

metal-organic compounds

V = 1214.16 (15) Å³

 $0.21 \times 0.16 \times 0.11 \text{ mm}$

Mo $K\alpha$ radiation

 $\mu = 1.44 \text{ mm}^{-1}$

T = 296 (2) K

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A binuclear cobalt(II) complex of an NO₃-donor Schiff base derived from 3-carboxylsalicylaldehyde and 2-nitro-aniline

Zhao-Wen Yu,* Ling Chang, Peng Sun and Min-Hui He

Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China Correspondence e-mail: zhw@henu.edu.cn

Received 30 October 2008; accepted 13 December 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.045; wR factor = 0.123; data-to-parameter ratio = 10.7.

In the crystal structure of the centrosymmetric title complex, bis{ μ -3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoato}dicobalt(II), [Co₂(C₁₄H₈N₂O₅)₂], in which the ligand is 3-[(2nitrophenyl)iminomethyl]-2-oxidobenzoate, a Schiff base synthesized from 2-nitroaniline with 3-carboxylsalicylaldehyde, the two cobalt(II) ions in the molecular unit are bridged by two phenolate O atoms of the ligands. Each metal centre has a distorted square-planar geometry. In the crystal structure, molecules are linked by Co···O interactions involving the nitro O atoms, forming a two-dimensional network. There are also C–H···O and π - π stacking interactions [centroid–centroid distances of 3.5004 (2), 3.6671 (2) and 3.6677 (2) Å] between adjacent benzene rings of the twodimensional networks, leading to the formation of a threedimensional framework.

Related literature

For binuclear cobalt(II) complexes of Schiff base ligands, see: Adams *et al.* (2002); Tone *et al.* (2007). For the design of molecular solids, see: Zheng *et al.* (2003). For bond-valence parameters, see: Brown & Altermatt (1985). For luminescence emission, see: Li *et al.* (2008).

Experimental

Crystal data

 $\begin{bmatrix} Co_2(C_{14}H_8N_2O_5)_2 \end{bmatrix} \\ M_r = 686.31 \\ Monoclinic, P2_1/c \\ a = 8.3398 (6) Å \\ b = 11.0454 (8) Å \\ c = 13.3681 (9) Å \\ \beta = 99.6040 (10)^\circ \end{bmatrix}$

Data collection

Bruker APEXII CCD area-detector	6134 measured reflections
diffractometer	2132 independent reflections
Absorption correction: multi-scan	1536 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.045$
$T_{\rm min} = 0.752, T_{\rm max} = 0.858$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	199 parameters
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
2132 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co1-O3	1.936 (3)	Co1-O2 ⁱ	1.874 (3)
Co1-N1	1.947 (4)	Co1-O3 ⁱ	1.929 (3)
Co1···O4	2.807 (4)	Co1···O5 ⁱⁱ	2.867 (5)
O3-Co1-N1	92.51 (14)	O2 ⁱ -Co1-N1	95.83 (14)
O2 ⁱ -Co1-O3	171.54 (13)	O3 ⁱ -Co1-N1	170.41 (14)
O3-Co1-O3 ⁱ	78.42 (11)	O2 ⁱ -Co1-O3 ⁱ	93.33 (12)

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table	2

Hydrogen-bond	geometry	(Å,	°)	•
---------------	----------	-----	----	---

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8 - H8 \cdots O5^{iii}$	0.93	2.55	3.295 (6)	138
$C12 - H12 \cdots O1^{iv}$	0.93	2.58	3.230 (7)	128

Symmetry codes: (iii) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) x, y, z - 1.

metal-organic compounds

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2076).

References

- Adams, H., Clunas, S., Fenton, D. E., Handley, G. & McHugh, P. E. (2002). *Inorg. Chem. Commun.* 5, 1044–1047.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tone, K., Sakiyama, H., Mikuriya, M., Yamasaki, M. & Nishida, Y. (2007). Inorg. Chem. Commun. 10, 944–947.
- Li, W.-Q., Feng, X., Feng, Y.-L. & Wen, Y.-H. (2008). Chin. J. Inorg. Chem. 24, 873–879.
- Zheng, X.-J., Jin, L.-P., Lu, S.-Z. & Zheng, Y.-Q. (2003). Z. Anorg. Allg. Chem. 629, 2577–2584.

supporting information

Acta Cryst. (2009). E65, m119-m120 [doi:10.1107/S1600536808042487]

A binuclear cobalt(II) complex of an NO₃-donor Schiff base derived from 3carboxylsalicylaldehyde and 2-nitroaniline

Zhao-Wen Yu, Ling Chang, Peng Sun and Min-Hui He

S1. Comment

Weak intermolecular forces, such as hydrogen bonding, $\pi - \pi$ stacking, dipole—dipole attractions, and van der Waals interactions, have been studied in depth and can be used in the design of molecular solids with specific supramolecular structures and functions (Zheng *et al.*, 2003). Numerous binuclear cobalt(II) complexes of Schiff bases have been studied (Tone *et al.*, 2007). To the best of our knowledge, 2-NA (2-nitroaniline) Schiff bases have not been reported up to now. As a result of our interest in the design of organic systems suitable for the assembly of supramolecular compounds, we have synthesized the Schiff base ligand H₂CSNA, from the condensation reaction of 3-carboxylsalicylaldehyde with 2nitroaniline, and its binuclear cobalt(II) complex, [Co₂(CSNA)₂], (I) [where CSNA²⁻ = 3-[(2-nitrophenyl)iminomethyl]-2oxidobenzoate dianion].

Complex (I), a 2-NA Schiff base cobalt(II) complex, consists of centrosymmetric binuclear molecular units of $[Co_2(CSNA)_2]$, as shown in Fig. 1. Selected bond distances and angles are given in Table 1. Each molecular unit contains two CSNA²⁻ anions and two Co²⁺ ions. The two CSNA²⁻ anions act as N1,O2,O3 tridentate ligands to chelate two Co²⁺ ions with the phenolate O-atoms (O3 and O3ⁱ: (i) = -*x* + 2, -*y*, -*z* + 1) as bridging atoms. The distance between the two metal centres is found to be 2.9950 (11) Å. These coordination bonds, forming a basal plane, are of normal strength with average bond length of Co—O 1.914 (3) Å, and Co—N 1.947 (4) Å.

The distances of the nitro group O-atoms O4 and O5ⁱ [symmetry code: (i) -x + 2, -y, -z + 1] to atom Co1 are 2.8066 (44) Å and 2.8667 (44) Å, respectively. Calculated by the formula of $s = \exp[(r_o-r)/B]$, (r = bond length, s = bond value) (Brown & Altermatt, 1985), the two bond values are 0.049 and 0.042. Hence, only weak interactions exist between atoms O4 and Co1, and Co1 and O5ⁱ (Tabel 1). Thus every binuclear cobalt unit interacts with four adjacent ones through four nitro groups, forming a two-dimensional network (Fig. 2). The conformation of the ligand has changed obviously after coordination. It can be deduced that the free ligand might be a planar molecule because all the nonhydrogen atoms are in a conjugated system. In order to fulfil the intramolecular axial interaction of the nitro group, distortion has occurred between the two benzene rings of the ligand. In the binuclear molecular unit, the dihedral angle between the two benzene rings is 64.31 (13)°.

In the crystal structure there are C—H···O(nitro) interactions (Table 2), and relatively strong π ··· π stacking interactions [the distances between the centroids of the adjacent benzene rings are 3.5004 (2) Å, 3.6671 (2) Å and 3.6677 (2) Å] leading to the formation of a three-dimensional framework (Fig. 3).

The emission spectra of ethanol solutions of H₂CSNA and complex (I) were measured at rt. As seen in Fig. 4, the results show that H₂CSNA, exhibits two emissions at 394 nm and 466 nm ($v_{ex} = 351$ nm). Measurement of the complex revealed two emissions at 394 nm and 468 nm ($v_{ex} = 351$ nm). The similarity of the emissions bands of complex (I) and H₂CSNA indicates that the luminescence emission of complex (I) may be assigned to the intraligand emission of the H₂CSNA

ligand (Li et al., 2008).

In summary, an unprecedented 2-nitroaniline Schiff base complex, $[Co_2(CSNA)_2]$, has been synthesized and structurally characterized. This successful synthesis provides a feasible and effective synthetic method for searching and exploring other novel 2-nitroaniline Schiff base complexes.

S2. Experimental

0.166 g (1.0 mmol) of 3-carboxylsalicylaldehyde and 0.138 g (1.0 mmol) of 2-nitroaniline were dissolved in 10 ml of methanol. The mixture was stirred at 60°C, and gradually a yellow precipitate (H₂CSNA) was formed. 1 h later, 10 ml of a methanol solution of 0.08 g (2.0 mmol) NaOH, and 10 ml of a methanol solution of 0.285 g (1.2 mmol) CoCl₂.6H₂O were added to the H₂CSNA solution, sequentially. After sirring for 1 h at 60°C the solution was allowed to cool to rt and then filtered. The filtrate was left to slowly evaporate at rt. After 10 d, blue crystals, suitable for X-ray structural analysis, were formed. FT/IR data for compound (I): 1634 cm⁻¹(s, C=N), 1601 cm⁻¹ (s, benzene ring), 1579 cm⁻¹ (s, v_{as} (COO)), 1299 cm⁻¹ (s, v_{s} (NO₂)).

S3. Refinement

All the H-atoms were included in calculated positions, with C—H distances constrained to 0.93 Å, and refined in the riding-model approximation, with $U_{iso}(H) = 1.2 U_{eq}$ (parent C-atom).

Figure 1

A view of the molecular structure of compound (I), showing the atom-labeling scheme. Atoms labeled (') are generated by the symmetry code -x + 2, -y, -z + 1.

Figure 2

View along the *a*-axis of the two-dimensional network of complex (I).

Figure 3

A view down the c axis of the π -- π stacking interactions between the two-dimensional networks in compound (I).

Figure 4

Emission spectra of the ligand and complex (I) in ethanol solution, $\lambda_{ex} = 351$ nm.

bis{µ-3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoato}dicopper(II)

Crystal data

 $[Co_{2}(C_{14}H_{8}N_{2}O_{5})_{2}]$ $M_{r} = 686.31$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 8.3398 (6) Å b = 11.0454 (8) Å c = 13.3681 (9) Å $\beta = 99.604$ (1)° V = 1214.16 (15) Å³ Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.752, T_{\max} = 0.858$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.123$ S = 1.00 F(000) = 692 $D_x = 1.877 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1063 reflections $\theta = 3.1-22.1^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.21 \times 0.16 \times 0.11 \text{ mm}$

6134 measured reflections 2132 independent reflections 1536 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 13$ $l = -15 \rightarrow 14$

2132 reflections199 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0704P)^2]$ where $P = (F^2 + 2F^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Lambda_{0} = 0.63 \text{ s} \Lambda^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.98614 (6)	0.01580 (5)	0.38763 (4)	0.0353 (2)	
01	0.6445 (5)	0.0607 (5)	0.7562 (3)	0.0940 (18)	
O2	0.8752 (4)	0.0241 (3)	0.7042 (2)	0.0581 (11)	
O3	0.8641 (3)	0.0427 (3)	0.4968 (2)	0.0452 (10)	
O4	1.0672 (5)	0.2394 (4)	0.3097 (3)	0.0765 (17)	
05	1.1737 (5)	0.2946 (4)	0.1830 (4)	0.101 (2)	
N1	0.8176 (4)	0.0891 (3)	0.2876 (3)	0.0456 (12)	
N2	1.0763 (5)	0.2359 (4)	0.2183 (3)	0.0615 (17)	
C1	0.7269 (6)	0.0597 (5)	0.6879 (4)	0.0515 (17)	
C2	0.6501 (5)	0.1047 (4)	0.5856 (3)	0.0430 (16)	
C3	0.7180 (5)	0.0937 (3)	0.4962 (3)	0.0390 (14)	
C4	0.6304 (5)	0.1389 (4)	0.4043 (3)	0.0433 (16)	
C5	0.6823 (6)	0.1325 (4)	0.3083 (4)	0.0501 (17)	
C6	0.4790 (5)	0.1957 (4)	0.4036 (4)	0.0541 (19)	
C7	0.4134 (6)	0.2066 (4)	0.4893 (4)	0.0529 (19)	
C8	0.4995 (5)	0.1602 (4)	0.5784 (4)	0.0502 (17)	
C9	0.8350 (6)	0.0974 (4)	0.1838 (4)	0.0529 (17)	
C10	0.7265 (7)	0.0345 (5)	0.1114 (4)	0.0668 (19)	
C11	0.7394 (7)	0.0423 (5)	0.0094 (4)	0.069 (2)	
C12	0.8596 (7)	0.1094 (5)	-0.0233 (4)	0.065 (2)	
C13	0.9691 (7)	0.1698 (5)	0.0476 (4)	0.071 (2)	
C14	0.9579 (6)	0.1648 (4)	0.1501 (4)	0.0540 (17)	
H5	0.61030	0.16330	0.25350	0.0600*	
H6	0.42290	0.22650	0.34290	0.0650*	
H7	0.31340	0.24430	0.48820	0.0640*	
H8	0.45370	0.16660	0.63700	0.0600*	
H10	0.64530	-0.01270	0.13150	0.0800*	
H11	0.66480	0.00110	-0.03810	0.0830*	
H12	0.86670	0.11380	-0.09190	0.0780*	
H13	1.05180	0.21470	0.02670	0.0850*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0287 (3)	0.0470 (4)	0.0303 (3)	0.0063 (3)	0.0052 (2)	0.0036 (3)
01	0.062 (3)	0.174 (4)	0.049 (2)	0.029 (3)	0.018 (2)	-0.001 (3)
O2	0.048 (2)	0.083 (2)	0.0446 (19)	0.0159 (17)	0.0113 (15)	0.0061 (17)
O3	0.0358 (17)	0.0562 (18)	0.0441 (18)	0.0091 (14)	0.0080 (13)	0.0063 (15)
O4	0.072 (3)	0.091 (3)	0.065 (3)	-0.014 (2)	0.007 (2)	-0.004(2)
O5	0.084 (3)	0.125 (4)	0.107 (4)	-0.035 (3)	0.052 (3)	0.003 (3)
N1	0.040 (2)	0.059 (2)	0.038 (2)	0.0039 (18)	0.0074 (16)	0.0094 (18)
N2	0.055 (3)	0.075 (3)	0.056 (3)	0.000 (2)	0.014 (2)	0.009 (2)
C1	0.046 (3)	0.067 (3)	0.043 (3)	0.005 (2)	0.012 (2)	-0.006 (2)
C2	0.035 (2)	0.047 (3)	0.048 (3)	-0.002 (2)	0.010(2)	-0.005 (2)
C3	0.030(2)	0.038 (2)	0.048 (3)	-0.0018 (18)	0.0033 (19)	-0.001 (2)
C4	0.036 (2)	0.046 (3)	0.049 (3)	-0.004 (2)	0.010 (2)	0.000(2)
C5	0.040 (3)	0.060 (3)	0.049 (3)	0.003 (2)	0.004 (2)	0.010(2)
C6	0.037 (3)	0.053 (3)	0.070 (4)	0.004 (2)	0.002 (2)	0.012 (3)
C7	0.033 (3)	0.059 (3)	0.067 (4)	0.006 (2)	0.009 (2)	-0.002 (3)
C8	0.037 (3)	0.057 (3)	0.058 (3)	-0.002 (2)	0.012 (2)	-0.012 (2)
C9	0.043 (3)	0.063 (3)	0.051 (3)	0.006 (2)	0.003 (2)	0.007 (2)
C10	0.060 (3)	0.076 (4)	0.060 (3)	0.001 (3)	-0.003 (3)	0.001 (3)
C11	0.067 (4)	0.084 (4)	0.050 (3)	0.014 (3)	-0.005 (3)	0.003 (3)
C12	0.066 (4)	0.083 (4)	0.045 (3)	0.022 (3)	0.004 (3)	-0.001 (3)
C13	0.071 (4)	0.083 (4)	0.064 (4)	0.023 (3)	0.027 (3)	0.016 (3)
C14	0.054 (3)	0.059 (3)	0.048 (3)	0.011 (2)	0.006 (2)	0.006(2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Co1—O3	1.936 (3)	C4—C6	1.409 (6)
Co1—N1	1.947 (4)	C6—C7	1.355 (7)
Co1-O2 ⁱ	1.874 (3)	C7—C8	1.383 (7)
Co1–O3 ⁱ	1.929 (3)	C9—C10	1.395 (7)
01—C1	1.231 (7)	C9—C14	1.401 (7)
O2—C1	1.281 (6)	C10—C11	1.388 (8)
O3—C3	1.341 (5)	C11—C12	1.375 (8)
O4—N2	1.237 (6)	C12—C13	1.374 (8)
O5—N2	1.196 (6)	C13—C14	1.390 (7)
N1C5	1.298 (6)	C5—H5	0.9300
N1-C9	1.422 (7)	C6—H6	0.9300
N2-C14	1.457 (6)	C7—H7	0.9300
C1—C2	1.495 (7)	C8—H8	0.9300
C2—C3	1.411 (6)	C10—H10	0.9300
C2—C8	1.386 (6)	C11—H11	0.9300
C3—C4	1.412 (6)	C12—H12	0.9300
C4—C5	1.423 (7)	C13—H13	0.9300
Co1…O4	2.807 (4)	C3…C8 ^{ix}	3.398 (6)
Co1…N2	3.488 (4)	C3…C13 ^{iv}	3.347 (7)

	29(7(5))	CA Coix	2,400(0)
C 1 NO ²	2.807(5)		3.496 (6)
Col···N2 ⁱⁱ	3.404 (4)		3.583 (6)
	3.923 (6)		3.421 (7)
	3.351 (7)	C504	3.417 (7)
01	3.230 (7)	C6···C2 ^{ix}	3.499 (6)
$O2\cdots N2^{1}$	3.057 (5)		3.421 (7)
O2…C9 ¹	2.946 (6)	$C7\cdots C2^{ix}$	3.596 (6)
O2…C14 ⁱ	3.030 (6)	C7···C3 ^{ix}	3.509 (6)
02…03	2.766 (4)	C8····C3 ^{ix}	3.398 (6)
O2…N2 ^{iv}	3.126 (5)	C8····O5 ^x	3.295 (6)
O2···O4 ⁱ	2.961 (6)	C8····C4 ^{ix}	3.496 (6)
O2…N1 ⁱ	2.836 (5)	C11····C13 ^{xi}	3.549 (8)
O3…O2	2.766 (4)	C11···O1 ^{xii}	3.351 (7)
O3····O3 ⁱ	2.444 (4)	C12····C4 ^{viii}	3.421 (7)
O3…N1	2.806 (5)	C12···O1 ^{xii}	3.230 (7)
O3…C13 ^{iv}	3.334 (6)	C12····C3 ^{viii}	3.510(7)
O3…C5	2.891 (6)	C12…C13 ^{xi}	3.437 (8)
O4…Co1	2.807 (4)	C12····C12 ^{xi}	3.351 (8)
O4…N1	2.640 (5)	C13…C11 ^{xi}	3.549 (8)
O4…C5	3.417 (7)	C13····Co1 ^{vi}	3.923 (6)
$O4 \cdots O2^i$	2.961 (6)	C13····C3 ^{viii}	3.347 (7)
O5…C8 ^v	3.295 (6)	C13…C12 ^{xi}	3.437 (8)
O5…Co1 ^{vi}	2.867 (5)	C13····O3 ^{viii}	3.334 (6)
01…H11 ⁱⁱⁱ	2.8100	$C14O2^{i}$	3.030 (6)
01H8	2.3700	C1···H12 ⁱⁱⁱ	3.0400
01H12	2,5800	C5…H10	2 8300
02···H12 ⁱⁱⁱ	2,9100	C8···H5 ^{iv}	3 0700
$04 \cdots H7^{\text{vii}}$	2.8800	C10H5	2 6800
$04 \cdots H12^{iv}$	2.8000	H5…C10	2.6800
05···H13	2.3400	Н5Н6	2.0000
05H6 ^{vii}	2.5400	H5H10	2.2300
05	2.8200		2.5900
N1O3	2.5500		2 8200
N104	2.800(5)	H6H5	2.8200
N1N2	2.040(5)		2.2300
N1C2	2.908(3)	H7U12x	2.8800
NI O2i	3.040(0)		2.3700
N102 ⁴	2.836 (5)		2.3700
N2···Col	3.488 (4)	H805^	2.5500
N2···NI	2.968 (5)	H10C5	2.8300
N2···Colv	3.404 (4)	H10H5	2.5900
$N2\cdots O2^{1}$	3.057 (5)	H11····O1 ^{xn}	2.8100
N2···O2 ^{vm}	3.126 (5)	H12···O1 ^{xn}	2.5800
C1···C6 ^{IX}	3.421 (7)	H12····O2 ^{xn}	2.9100
C2···C6 ^{IX}	3.499 (6)	H12…C1 ^{xn}	3.0400
C2···C4 ^{ix}	3.583 (6)	H12····O4 ^{viii}	2.8100
C2···C7 ^{ix}	3.596 (6)	H13…O5	2.3400
C3…C12 ^{iv}	3.510 (7)	H13…H7 ^v	2.3700
C3····C7 ^{ix}	3.509 (6)		

O3—Co1—N1	92.51 (14)	C4—C6—C7	121.5 (5)
O2 ⁱ —Co1—O3	171.54 (13)	C6—C7—C8	118.1 (4)
O3—Co1—O3 ⁱ	78.42 (11)	C2—C8—C7	123.9 (5)
O2 ⁱ —Co1—N1	95.83 (14)	N1-C9-C10	119.0 (4)
O3 ⁱ —Co1—N1	170.41 (14)	N1-C9-C14	123.2 (4)
O2 ⁱ —Co1—O3 ⁱ	93.33 (12)	C10-C9-C14	117.8 (5)
Co1 ⁱ O2C1	130.1 (3)	C9—C10—C11	120.2 (5)
Co1—O3—C3	130.6 (2)	C10—C11—C12	121.7 (5)
Co1-O3-Co1 ⁱ	101.58 (12)	C11—C12—C13	118.6 (5)
Co1 ⁱ O3C3	127.7 (2)	C12—C13—C14	121.0 (5)
Co1—N1—C5	124.1 (3)	N2—C14—C9	122.8 (5)
Co1—N1—C9	121.2 (3)	N2—C14—C13	116.5 (4)
C5—N1—C9	114.7 (4)	C9—C14—C13	120.8 (5)
O4—N2—O5	122.0 (5)	N1—C5—H5	116.00
O4—N2—C14	119.2 (4)	С4—С5—Н5	116.00
O5—N2—C14	118.6 (4)	С4—С6—Н6	119.00
O1—C1—O2	121.3 (5)	С7—С6—Н6	119.00
O1—C1—C2	117.9 (5)	С6—С7—Н7	121.00
O2—C1—C2	120.8 (4)	С8—С7—Н7	121.00
C1—C2—C3	125.1 (4)	С2—С8—Н8	118.00
C1—C2—C8	117.1 (4)	С7—С8—Н8	118.00
C3—C2—C8	117.8 (4)	С9—С10—Н10	120.00
O3—C3—C2	121.6 (4)	C11—C10—H10	120.00
O3—C3—C4	119.4 (4)	C10-C11-H11	119.00
C2—C3—C4	119.0 (4)	C12—C11—H11	119.00
C3—C4—C5	125.2 (4)	C11—C12—H12	121.00
C3—C4—C6	119.8 (4)	C13—C12—H12	121.00
C5—C4—C6	115.1 (4)	С12—С13—Н13	120.00
N1C5C4	128.1 (5)	C14—C13—H13	120.00
N1—Co1—O3—C3	0.1 (3)	O2—C1—C2—C3	11.4 (7)
N1—Co1—O3—Co1 ⁱ	-176.86 (15)	O2—C1—C2—C8	-169.5 (4)
O3 ⁱ —Co1—O3—C3	176.9 (4)	C1—C2—C3—O3	-1.7 (6)
O3 ⁱ Co1O3Co1 ⁱ	-0.02 (14)	C1—C2—C3—C4	179.0 (4)
O3—Co1—N1—C5	-0.5 (4)	C8—C2—C3—O3	179.1 (4)
O3—Co1—N1—C9	-179.7 (3)	C8—C2—C3—C4	-0.2 (6)
O2 ⁱ —Co1—N1—C5	178.1 (4)	C1—C2—C8—C7	179.9 (4)
O2 ⁱ —Co1—N1—C9	-1.2 (3)	C3—C2—C8—C7	-0.9(7)
N1—Co1—O2 ⁱ —C1 ⁱ	168.2 (4)	O3—C3—C4—C5	1.8 (6)
O3-Co1-O3 ⁱ -Co1 ⁱ	0.02 (14)	O3—C3—C4—C6	-178.2 (4)
O3-Co1-O3 ⁱ -C3 ⁱ	177.1 (3)	C2—C3—C4—C5	-179.0 (4)
Co1 ⁱ —O2—C1—O1	166.4 (4)	C2—C3—C4—C6	1.1 (6)
Co1 ⁱ —O2—C1—C2	-15.3 (7)	C3—C4—C5—N1	-2.4 (8)
Co1—O3—C3—C2	-179.9 (3)	C6—C4—C5—N1	177.6 (4)
Co1—O3—C3—C4	-0.7 (5)	C3—C4—C6—C7	-1.0(7)
Co1 ⁱ —O3—C3—C2	-3.7 (5)	C5—C4—C6—C7	179.0 (4)
Co1 ⁱ —O3—C3—C4	175.5 (3)	C4—C6—C7—C8	0.0 (7)

Co1—N1—C5—C4 C9—N1—C5—C4	1.6 (7) -179.1 (4)	C6—C7—C8—C2 N1—C9—C10—C11	1.0 (7) 179.2 (5)
Co1—N1—C9—C10	116.1 (4)	C14—C9—C10—C11	-1.7 (8)
Co1—N1—C9—C14	-63.1 (5)	N1-C9-C14-N2	-2.0 (7)
C5—N1—C9—C10	-63.3 (6)	N1-C9-C14-C13	-180.0 (4)
C5—N1—C9—C14	117.6 (5)	C10—C9—C14—N2	178.8 (5)
O4—N2—C14—C9	-1.4 (7)	C10-C9-C14-C13	0.9 (7)
O4—N2—C14—C13	176.6 (5)	C9—C10—C11—C12	1.2 (9)
O5—N2—C14—C9	-177.2 (5)	C10-C11-C12-C13	0.0 (9)
O5—N2—C14—C13	0.8 (7)	C11—C12—C13—C14	-0.8 (8)
O1—C1—C2—C3	-170.3 (5)	C12—C13—C14—N2	-177.7 (5)
O1—C1—C2—C8	8.9 (7)	C12—C13—C14—C9	0.4 (8)

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+2, *y*-1/2, -*z*+1/2; (iii) *x*, *y*, *z*+1; (iv) *x*, -*y*+1/2, *z*+1/2; (v) *x*+1, -*y*+1/2, *z*-1/2; (vi) -*x*+2, *y*+1/2, -*z*+1/2; (vii) *x*+1, *y*, *z*; (viii) *x*, -*y*+1/2, *z*-1/2; (ix) -*x*+1, -*y*, -*z*+1; (x) *x*-1, -*y*+1/2, *z*+1/2; (xi) -*x*+2, -*y*, -*z*; (xii) *x*, *y*, *z*-1; (xiii) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
С8—Н8…О1	0.93	2.37	2.713 (7)	102
C8—H8…O5 ^x	0.93	2.55	3.295 (6)	138
C12—H12····O1 ^{xii}	0.93	2.58	3.230 (7)	128
С13—Н13…О5	0.93	2.34	2.657 (7)	100

Symmetry codes: (x) *x*-1, -*y*+1/2, *z*+1/2; (xii) *x*, *y*, *z*-1.