(5)$ $0.7068(4)$ $0.0198(9)$ H7 0.0504 0.1151 0.6768 $0.024*$ C9 $0.1991(4)$ $0.4127(3)$ $0.67929(18)$ $0.0146(8)$ C8 $0.1450(5)$ $0.2916(2)$ $0.6299(2)$ $0.0186(9)$	N2	0.1966 (5)	0.4443 (4)	0.7994 (3)	0.0142 (7)	
C1 $-0.0062 (7)$ $0.8228 (4)$ $0.8568 (4)$ $0.0153 (8)$ C2 $0.1934 (7)$ $0.8985 (4)$ $0.8650 (5)$ $0.0207 (10)$ H2A 0.2137 0.9349 0.7901 $0.025*$ H2B 0.1849 0.9696 0.9259 $0.025*$ C3 $0.4372 (7)$ $0.8367 (4)$ $1.0155 (4)$ $0.0178 (9)$ H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 $0.3754 (6)$ $0.7252 (4)$ $1.0842 (4)$ $0.0127 (8)$ C5 $0.1390 (6)$ $0.3577 (4)$ $0.8671 (4)$ $0.0149 (8)$ H5 0.1355 0.3802 0.9485 $0.018*$ C6 $0.0828 (7)$ $0.2336 (5)$ $0.8242 (5)$ $0.0200 (9)$ H6 0.0424 0.1735 0.8760 $0.024*$ C7 $0.0864 (7)$ $0.1993 (5)$ $0.7068 (4)$ $0.0198 (9)$ H7 0.0504 0.1151 0.6768 $0.024*$ C9 $0.1991 (4)$ $0.4127 (3)$ $0.67929 (18)$ $0.0146 (8)$ C8 $0.1450 (5)$ $0.2916 (2)$ $0.6299 (2)$ $0.0186 (9)$	N3	0.3044 (5)	0.6254 (4)	0.6611 (3)	0.0157 (7)	
C2 $0.1934(7)$ $0.8985(4)$ $0.8650(5)$ $0.0207(10)$ H2A 0.2137 0.9349 0.7901 $0.025*$ H2B 0.1849 0.9696 0.9259 $0.025*$ C3 $0.4372(7)$ $0.8367(4)$ $1.0155(4)$ $0.0178(9)$ H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 $0.3754(6)$ $0.7252(4)$ $1.0842(4)$ $0.0127(8)$ C5 $0.1390(6)$ $0.3577(4)$ $0.8671(4)$ $0.0149(8)$ H5 0.1355 0.3802 0.9485 $0.018*$ C6 $0.0828(7)$ $0.2336(5)$ $0.8242(5)$ $0.0200(9)$ H6 0.0424 0.1735 0.8760 $0.024*$ C7 $0.0864(7)$ $0.1993(5)$ $0.7068(4)$ $0.0198(9)$ H7 0.0504 0.1151 0.6768 $0.024*$ C9 $0.1991(4)$ $0.4127(3)$ $0.67929(18)$ $0.0146(8)$ C8 $0.1450(5)$ $0.2916(2)$ $0.6299(2)$ $0.0186(9)$	C1	-0.0062 (7)	0.8228 (4)	0.8568 (4)	0.0153 (8)	
H2A 0.2137 0.9349 0.7901 0.025^* H2B 0.1849 0.9696 0.9259 0.025^* C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 0.021^* H3B 0.5869 0.8478 1.0206 0.021^* C4 0.3754 (6) 0.7252 (4) 1.0842 (4) 0.0127 (8)C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.1355 0.3802 0.9485 0.018^* C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9)H6 0.0424 0.1735 0.8760 0.024^* C7 0.0864 (7) 0.1993 (5) 0.7068 (4) 0.0198 (9)H7 0.504 0.1151 0.6768 0.024^* C9 0.1991 (4) 0.4127 (3) 0.67929 (18) 0.0146 (8)C8 0.1450 (5) 0.2916 (2) 0.6299 (2) 0.0186 (9)	C2	0.1934 (7)	0.8985 (4)	0.8650 (5)	0.0207 (10)	
H2B 0.1849 0.9696 0.9259 $0.025*$ C3 0.4372 (7) 0.8367 (4) 1.0155 (4) 0.0178 (9)H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 0.3754 (6) 0.7252 (4) 1.0842 (4) 0.0127 (8)C5 0.1390 (6) 0.3577 (4) 0.8671 (4) 0.0149 (8)H5 0.1355 0.3802 0.9485 $0.018*$ C6 0.0828 (7) 0.2336 (5) 0.8242 (5) 0.0200 (9)H6 0.0424 0.1735 0.8760 $0.024*$ C7 0.0864 (7) 0.1993 (5) 0.7068 (4) 0.0198 (9)H7 0.0504 0.1151 0.6768 $0.024*$ C9 0.1991 (4) 0.4127 (3) 0.67929 (18) 0.0146 (8)C8 0.1450 (5) 0.2916 (2) 0.6299 (2) 0.0186 (9)	H2A	0.2137	0.9349	0.7901	0.025*	
C3 $0.4372 (7)$ $0.8367 (4)$ $1.0155 (4)$ $0.0178 (9)$ H3A 0.3811 0.9141 1.0538 $0.021*$ H3B 0.5869 0.8478 1.0206 $0.021*$ C4 $0.3754 (6)$ $0.7252 (4)$ $1.0842 (4)$ $0.0127 (8)$ C5 $0.1390 (6)$ $0.3577 (4)$ $0.8671 (4)$ $0.0149 (8)$ H5 0.1355 0.3802 0.9485 $0.018*$ C6 $0.0828 (7)$ $0.2336 (5)$ $0.8242 (5)$ $0.0200 (9)$ H6 0.0424 0.1735 0.8760 $0.024*$ C7 $0.0864 (7)$ $0.1993 (5)$ $0.7068 (4)$ $0.0198 (9)$ H7 0.0504 0.1151 0.6768 $0.024*$ C9 $0.1991 (4)$ $0.4127 (3)$ $0.67929 (18)$ $0.0146 (8)$ C8 $0.1450 (5)$ $0.2916 (2)$ $0.6299 (2)$ $0.0186 (9)$	H2B	0.1849	0.9696	0.9259	0.025*	
H3A0.38110.91411.05380.021*H3B0.58690.84781.02060.021*C40.3754 (6)0.7252 (4)1.0842 (4)0.0127 (8)C50.1390 (6)0.3577 (4)0.8671 (4)0.0149 (8)H50.13550.38020.94850.018*C60.0828 (7)0.2336 (5)0.8242 (5)0.0200 (9)H60.04240.17350.87600.024*C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	C3	0.4372 (7)	0.8367 (4)	1.0155 (4)	0.0178 (9)	
H3B0.58690.84781.02060.021*C40.3754 (6)0.7252 (4)1.0842 (4)0.0127 (8)C50.1390 (6)0.3577 (4)0.8671 (4)0.0149 (8)H50.13550.38020.94850.018*C60.0828 (7)0.2336 (5)0.8242 (5)0.0200 (9)H60.04240.17350.87600.024*C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	H3A	0.3811	0.9141	1.0538	0.021*	
C4 $0.3754 (6)$ $0.7252 (4)$ $1.0842 (4)$ $0.0127 (8)$ C5 $0.1390 (6)$ $0.3577 (4)$ $0.8671 (4)$ $0.0149 (8)$ H5 0.1355 0.3802 0.9485 $0.018*$ C6 $0.0828 (7)$ $0.2336 (5)$ $0.8242 (5)$ $0.0200 (9)$ H6 0.0424 0.1735 0.8760 $0.024*$ C7 $0.0864 (7)$ $0.1993 (5)$ $0.7068 (4)$ $0.0198 (9)$ H7 0.0504 0.1151 0.6768 $0.024*$ C9 $0.1991 (4)$ $0.4127 (3)$ $0.67929 (18)$ $0.0146 (8)$ C8 $0.1450 (5)$ $0.2916 (2)$ $0.6299 (2)$ $0.0186 (9)$	H3B	0.5869	0.8478	1.0206	0.021*	
C50.1390 (6)0.3577 (4)0.8671 (4)0.0149 (8)H50.13550.38020.94850.018*C60.0828 (7)0.2336 (5)0.8242 (5)0.0200 (9)H60.04240.17350.87600.024*C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	C4	0.3754 (6)	0.7252 (4)	1.0842 (4)	0.0127 (8)	
H50.13550.38020.94850.018*C60.0828 (7)0.2336 (5)0.8242 (5)0.0200 (9)H60.04240.17350.87600.024*C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	C5	0.1390 (6)	0.3577 (4)	0.8671 (4)	0.0149 (8)	
C60.0828 (7)0.2336 (5)0.8242 (5)0.0200 (9)H60.04240.17350.87600.024*C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	Н5	0.1355	0.3802	0.9485	0.018*	
H60.04240.17350.87600.024*C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	C6	0.0828 (7)	0.2336 (5)	0.8242 (5)	0.0200 (9)	
C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	H6	0.0424	0.1735	0.8760	0.024*	
H70.05040.11510.67680.024*C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	C7	0.0864 (7)	0.1993 (5)	0.7068 (4)	0.0198 (9)	
C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)	H7	0.0504	0.1151	0.6768	0.024*	
C8 0.1450 (5) 0.2916 (2) 0.6299 (2) 0.0186 (9)	C9	0.1991 (4)	0.4127 (3)	0.67929 (18)	0.0146 (8)	
	C8	0.1450 (5)	0.2916 (2)	0.6299 (2)	0.0186 (9)	

C10	0.1399 (5)	0.2654 (2)	0.5097 (3)	0.0265 (11)
H10	0.1029	0.1827	0.4759	0.032*
C11	0.1889 (5)	0.3603 (3)	0.43886 (18)	0.0271 (11)
H11A	0.1854	0.3423	0.3567	0.032*
C12	0.2430 (5)	0.4813 (3)	0.4883 (2)	0.0213 (10)
C13	0.2481 (4)	0.5075 (2)	0.6085 (2)	0.0168 (9)
C14	0.2936 (7)	0.5828 (6)	0.4185 (4)	0.0254 (11)
H14	0.2912	0.5683	0.3360	0.030*
C15	0.3446 (7)	0.6986 (5)	0.4710 (4)	0.0220 (10)
H15	0.3765	0.7668	0.4262	0.026*
C16	0.3497 (7)	0.7169 (5)	0.5941 (4)	0.0209 (10)
H16	0.3874	0.7985	0.6304	0.025*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U^{23}
Zn1	0.0119 (2)	0.0110 (2)	0.0096 (2)	0.00101 (17)	0.00101 (17)	0.00212 (17)
01	0.0118 (14)	0.0139 (14)	0.0205 (16)	-0.0007 (11)	0.0005 (12)	0.0029 (12)
O2	0.0160 (16)	0.0179 (16)	0.040 (2)	0.0051 (13)	0.0028 (15)	0.0070 (15)
O3	0.0180 (15)	0.0111 (14)	0.0121 (15)	0.0005 (12)	0.0027 (12)	0.0010 (11)
O4	0.0199 (16)	0.0168 (15)	0.0137 (15)	0.0026 (12)	-0.0020 (12)	0.0013 (12)
O1W	0.0139 (14)	0.0114 (14)	0.0162 (15)	-0.0003 (11)	-0.0003 (12)	0.0035 (12)
O2W	0.036 (2)	0.0172 (17)	0.0267 (19)	0.0008 (15)	-0.0018 (16)	-0.0029 (14)
O3W	0.038 (4)	0.023 (4)	0.026 (4)	0.005 (3)	0.006 (3)	0.003 (3)
N1	0.0130 (18)	0.0134 (17)	0.021 (2)	0.0021 (14)	0.0008 (14)	0.0051 (14)
N2	0.0089 (16)	0.0159 (18)	0.0175 (19)	0.0032 (13)	-0.0017 (14)	-0.0013 (14)
N3	0.0078 (16)	0.027 (2)	0.0135 (18)	0.0044 (14)	0.0017 (13)	0.0069 (15)
C1	0.014 (2)	0.017 (2)	0.016 (2)	0.0014 (16)	0.0028 (16)	0.0052 (17)
C2	0.013 (2)	0.014 (2)	0.037 (3)	0.0018 (16)	0.0014 (19)	0.0100 (19)
C3	0.023 (2)	0.0123 (19)	0.018 (2)	-0.0015 (17)	0.0011 (18)	-0.0002 (16)
C4	0.0091 (18)	0.0126 (19)	0.017 (2)	0.0027 (15)	0.0023 (15)	0.0016 (16)
C5	0.0088 (18)	0.019 (2)	0.016 (2)	0.0008 (15)	-0.0006 (15)	-0.0006 (16)
C6	0.016 (2)	0.018 (2)	0.027 (2)	0.0023 (17)	0.0023 (18)	0.0038 (18)
C7	0.014 (2)	0.019 (2)	0.025 (2)	0.0023 (17)	-0.0019 (18)	-0.0068 (18)
C9	0.0073 (18)	0.024 (2)	0.013 (2)	0.0044 (16)	0.0002 (15)	0.0001 (17)
C8	0.0083 (19)	0.024 (2)	0.023 (2)	0.0015 (16)	0.0000 (16)	-0.0039 (18)
C10	0.011 (2)	0.042 (3)	0.024 (2)	0.004 (2)	-0.0026 (18)	-0.012 (2)
C11	0.013 (2)	0.050 (3)	0.016 (2)	0.005 (2)	-0.0006 (17)	-0.006(2)
C12	0.0075 (18)	0.041 (3)	0.016 (2)	0.0062 (18)	0.0046 (16)	0.0011 (19)
C13	0.0101 (19)	0.026 (2)	0.015 (2)	0.0059 (17)	0.0009 (15)	0.0034 (17)
C14	0.014 (2)	0.053 (3)	0.010 (2)	0.010 (2)	0.0018 (17)	0.008 (2)
C15	0.012 (2)	0.042 (3)	0.016 (2)	0.0095 (19)	0.0052 (16)	0.015 (2)
C16	0.013 (2)	0.033 (3)	0.018 (2)	0.0052 (18)	0.0019 (17)	0.0109 (19)

Geometric parameters (Å, °)

Zn1—03	2.072 (3)	C2—H2B	0.9900
Zn1—N2	2.093 (4)	C3—C4	1.535 (6)

Zn1—N1	2 124 (4)	С3—НЗА	0 9900
Zn1—N3	2 141 (4)	C3—H3B	0.9900
Zn1 - O1W	2.166 (3)	C5-C6	1 401 (6)
7n1-01	2 182 (3)	C5—H5	0.9500
01-C1	1 267 (5)	C6—C7	1.373(7)
0^2 $-C^1$	1.255 (5)	С6—Н6	0.9500
02-C1	1.278 (5)	C7-C8	1 433 (6)
04-C4	1.276 (5)	C7H7	0.9500
$O_1 W H_{11}$	0.8300	C_{0}	1 3900
O1W—H12	0.8399	C_{9} C_{13}	1.3900
O^2W H21	0.8400	C_{8} C_{10}	1.3900
$\begin{array}{c} 02W \\ H22 \end{array}$	0.8400	C_{10} C_{11}	1.3900
02W + 122	0.8400	C10_H10	0.0500
O_2W H_2^2	0.8300	C_{11} C_{12}	1 3000
N1 C2	1 460 (6)	C11_H11A	0.0500
N1 - C2	1.409 (0)	C12 C12	1 3000
	1.475(0)	C12 - C13	1.3900
NI	0.8800	C12-C14	1.440(0) 1.250(8)
$N_2 = C_3$	1.313(0) 1.208(4)	C14 = U13	1.550 (8)
N2	1.398 (4)		0.9300
N3-C12	1.329 (0)	C15_U15	1.413(7)
N_{3}	1.570(5) 1.512(6)		0.9300
$C_1 = C_2$	1.313 (0)	С10—П10	0.9300
C2—H2A	0.9900		
O3—Zn1—N2	98.01 (14)	N1—C3—H3A	108.3
O3— $Zn1$ — $N1$	83.15 (14)	C4—C3—H3A	108.3
N2— $Zn1$ — $N1$	172.78 (14)	N1—C3—H3B	108.3
O3—Zn1—N3	175.75 (14)	C4—C3—H3B	108.3
N2— $Zn1$ — $N3$	79.24 (16)	H3A—C3—H3B	107.4
N1-Zn1-N3	99.99 (16)	04	125.7 (4)
O3-Zn1-O1W	88.31 (12)	04	117.1 (4)
N2— $Zn1$ — $O1W$	92.50 (13)	03-C4-C3	117.2 (4)
N1— $Zn1$ — $O1W$	94.66 (13)	N2-C5-C6	122.7(4)
$N_3 = Zn_1 = O_1 W$	88 57 (13)	N2-C5-H5	118.6
03 - 7n1 - 01	90.74 (12)	С6—С5—Н5	118.6
N2— $Zn1$ — $O1$	93.69 (13)	C7—C6—C5	119.5 (5)
N1 - Zn1 - O1	79.15 (13)	С7—С6—Н6	120.3
N3—Zn1—O1	92.67 (13)	С5—С6—Н6	120.3
O1W - Zn1 - O1	173.81 (12)	C6-C7-C8	119.5 (4)
C1 - O1 - Zn1	114.4 (3)	C6-C7-H7	120.3
C4-O3-Zn1	114.8 (3)	C8—C7—H7	120.3
Zn1-O1W-H11	109.5	C8-C9-C13	120.0
Zn1-O1W-H12	109.4	C8-C9-N2	120.0 121.7(2)
H11—O1W—H12	109.5	C13 - C9 - N2	118.2 (2)
$H_{21} = 0.2W = H_{22}$	108.3	C10-C8-C9	120.0
H31—O3W—H32	110.0	C10-C8-C7	122.4(3)
$C_3 - N_1 - C_2$	114.7 (4)	C9—C8—C7	117.5 (3)
C3-N1-Zn1	105 8 (3)	C8-C10-C11	120.0

C2 N1 7.1	100 4 (2)	C9 C10 U10	120.0
C_2 —NI—ZnI	109.4 (3)	C8-C10-H10	120.0
C3—N1—H1	108.9	C11—C10—H10	120.0
C2—N1—H1	108.9	C12—C11—C10	120.0
Zn1—N1—H1	108.9	C12—C11—H11A	120.0
C5—N2—C9	119.1 (4)	C10-C11-H11A	120.0
C5—N2—Zn1	128.5 (3)	C13—C12—C11	120.0
C9—N2—Zn1	112.3 (3)	C13—C12—C14	118.0 (3)
C16—N3—C13	118 5 (4)	C11—C12—C14	122.0(3)
C16 N3 7n1	129.7(4)	N3_C13_C12	121.9(2)
C_{13} N3 Z_{n1}	129.7 (4) 111 8 (2)	N3 C13 C9	121.9(2) 1181(2)
$C_{13} = 10 = 2.01$	111.0(2) 125.1(4)	C_{12} C_{13} C_{0}	120.0
02 - 01 - 01	123.1(4)	C12 - C13 - C9	120.0
02	116.7 (4)		119.5 (4)
01	118.3 (4)	C15—C14—H14	120.2
N1—C2—C1	114.4 (4)	C12—C14—H14	120.2
N1—C2—H2A	108.7	C14—C15—C16	119.0 (5)
C1—C2—H2A	108.7	C14—C15—H15	120.5
N1—C2—H2B	108.7	С16—С15—Н15	120.5
C1—C2—H2B	108.7	N3—C16—C15	123.0 (5)
H2A—C2—H2B	107.6	N3—C16—H16	118.5
N1—C3—C4	115.9 (4)	C15—C16—H16	118.5
03 - 7n1 - 01 - C1	95 8 (3)	7n1 - 03 - 04 - 03	-10(5)
N2 Z_{n1} $O1$ $C1$	-1661(3)	$\sum_{i=1}^{n} C_{i} C_{i} C_{i} C_{i} C_{i}$	-167.0(4)
$N_2 = Z_{III} = O_1 = C_1$	100.1(3)	N1 - C3 - C4 - O4	107.9 (4)
N1 - 2n1 - 01 - 01	12.9(3)	N1 - C3 - C4 - O3	14.5 (6)
N3—Zn1—O1—C1	-86.8 (3)	C9—N2—C5—C6	1.0 (6)
N2-Zn1-O3-C4	179.4 (3)	Zn1—N2—C5—C6	-175.9 (3)
N1—Zn1—O3—C4	-7.8 (3)	N2—C5—C6—C7	-0.2 (7)
O1W—Zn1—O3—C4	87.1 (3)	C5—C6—C7—C8	-0.9 (7)
O1—Zn1—O3—C4	-86.8 (3)	C5—N2—C9—C8	-0.8 (5)
O3—Zn1—N1—C3	14.2 (3)	Zn1—N2—C9—C8	176.55 (15)
N3—Zn1—N1—C3	-162.9 (3)	C5—N2—C9—C13	176.0 (3)
O1W—Zn1—N1—C3	-73.6 (3)	Zn1—N2—C9—C13	-6.6(3)
O1—Zn1—N1—C3	106.2 (3)	C13—C9—C8—C10	0.0
O3 - Zn1 - N1 - C2	-110.0(3)	N2-C9-C8-C10	176.8 (3)
$N_3 = Zn_1 = N_1 = C_2$	72 9 (3)	$C_{13} - C_{9} - C_{8} - C_{7}$	-1770(3)
$01W_{7n1}N1_{2}$	1623(3)	$N_{2}^{-}C_{9}^{-}C_{8}^{-}C_{7}^{-}$	-0.2(4)
O1 Zn1 N1 C2	-17.9(3)	C_{1} C_{2} C_{3} C_{4} C_{10}	-175.9(3)
$O_1 = Z_1 = N_1 = C_2$	17.9(3)	$C_{0} - C_{1} - C_{0} - C_{10}$	1/3.9(3)
$03 - 2\pi 1 - N2 - C5$	5.5 (4)	$C_0 - C_1 - C_0 - C_1$	1.0 (5)
$N_3 = Zn_1 = N_2 = C_5$	-1/8.0(4)		0.0
O1W—Zn1—N2—C5	94.0 (4)	C/_C8_C10_C11	176.9 (3)
O1—Zn1—N2—C5	-85.9 (4)	C8—C10—C11—C12	0.0
O3—Zn1—N2—C9	-171.7 (2)	C10-C11-C12-C13	0.0
N3—Zn1—N2—C9	5.0 (2)	C10-C11-C12-C14	-179.6 (3)
O1W—Zn1—N2—C9	-83.1 (3)	C16—N3—C13—C12	1.8 (5)
O1—Zn1—N2—C9	97.0 (3)	Zn1—N3—C13—C12	-178.48 (15)
N2—Zn1—N3—C16	176.8 (4)	C16—N3—C13—C9	-179.4 (3)
N1—Zn1—N3—C16	4.1 (4)	Zn1—N3—C13—C9	0.3 (3)
O1W— $Zn1$ — $N3$ — $C16$	-90.4(4)	C11—C12—C13—N3	178.8 (3)

O1—Zn1—N3—C16	83.5 (4)	C14—C12—C13—N3	-1.6 (4)
N2—Zn1—N3—C13	-2.9 (2)	C11—C12—C13—C9	0.0
N1—Zn1—N3—C13	-175.6 (2)	C14—C12—C13—C9	179.6 (3)
O1W—Zn1—N3—C13	89.9 (3)	C8—C9—C13—N3	-178.8 (3)
O1—Zn1—N3—C13	-96.2 (3)	N2-C9-C13-N3	4.2 (3)
Zn1—O1—C1—O2	174.2 (4)	C8—C9—C13—C12	0.0
Zn1—O1—C1—C2	-4.4 (5)	N2-C9-C13-C12	-176.9 (3)
C3—N1—C2—C1	-97.2 (5)	C13-C12-C14-C15	0.2 (5)
Zn1—N1—C2—C1	21.6 (5)	C11—C12—C14—C15	179.8 (3)
O2-C1-C2-N1	169.4 (4)	C12-C14-C15-C16	0.9 (7)
O1-C1-C2-N1	-11.9 (7)	C13—N3—C16—C15	-0.6 (6)
C2—N1—C3—C4	101.9 (4)	Zn1—N3—C16—C15	179.8 (3)
Zn1—N1—C3—C4	-18.9 (4)	C14-C15-C16-N3	-0.8 (7)
Zn1—O3—C4—O4	-178.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N1—H1···O2w	0.88	2.64	3.388 (5)	143	
O1w—H11…O1 ⁱ	0.84	2.17	2.801 (4)	132	
O1w—H12···O3 ⁱⁱ	0.84	1.92	2.757 (4)	172	
O2w—H21···O2 ⁱ	0.84	1.98	2.815 (5)	177	
O2w—H22····O4 ⁱⁱⁱ	0.84	1.92	2.756 (5)	177	
O3w—H31···O2w	0.84	1.94	2.780 (9)	174	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) -*x*+1, -*y*+2, -*z*+2.