organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*R*,4*S*,8*R*,9*R*,12*S*,13*S*,14*R*,16*S*,17*R*,19*R*)-17-[(Ethylsulfanyl)methyl]-9,14-dihydroxy-7,7-dimethyl-2,18-dioxo-3,10-dioxapentacyclo[14.2.1.0^{1,13}.0^{4,12}.0^{8,12}]nonadecan-19-yl acetate acetone solvate

Hao Shi^a* and Hong Xiang Sun^b

^aThe College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^bCollege of Animal Sciences, Zhejiang University, Hangzhou 310029, People's Republic of China Correspondence e-mail: shihao@126.com

Received 27 November 2008; accepted 19 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.044; wR factor = 0.112; data-to-parameter ratio = 12.8.

The title compound, $C_{24}H_{32}O_8S\cdot C_3H_6O$, features three sixmembered and two five-membered rings. The six-membered rings adopt chair, boat and slightly distorted boat conformations whereas one five-membered ring adopts an approximate envelope conformation and the other a twist conformation. Disorder was modelled for the ethylthio group with the ethyl-C atoms resolved over three positions with occupancies of 0.58 (4), 0.23 (4) and 0.19 (3). In the crystal, an $O-H\cdots O$ hydrogen bond links the molecules into chains.

Related literature

For puckering parameters, see: Cremer & Pople (1975). For related literature, see: Yamaguchi *et al.* (1977); Chen *et al.* (1987); He *et al.* (2007); Shi *et al.* (2007).

Experimental

Crystal data

 $C_{24}H_{32}O_8S \cdot C_3H_6O$ $V = 2716.6 (6) Å^3$ $M_r = 538.63$ Z = 4Orthorhombic, $P2_12_12_1$ Mo K α radiationa = 10.6258 (12) Å $\mu = 0.17 \text{ mm}^{-1}$ b = 11.4825 (18) ÅT = 298 (2) Kc = 22.265 (2) Å $0.53 \times 0.32 \times 0.28 \text{ mm}$

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.112$	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
4774 reflections	Absolute structure: Flack (1983),
373 parameters	2053 Friedel pairs
1 restraint	Flack parameter: 0.00 (12)

11871 measured reflections 4774 independent reflections 3201 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.041$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $O5-H5\cdots O8^i$ 0.822.162.952 (4)161

Symmetry code: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This research was supported by the Natural Science Foundation of Zhejiang Province (grant No. Y205318) and the Open Foundation of Key Disciplines within Zhejiang Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2336).

References

Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, Y. Z., Wu, Z. W. & Cheng, P. Y. (1987). Chin. J. Org. Chem. 7, 21–28.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

He, S., Wu, B., Shi, H. & Sun, C. R. (2007). *Chin. J. Struct. Chem.*, **26**, 299–302. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Shi, H., He, S., He, L. & Pan, Y. J. (2007). Chem. J. Chin. Univ. 28, 100-102.

Yamaguchi, M., Taniguchi, M., Kubo, I. & Kubota, T. (1977). Agric. Biol. Chem. 41, 2475–2477.

supporting information

Acta Cryst. (2009). E65, o202 [doi:10.1107/S1600536808043341]

(1*R*,4*S*,8*R*,9*R*,12*S*,13*S*,14*R*,16*S*,17*R*,19*R*)-17-[(Ethylsulfanyl)methyl]-9,14-dihydroxy-7,7-dimethyl-2,18-dioxo-3,10-dioxapentacyclo-[14.2.1.0^{1,13}.0^{4,12}.0^{8,12}]nonadecan-19-yl acetate acetone solvate

Hao Shi and Hong Xiang Sun

S1. Comment

Since the natural product diterpenoid Macrocalyxin J exhibits cytotoxicity against cultures of Hela cells (Shi et al., 2007), the title compound (1), a derivative, was synthesised for investigation. The molecule of (1) is composed of three sixmembered and two five-membered rings, Fig. 1. The cyclohexane ring A (C4-C8/C12) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.525 (4) Å, $\theta = 156.0$ (4)° and $\varphi = 275.2$ (10)°. Ring B (O3/C2/C1/C13/C12/C4) exists in a distorted boat conformation (Q = 0.671 (3) Å, $\theta = 109.0$ (3)° and $\varphi = 94.9$ (3)°) and ring C (C1/C13—C16/C19) adopts a boat conformation (Q = 0.851 (3) Å, θ = 79.9 (2) and φ = 296.0 (2)°). The fivemembered ring D (C1/C18/C17/C16/C19) is twisted on C(16)/C(19), and five-membered ring E (O10/C9/C8/C12/C11) adopts an envelope conformation with C(12) displaced by 0.500 (5)Å from the mean plane of the remaining four atoms. The stereochemistry of the A/B ring juncture is *trans*, and at the B/C ring juncture, *cis*. With the C1, C19 and C16 atoms being located in both rings C and D, an α -configuration is adopted to avoid steric crowding; no evidence was found in this study for the synthesis of the β -configuration. The main difference between (1) and macrocalyxin J (He *et al.*, 2007) is found in ring D. In the latter, the equivalent ring D is conjugated, i.e. is a α -methylenecyclopentanone ring. It has been reported that the α -methylenecyclopentanone group in the Rabdosia diterpenes is highly reactive toward sulfhydryl groups, essential to enzyme function (Yamaguchi et al., 1977). This observation is ascribed to the steric strain within the five-membered ring which increases the reactivity of the conjugated double bond (Chen et al., 1987). Compound (1) was characterised as an acetone solvate. In the crystal structure the constituent molecules are connected via hydrogen bonding, Table 1.

S2. Experimental

Compound (1) was obtained in a two-step syntheses, Scheme 1. In an ice-water bath, Jones reagent (0.2 ml) was added to a solution of Macrocalyxin J (200 mg; isolated from Rabdosia macrocalyx) in acetone (20 ml). After stirring for 20 min, the solution was filtered and added to 15% NaHCO₃ in water (120 ml). The mixture was extracted 3 times with diethyl ether (90 ml). After evaporation of the solvent, a white residue was isolated. Recrystallization from methanol gave 19-acetyloxy-10,13-dideoxy-5-hydroxy-10-oxo, (5 β ,19R)-enmain (175.6 mg) (2), see Scheme. Into an ethanol solution (50 ml) of (2) (150 mg) was added dropwise excess ethanethiol (0.5 ml). After stirring at room temperature for 3 h, the mixture was concentrated *in vacuo* to give an oily residue, which was washed with water (2.0 ml), then recrystallized from CH₃COCH₃ to afford (1) as colorless crystals (127.3 mg).

S3. Refinement

All H atoms were placed in geometrically calculated positions, and allowed to ride on their parent atoms with O-H = 0.82Å and C-H = 0.96 - 0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene- and methine-H, and $1.5U_{eq}$ for other H atoms. The ethyl-C atoms of the ethylthio group were found to be disordered over three positions (C25/C26, C25'/C26', and C25"/C26") with refined occupancies of 0.58 (4), 0.19 (3) and 0.23 (4).

Figure 1

The structure of (1) showing atomic numbering scheme and 30% probability displacement ellipsoids. The ethylthio group is disordered over three positions.

Figure 2

Reaction scheme.

(1*R*,4*S*,8*R*,9*R*,12*S*,13*S*,14*R*, 16*S*,17*R*,19*R*)-17-[(Ethylsulfanyl)methyl]-9,14-dihydroxy-7,7-dimethyl-2,18-dioxo-3,10-dioxapentacyclo[14.2.1.0^{1,13}.0^{4,12}.0^{8,12}] nonadecan-19-yl acetate acetone solvate

F(000) = 1152

 $\theta = 2.6 - 24.5^{\circ}$

 $\mu = 0.17 \text{ mm}^{-1}$ T = 298 K

Needle, colorless

 $0.53 \times 0.32 \times 0.28 \text{ mm}$

 $D_{\rm x} = 1.317 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3142 reflections

Crystal data

 $C_{24}H_{32}O_8S \cdot C_3H_6O$ $M_r = 538.63$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 10.6258 (12) Å b = 11.4825 (18) Å c = 22.265 (2) Å $V = 2716.6 (6) Å^3$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	11871 measured reflections 4774 independent reflections
Radiation source: fine-focus sealed tube	3201 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Bruker, 1999)	$k = -13 \rightarrow 13$
$T_{\min} = 0.915, \ T_{\max} = 0.954$	$l = -23 \rightarrow 26$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2 + 0.2952P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4774 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
373 parameters	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 2053 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.00 (12)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.47821 (11)	0.18342 (10)	0.03744 (4)	0.0714 (3)	
01	0.3800 (2)	-0.2350 (2)	0.24301 (10)	0.0512 (6)	

O2	0.5729 (2)	0.2605 (2)	0.40864 (11)	0.0619 (7)
03	0.3052 (2)	-0.14753 (19)	0.32251 (9)	0.0452 (6)
O4	0.5666 (2)	-0.0665 (2)	0.19581 (10)	0.0529 (6)
05	0.1792 (2)	0.17561 (19)	0.27787 (9)	0.0503 (6)
Н5	0.1552	0.2387	0.2908	0.075*
O6	0.2073 (2)	-0.10279 (18)	0.15674 (9)	0.0399 (5)
07	0.0895 (2)	-0.1727 (2)	0.23175 (10)	0.0564 (7)
08	0.8572 (3)	-0.1043 (3)	0.15591 (13)	0.0797 (9)
O10	0.5889 (2)	0.0790 (2)	0.37478 (10)	0.0525 (6)
C1	0.3555 (3)	-0.0293(3)	0.23341 (13)	0.0358 (7)
C2	0.3480 (3)	-0.1452 (3)	0.26595 (14)	0.0393 (8)
C4	0.2686 (3)	-0.0359(3)	0.34878 (14)	0.0432 (9)
H4	0 1964	-0.0048	0 3266	0.052*
C5	0.2298 (4)	-0.0579(3)	0.41315 (15)	0.0564 (10)
H5A	0 2961	-0.0990	0 4343	0.068*
H5R	0.1542	-0.1051	0.4143	0.068*
C6	0.1012 0.2057(4)	0.0590 (3)	0 44251 (16)	0.0594(10)
H6A	0.1704	0.0463	0.4821	0.071*
H6R	0.1440	0.1013	0.4190	0.071*
C7	0.1440 0.3247 (3)	0.1332 (3)	0.44839 (14)	0.0491 (9)
C8	0.3247(3) 0.3832(3)	0.1532(3) 0.1511(3)	0.38431(13)	0.0471(9)
H8	0.3429	0.2181	0.3650	0.051*
C9	0.542	0.2101 0.1744(3)	0.30072(14)	0.031
C11	0.5214(3)	-0.0131(3)	0.39072(14) 0.35640(14)	0.0434(8)
H11A	0.3033 (3)	-0.0692	0.33040 (14)	0.0429(8)
	0.4944	-0.0522	0.3880	0.051*
C12	0.3380 0.3702(2)	0.0332	0.3213 0.34110 (12)	0.031°
C12 C12	0.3793(3)	0.0438(3)	0.34119(13)	0.0338(7)
U13	0.3838 (3)	0.0813(2)	0.27390 (13)	0.0348 (7)
H13	0.4/13	0.1030	0.2038	0.042^{*}
C14	0.3048 (3)	0.1805 (3)	0.25581 (15)	0.0413 (8)
HI4	0.3424	0.2559	0.2/41	0.050*
	0.3051 (3)	0.2031 (3)	0.18/30(13)	0.0454 (8)
HISA	0.2361	0.2542	0.1764	0.054*
HI5B	0.3828	0.2415	0.1758	0.054*
C16	0.2929 (3)	0.0896 (3)	0.15153 (14)	0.0400 (8)
HI6	0.2374	0.1010	0.1169	0.048*
C17	0.4186 (3)	0.0347 (3)	0.13140 (14)	0.0415 (8)
H17	0.3984	-0.0246	0.1012	0.050*
C18	0.4621 (3)	-0.0291 (3)	0.18731 (13)	0.0391 (8)
C19	0.2390 (3)	-0.0040 (3)	0.19337 (13)	0.0365 (8)
H19	0.1670	0.0244	0.2167	0.044*
C20	0.5225 (4)	0.1088 (3)	0.10578 (15)	0.0566 (10)
H20A	0.5948	0.0598	0.0976	0.068*
H20B	0.5474	0.1660	0.1355	0.068*
C21	0.2897 (4)	0.2544 (4)	0.47245 (16)	0.0684 (11)
H21A	0.2283	0.2894	0.4465	0.103*
H21B	0.3636	0.3025	0.4737	0.103*
H21C	0.2554	0.2471	0.5122	0.103*

C22	0.4149 (4)	0.0758 (3)	0.49357 (14)	0.0628 (11)	
H22A	0.3731	0.0668	0.5315	0.094*	
H22B	0.4879	0.1241	0.4986	0.094*	
H22C	0.4400	0.0008	0.4788	0.094*	
C23	0.1289 (3)	-0.1822(3)	0.18166 (15)	0.0426 (8)	
C24	0.1034 (3)	-0.2786(3)	0.13884 (15)	0.0548 (10)	
H24A	0.1809	-0.3173	0.1292	0.082*	
H24B	0.0667	-0.2476	0.1028	0.082*	
H24C	0.0463	-0.3331	0.1569	0.082*	
C25	0.624 (4)	0.193 (4)	-0.0035 (14)	0.077 (6)	0.58 (4)
H25A	0.6206	0.2573	-0.0320	0.092*	0.58 (4)
H25B	0.6935	0.2066	0.0238	0.092*	0.58 (4)
C26	0.640 (3)	0.0763 (19)	-0.0366 (13)	0.090 (5)	0.58 (4)
H26A	0.7155	0.0784	-0.0603	0.134*	0.58 (4)
H26B	0.5689	0.0632	-0.0624	0.134*	0.58 (4)
H26C	0.6458	0.0143	-0.0078	0.134*	0.58 (4)
C25′	0.607 (6)	0.117 (6)	-0.005 (2)	0.077 (14)	0.19 (3)
H25C	0.6823	0.1330	0.0182	0.092*	0.19 (3)
H25D	0.5931	0.0333	-0.0017	0.092*	0.19 (3)
C26′	0.641 (3)	0.139 (5)	-0.069 (2)	0.090 (15)	0.19 (3)
H26D	0.6900	0.0752	-0.0839	0.134*	0.19 (3)
H26E	0.6883	0.2097	-0.0717	0.134*	0.19 (3)
H26F	0.5651	0.1461	-0.0924	0.134*	0.19 (3)
C25"	0.596 (10)	0.185 (12)	-0.021 (4)	0.09 (2)	0.23 (4)
H25E	0.5544	0.1760	-0.0594	0.108*	0.23 (4)
H25F	0.6365	0.2610	-0.0210	0.108*	0.23 (4)
C26"	0.700 (7)	0.091 (4)	-0.016 (3)	0.090 (13)	0.23 (4)
H26G	0.7770	0.1210	-0.0330	0.134*	0.23 (4)
H26H	0.6747	0.0231	-0.0382	0.134*	0.23 (4)
H26I	0.7131	0.0714	0.0251	0.134*	0.23 (4)
C27	0.8435 (5)	0.0177 (4)	0.2396 (2)	0.1042 (17)	
H27A	0.7813	0.0778	0.2436	0.156*	
H27B	0.9210	0.0432	0.2575	0.156*	
H27C	0.8148	-0.0515	0.2596	0.156*	
C28	0.8640 (4)	-0.0071 (4)	0.1764 (2)	0.0789 (13)	
C29	0.8976 (5)	0.0933 (5)	0.1371 (3)	0.121 (2)	
H29A	0.9781	0.1237	0.1489	0.181*	
H29B	0.8350	0.1531	0.1409	0.181*	
H29C	0.9015	0.0678	0.0960	0.181*	

Atomic displacement paramet	ters	$(Å^2)$
-----------------------------	------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0911 (8)	0.0713 (7)	0.0519 (5)	-0.0094 (7)	0.0110 (5)	0.0107 (6)
01	0.0627 (16)	0.0337 (14)	0.0572 (15)	0.0065 (12)	-0.0024 (12)	-0.0024 (12)
O2	0.0736 (19)	0.0572 (17)	0.0549 (15)	-0.0222 (14)	-0.0119 (13)	0.0024 (14)
03	0.0572 (15)	0.0353 (14)	0.0430 (13)	-0.0039 (11)	0.0002 (11)	0.0028 (11)
O4	0.0424 (14)	0.0578 (16)	0.0584 (15)	0.0122 (13)	0.0034 (12)	0.0013 (13)

supporting information

O5	0.0514 (15)	0.0399 (13)	0.0596 (14)	0.0139 (12)	0.0073 (12)	-0.0035 (12)
06	0.0414 (12)	0.0389 (14)	0.0394 (12)	-0.0081 (11)	0.0005 (10)	-0.0031 (11)
O7	0.0626 (16)	0.0597 (16)	0.0468 (14)	-0.0095 (13)	0.0118 (12)	0.0023 (13)
08	0.071 (2)	0.070 (2)	0.098 (2)	0.0072 (17)	-0.0062 (16)	-0.0238 (19)
O10	0.0470 (14)	0.0542 (16)	0.0563 (14)	-0.0017 (13)	-0.0092 (11)	0.0032 (13)
C1	0.0373 (18)	0.0317 (18)	0.0382 (17)	0.0015 (15)	-0.0010 (14)	0.0006 (15)
C2	0.041 (2)	0.037 (2)	0.0408 (19)	0.0023 (16)	-0.0052 (15)	-0.0010 (16)
C4	0.047 (2)	0.041 (2)	0.0416 (18)	-0.0012 (17)	0.0037 (15)	0.0045 (17)
C5	0.063 (3)	0.058 (3)	0.048 (2)	-0.011 (2)	0.0114 (18)	0.004 (2)
C6	0.062 (2)	0.071 (3)	0.045 (2)	-0.003 (2)	0.0146 (18)	0.000 (2)
C7	0.057 (2)	0.053 (2)	0.0373 (17)	0.0018 (19)	0.0040 (16)	-0.0011 (17)
C8	0.050 (2)	0.042 (2)	0.0355 (16)	-0.0003 (17)	-0.0017 (15)	0.0006 (15)
C9	0.052 (2)	0.047 (2)	0.0377 (18)	-0.007 (2)	-0.0063 (16)	0.0049 (17)
C11	0.047 (2)	0.0375 (19)	0.0440 (18)	0.0004 (17)	-0.0046 (16)	0.0035 (16)
C12	0.0377 (18)	0.0344 (18)	0.0353 (16)	-0.0008 (15)	0.0000 (14)	0.0002 (14)
C13	0.0366 (18)	0.0321 (17)	0.0357 (16)	-0.0017 (15)	0.0003 (14)	-0.0021 (14)
C14	0.047 (2)	0.0361 (19)	0.0408 (17)	0.0009 (17)	-0.0030 (15)	0.0000 (16)
C15	0.054 (2)	0.036 (2)	0.0459 (19)	0.0022 (18)	-0.0027 (16)	0.0038 (16)
C16	0.0428 (19)	0.038 (2)	0.0388 (17)	-0.0013 (17)	-0.0062 (15)	0.0031 (16)
C17	0.043 (2)	0.042 (2)	0.0399 (17)	-0.0026 (17)	0.0018 (15)	-0.0015 (16)
C18	0.041 (2)	0.0352 (19)	0.0410 (18)	0.0019 (16)	0.0004 (15)	-0.0038 (15)
C19	0.0365 (18)	0.0330 (19)	0.0400 (17)	0.0008 (15)	-0.0032 (14)	-0.0010 (15)
C20	0.058 (2)	0.056 (2)	0.056 (2)	-0.008 (2)	0.0032 (18)	0.0025 (19)
C21	0.086 (3)	0.069 (3)	0.050 (2)	0.012 (2)	0.010 (2)	-0.005 (2)
C22	0.080 (3)	0.071 (3)	0.0380 (19)	0.002 (2)	-0.0034 (18)	0.0052 (19)
C23	0.0373 (19)	0.042 (2)	0.049 (2)	-0.0040 (18)	-0.0053 (16)	0.0023 (18)
C24	0.060 (2)	0.048 (2)	0.056 (2)	-0.0148 (19)	-0.0020 (18)	-0.0074 (18)
C25	0.097 (16)	0.071 (15)	0.063 (13)	-0.018 (11)	0.009 (9)	-0.001 (12)
C26	0.103 (12)	0.084 (11)	0.082 (13)	-0.006 (9)	0.001 (10)	-0.016 (10)
C25′	0.10 (4)	0.07 (4)	0.06 (3)	-0.02 (3)	0.009 (19)	0.00 (3)
C26′	0.10 (2)	0.08 (3)	0.08 (3)	-0.01 (2)	0.00 (2)	-0.02 (2)
C25"	0.10 (4)	0.08 (4)	0.08 (5)	-0.01 (3)	0.00 (3)	-0.02 (5)
C26"	0.10 (3)	0.08 (2)	0.08 (2)	-0.01 (2)	0.00 (2)	-0.016 (17)
C27	0.103 (4)	0.092 (4)	0.118 (4)	0.001 (3)	-0.005 (3)	-0.050 (3)
C28	0.050 (3)	0.065 (3)	0.121 (4)	0.005 (3)	-0.012 (3)	-0.015 (3)
C29	0.100 (4)	0.090 (4)	0.173 (6)	0.013 (4)	0.007 (4)	0.007 (4)

Geometric parameters (Å, °)

S1—C25	1.80 (4)	C15—H15B	0.9700	
S1—C20	1.809 (4)	C16—C19	1.534 (4)	
S1—C25"	1.81 (11)	C16—C17	1.543 (4)	
S1—C25′	1.82 (5)	C16—H16	0.9800	
O1—C2	1.200 (4)	C17—C20	1.506 (4)	
O2—C9	1.198 (4)	C17—C18	1.517 (4)	
O3—C2	1.339 (4)	C17—H17	0.9800	
O3—C4	1.461 (4)	C19—H19	0.9800	
O4—C18	1.206 (4)	C20—H20A	0.9700	

05—C14	1.428 (4)	C20—H20B	0.9700
O5—H5	0.8200	C21—H21A	0 9600
06—C23	1.354 (4)	C21—H21B	0.9600
O6—C19	1.437 (4)	C_{21} —H21C	0.9600
07-C23	1 196 (4)	C22—H22A	0.9600
08-C28	1 208 (5)	C22—H22B	0.9600
010-09	1 357 (4)	C^{22} H ²² D	0.9600
010-011	1 441 (4)	C_{23} C_{24}	1 486 (4)
C1-C2	1 517 (4)	C24—H24A	0.9600
C1-C18	1 528 (4)	C24—H24B	0.9600
C1-C19	1 553 (4)	C_{24} H24C	0.9600
C1-C13	1 589 (4)	C_{25} C_{26}	1.54(5)
C4-C5	1.509 (1)	C25—H25A	0.9700
C4-C12	1.512(1) 1 515(4)	C25—H25B	0.9700
C4—H4	0.9800	C26—H26A	0.9600
C5-C6	1 514 (5)	C26—H26B	0.9600
C5H5A	0.9700	C26 H26D	0.9600
C5—H5B	0.9700	$C_{20} = 1120C$	1.50(9)
C6C7	1 531 (5)	C25' C20 C25'_H25C	0.9700
С6—Н6А	0.9700	C25'—H25D	0.9700
C6—H6B	0.9700	C26'—H26D	0.9600
C7-C21	1 537 (5)	C26'—H26E	0.9600
C7-C22	1.537(5)	C26'—H26F	0.9600
C7 - C8	1 569 (4)	$C_{25}^{}C_{26}^{}C_{26}^{$	1.54(15)
C8—C9	1 500 (5)	C25"—H25E	0.9700
C8-C12	1 544 (4)	C25"—H25E	0.9700
C8—H8	0.9800	C26"—H26G	0.9600
C11—C12	1.538 (4)	C26"—H26H	0.9600
C11—H11A	0.9700	C26"—H26I	0.9600
C11—H11B	0.9700	C27—C28	1.453 (6)
C12—C13	1.553 (4)	C27—H27A	0.9600
C13—C14	1.523 (4)	C27—H27B	0.9600
С13—Н13	0.9800	C27—H27C	0.9600
C14—C15	1.537 (4)	C28—C29	1.491 (7)
C14—H14	0.9800	C29—H29A	0.9600
C15—C16	1.533 (4)	C29—H29B	0.9600
С15—Н15А	0.9700	С29—Н29С	0.9600
C25—S1—C20	103.5 (12)	С20—С17—Н17	107.1
C25—S1—C25"	16 (3)	С18—С17—Н17	107.1
C20—S1—C25"	115 (4)	С16—С17—Н17	107.1
C25—S1—C25′	29 (2)	O4—C18—C17	125.6 (3)
C20—S1—C25′	92 (2)	O4—C18—C1	125.2 (3)
C25"—S1—C25'	28 (4)	C17—C18—C1	109.0 (3)
C2—O3—C4	116.7 (2)	O6—C19—C16	107.2 (2)
С14—О5—Н5	109.5	O6—C19—C1	111.4 (2)
C23—O6—C19	116.3 (2)	C16—C19—C1	100.5 (2)
C9—O10—C11	109.9 (3)	O6—C19—H19	112.3

C2-C1-C18	111.2 (3)	C16—C19—H19	112.3
C2—C1—C19	113.3 (3)	C1—C19—H19	112.3
C18—C1—C19	101.8 (2)	C17—C20—S1	113.3 (3)
C2—C1—C13	116.2 (2)	C17—C20—H20A	108.9
C18—C1—C13	103.9 (2)	S1-C20-H20A	108.9
C19—C1—C13	109.1 (2)	C17—C20—H20B	108.9
O1—C2—O3	118.6 (3)	S1-C20-H20B	108.9
O1—C2—C1	122.4 (3)	H20A—C20—H20B	107.7
O3—C2—C1	119.0 (3)	C7—C21—H21A	109.5
O3—C4—C5	107.8 (3)	C7—C21—H21B	109.5
O3—C4—C12	107.0 (2)	H21A—C21—H21B	109.5
C5—C4—C12	114.9 (3)	C7—C21—H21C	109.5
O3—C4—H4	109.0	H21A—C21—H21C	109.5
C5—C4—H4	109.0	H21B—C21—H21C	109.5
C12—C4—H4	109.0	C7—C22—H22A	109.5
C4—C5—C6	107.9 (3)	C7—C22—H22B	109.5
C4—C5—H5A	110.1	H22A—C22—H22B	109.5
С6—С5—Н5А	110.1	C7—C22—H22C	109.5
C4—C5—H5B	110.1	H22A—C22—H22C	109.5
C6—C5—H5B	110.1	H22B—C22—H22C	109.5
H5A—C5—H5B	108.4	O7—C23—O6	122.4 (3)
C5—C6—C7	113.0 (3)	O7—C23—C24	127.0 (3)
С5—С6—Н6А	109.0	O6—C23—C24	110.5 (3)
С7—С6—Н6А	109.0	C23—C24—H24A	109.5
С5—С6—Н6В	109.0	C23—C24—H24B	109.5
С7—С6—Н6В	109.0	H24A—C24—H24B	109.5
H6A—C6—H6B	107.8	C23—C24—H24C	109.5
C6—C7—C21	109.5 (3)	H24A—C24—H24C	109.5
C6—C7—C22	109.4 (3)	H24B—C24—H24C	109.5
C21—C7—C22	108.1 (3)	C26—C25—S1	106 (2)
C6—C7—C8	108.8 (3)	С26—С25—Н25А	110.4
C21—C7—C8	107.1 (3)	S1—C25—H25A	110.4
C22—C7—C8	113.9 (3)	С26—С25—Н25В	110.4
C9—C8—C12	103.0 (3)	S1—C25—H25B	110.4
C9—C8—C7	108.9 (3)	H25A—C25—H25B	108.6
C12—C8—C7	116.9 (3)	С25—С26—Н26А	109.5
С9—С8—Н8	109.2	С25—С26—Н26В	109.5
С12—С8—Н8	109.2	H26A—C26—H26B	109.5
С7—С8—Н8	109.2	С25—С26—Н26С	109.5
O2—C9—O10	120.8 (3)	H26A—C26—H26C	109.5
O2—C9—C8	128.8 (3)	H26B—C26—H26C	109.5
O10—C9—C8	110.4 (3)	C26'—C25'—S1	127 (6)
O10-C11-C12	106.0 (2)	C26'—C25'—H25C	105.6
O10-C11-H11A	110.5	S1—C25′—H25C	105.6
C12—C11—H11A	110.5	C26'—C25'—H25D	105.6
O10-C11-H11B	110.5	S1—C25′—H25D	105.6
C12—C11—H11B	110.5	H25C—C25'—H25D	106.1
H11A—C11—H11B	108.7	C25'—C26'—H26D	109.5

C4—C12—C11	112.2 (3)	С25'—С26'—Н26Е	109.5
C4—C12—C8	115.9 (3)	H26D—C26′—H26E	109.5
C11—C12—C8	100.6 (2)	C25'—C26'—H26F	109.5
C4—C12—C13	107.1 (2)	H26D—C26'—H26F	109.5
C11—C12—C13	107.6 (2)	H26E—C26'—H26F	109.5
C8—C12—C13	113.1 (2)	C26"—C25"—S1	116 (8)
C14—C13—C12	116.6 (2)	С26"—С25"—Н25Е	108.3
C14—C13—C1	112.3 (2)	S1—C25"—H25E	108.3
C12—C13—C1	109.3 (2)	C26"—C25"—H25F	108.3
C14—C13—H13	105.9	S1—C25"—H25F	108.3
С12—С13—Н13	105.9	H25E—C25"—H25F	107.4
C1—C13—H13	105.9	C25"—C26"—H26G	109.5
O5—C14—C13	110.8 (2)	С25"—С26"—Н26Н	109.5
O5—C14—C15	110.8 (3)	H26G—C26"—H26H	109.5
C13—C14—C15	111.1 (3)	С25"—С26"—Н26І	109.5
O5—C14—H14	108.0	H26G—C26"—H26I	109.5
C13—C14—H14	108.0	H26H—C26"—H26I	109.5
C15—C14—H14	108.0	С28—С27—Н27А	109.5
C16—C15—C14	114.2 (3)	С28—С27—Н27В	109.5
C16—C15—H15A	108.7	H27A—C27—H27B	109.5
C14—C15—H15A	108.7	С28—С27—Н27С	109.5
C16—C15—H15B	108.7	Н27А—С27—Н27С	109.5
C14—C15—H15B	108.7	H27B—C27—H27C	109.5
H15A—C15—H15B	107.6	O8—C28—C27	122.6 (5)
C15—C16—C19	108.2 (2)	O8—C28—C29	120.4 (5)
C15—C16—C17	115.2 (3)	C27—C28—C29	117.0 (5)
C19—C16—C17	102.3 (3)	С28—С29—Н29А	109.5
C15—C16—H16	110.3	С28—С29—Н29В	109.5
C19—C16—H16	110.3	H29A—C29—H29B	109.5
С17—С16—Н16	110.3	С28—С29—Н29С	109.5
C20—C17—C18	111.1 (3)	H29A—C29—H29C	109.5
C20—C17—C16	120.9 (3)	H29B—C29—H29C	109.5
C18—C17—C16	102.9 (2)		
C4—O3—C2—O1	179.3 (3)	C2-C1-C13-C12	-7.7 (4)
C4—O3—C2—C1	-0.1 (4)	C18—C1—C13—C12	-130.2 (3)
C18—C1—C2—O1	-29.1 (4)	C19—C1—C13—C12	121.8 (3)
C19—C1—C2—O1	84.8 (4)	C12—C13—C14—O5	-49.6 (3)
C13—C1—C2—O1	-147.7 (3)	C1—C13—C14—O5	77.6 (3)
C18—C1—C2—O3	150.3 (3)	C12—C13—C14—C15	-173.2 (3)
C19—C1—C2—O3	-95.8 (3)	C1—C13—C14—C15	-45.9 (4)
C13—C1—C2—O3	31.7 (4)	O5—C14—C15—C16	-81.9 (3)
C2—O3—C4—C5	-177.2 (3)	C13—C14—C15—C16	41.6 (4)
C2-O3-C4-C12	-53.1 (3)	C14—C15—C16—C19	19.2 (4)
O3—C4—C5—C6	173.9 (3)	C14—C15—C16—C17	-94.5 (3)
C12—C4—C5—C6	54.7 (4)	C15—C16—C17—C20	-43.5 (4)
C4—C5—C6—C7	-65.9 (4)	C19—C16—C17—C20	-160.6 (3)
C5—C6—C7—C21	174.2 (3)	C15—C16—C17—C18	81.1 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 4) (3) 3) 4) (3) 5) 5) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3) 3) 4) (3) 5) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 3) 4) (3) 5) (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4) (3) 5) 5) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4) (3) 5) 5) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3) (3) (3) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5) 3) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3) 3) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< / /////////////////////////////////
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)
O10-C11-C12-C4 -153.8 (2) C18-C1-C19-C16 -41.3 (O10-C11-C12-C8 -29.9 (3) C13-C1-C19-C16 68.1 (3) O10-C11-C12-C13 88.6 (3) C18-C17-C20-S1 178.0 (C9-C8-C12-C4 150.4 (3) C16-C17-C20-S1 -61.4 ((3)
O10-C11-C12-C8 -29.9 (3) C13-C1-C19-C16 68.1 (3) O10-C11-C12-C13 88.6 (3) C18-C17-C20-S1 178.0 (2) C9-C8-C12-C4 150.4 (3) C16-C17-C20-S1 -61.4 (2)	3)
O10-C11-C12-C13 88.6 (3) C18-C17-C20-S1 178.0 (200) C9-C8-C12-C4 150.4 (3) C16-C17-C20-S1 -61.4 (200)	
C9—C8—C12—C4 150.4 (3) C16—C17—C20—S1 -61.4 (2)
	4)
C7—C8—C12—C4 31.1 (4) C25—S1—C20—C17 -149.1	(14)
C9—C8—C12—C11 29.2 (3) C25"—S1—C20—C17 -138 (4)
C7—C8—C12—C11 –90.2 (3) C25′—S1—C20—C17 –122 (2)
C9—C8—C12—C13 -85.3 (3) C19—O6—C23—O7 -1.4 (4	ļ
C7—C8—C12—C13 155.3 (3) C19—O6—C23—C24 179.5 (2)
C4—C12—C13—C14 87.3 (3) C20—S1—C25—C26 84 (2)	
C11—C12—C13—C14 -151.8 (3) C25"—S1—C25—C26 -57 (2))
C8-C12-C13-C14 -41.6 (4) C25'-S1-C25-C26 14 (5)	
C4—C12—C13—C1 -41.3 (3) C25—S1—C25′—C26′ -63 (6)	
C11—C12—C13—C1 79.6 (3) C20—S1—C25'—C26' -177 (6	`
C8—C12—C13—C1 –170.2 (2) C25"—S1—C25'—C26' –29 (7))
C2-C1-C13-C14 -138.8 (3) C25-S1-C25"-C26" 63 (19))
C18-C1-C13-C14 98.8 (3) C20-S1-C25"-C26" 20 (8))
C19—C1—C13—C14 -9.2 (3) C25'—S1—C25"—C26" -16 (6))

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O5—H5…O8 ⁱ	0.82	2.16	2.952 (4)	161

Symmetry code: (i) -x+1, y+1/2, -z+1/2.