

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2,3,4-Tetrahydro-1,4-methanonaphthalene-2,3-diol

Jian Xu, Hao Xu, Ji-cai Quan, Fei Sha and Cheng Yao*

College of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China Correspondence e-mail: yaocheng@njut.edu.cn

Received 23 November 2008; accepted 5 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.063; wR factor = 0.168; data-to-parameter ratio = 13.4.

The title compound, C₁₁H₁₂O₂, is an intermediate in the synthesis of Varenicline, a nicotinic receptor partial agonist used to treat smoking addiction. In the crystal structure, there is an intramolecular $O-H \cdots O$ hydrogen bond that generates an S(5) ring motif. Intermolecular $O-H \cdots O$ hydrogen bonds form centrosymmetric dimers and also link these dimers into chains along the *a* axis.

Related literature

For background to the use of Varenicline to treat smoking addiction, see: Vetelino, (2004); Coe (2005). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental

Crystal data $C_{11}H_{12}O_2$

 $M_r = 176.21$

organic compounds

Z = 8

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K $0.30 \times 0.20 \times 0.10$ mm

Orthorhombic, Pbca
a = 10.240 (2) Å
b = 6.2370 (12) Å
c = 27.503 (6) Å
V = 1756.5 (6) Å ³

Data collection

Enraf-Nonius CAD-4	1581 independent reflections
diffractometer	1045 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	3 standard reflections
(North et al., 1968)	every 200 reflections
$T_{\min} = 0.973, \ T_{\max} = 0.991$	intensity decay: none
1581 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	118 parameters
$wR(F^2) = 0.168$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
1581 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H1A \cdots O2$ $01 - H1A \cdots O2^{i}$ $02 - H2A \cdots O1^{ii}$	0.85 0.85 0.82	2.16 2.34 1.90	2.578 (3) 2.818 (3) 2.714 (3)	110 116 176

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2556).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Coe, J. W. (2005). J. Med. Chem. 48, 3474-3477.

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vetelino, M. G. (2004). Synthesis, 11, 1755-1758.

supporting information

Acta Cryst. (2009). E65, o79 [doi:10.1107/S1600536808041068]

1,2,3,4-Tetrahydro-1,4-methanonaphthalene-2,3-diol

Jian Xu, Hao Xu, Ji-cai Quan, Fei Sha and Cheng Yao

S1. Comment

The title compound, I, is an important intermediate in the synthesis of Varenicline, a nicotinic receptor partial agonist used to treat smoking addiction (Vetelino, 2004). Varenicline came onto the market in 2006 and displays high affinity for neuronal nicotinic acetylcholine receptors (nAChRs), which mediate the dependence-producing effects of nicotine (Coe, 2005).

We report here the crystal structure of the title compound, (I), Fig. 1. The saturated six-membered C4,C5,C7...C10 ring of the anthracene group carries hydroxy substituents on C8 and C9 and is bridged by the C11 methylene group. In the crystal structure an intramolecular O1—H1A...O2 hydrogen bond generates an S5 ring motif (Bernstein *et al.*, 1995). Intermolecular O1—H1A...O2 hydrogen bonds form centrosymmetric dimers and link these dimers into chains along the *a* axis, Table 2, Figure 2.

S2. Experimental

1,4-Dihydro-1,4-methanonaphthalene (79.5 g, 560 mmol) in acetone (800 ml) and H₂O (100 ml) was stirred with *N*-methyl morpholine N-oxide (67.5 g, 576 mmol). OsO4 (15 ml of a 15 mol% t-BuOH solution, 1.48 mmol,0.26mol%) was added and the mixture was stirred vigorously. After 60 h, the solution was filtered, and the white solid product rinsed with acetone and air-dried (60.9 g). The mother liquor was partially concentrated to an oily solid which was triturated with acetone, filtered and rinsed with acetone to provide additional amounts of the title compound (27.4 g, total 88.3 g, 89%). An X-ray grade crystal of I was grown from acetone (10 ml) at room temperature.

S3. Refinement

H atoms bound to O were located in a difference Fourier map and fixed in these positions with $U_{iso} = 1.5U_{eq}$ (O). Other Hatoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic 0.98Å, $U_{iso} = 1.2U_{eq}$ (C) for CH, 0.97Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂ groups.

Figure 1

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Figure 2

Crystal packing of (I) viewed down the c axis with hydrogen bonds drawn as dashed lines.

1,2,3,4-Tetrahydro-1,4-methanonaphthalene-2,3-diol

Crystal data

 $C_{11}H_{12}O_2$ $M_r = 176.21$ Orthorhombic, Pbca Hall symbol: -P 2ac 2ab a = 10.240 (2) Åb = 6.2370 (12) Åc = 27.503 (6) Å V = 1756.5 (6) Å³ Z = 8

Data collection

Enraf–Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega/2\theta$ scans
Absorption correction: ψ scan
(North <i>et al.</i> , 1968)
$T_{\min} = 0.973, \ T_{\max} = 0.991$
1581 measured reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.063$ Hydrogen site location: inferred from $wR(F^2) = 0.168$ neighbouring sites S = 1.03H-atom parameters constrained 1581 reflections $w = 1/[\sigma^2(F_0^2) + (0.06P)^2 + 3P]$ 118 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.65327 (18)	0.2295 (4)	0.51706 (7)	0.0289 (5)
H1A	0.6083	0.1798	0.4936	0.035*
C1	0.5544 (4)	0.5675 (6)	0.71478 (12)	0.0417 (9)
H1B	0.5950	0.6468	0.7391	0.050*

F(000) = 752 $D_{\rm x} = 1.333 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 10 - 13^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KWhite, colourless $0.30 \times 0.20 \times 0.10$ mm

1581 independent reflections 1045 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.000$ $\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ $h = 0 \rightarrow 12$ $k = 0 \rightarrow 7$ $l = 0 \rightarrow 32$ 3 standard reflections every 200 reflections

intensity decay: none

02	0 40283 (18)	0.1947(3)	0 51141 (7)	0.0287 (6)	
H2A	0.3270	0 2214	0.5040	0.043*	
C2	0.3270 0.4181(4)	0.5663 (6)	0.71136 (12)	0.0392(9)	
U2D	0.2696	0.5005 (0)	0.71130 (12)	0.047*	
ΠΔΒ	0.3080	0.0403	0.7332	0.047	
C3	0.3563 (3)	0.4465 (5)	0.67558 (11)	0.0333 (8)	
H3A	0.2657	0.4456	0.6733	0.040*	
C4	0.4303 (3)	0.3299 (5)	0.64387 (10)	0.0235 (7)	
C5	0.5676 (3)	0.3324 (5)	0.64679 (10)	0.0258 (7)	
C6	0.6296 (3)	0.4508 (6)	0.68204 (11)	0.0359 (8)	
H6A	0.7203	0.4529	0.6840	0.043*	
C7	0.3981 (3)	0.1886 (5)	0.60039 (10)	0.0260 (7)	
H7A	0.3096	0.1286	0.6003	0.031*	
C8	0.4366 (2)	0.3095 (5)	0.55428 (10)	0.0202 (6)	
H8A	0.3991	0.4540	0.5540	0.024*	
С9	0.5897 (2)	0.3180 (5)	0.55809 (10)	0.0214 (7)	
H9A	0.6174	0.4673	0.5621	0.026*	
C10	0.6168 (3)	0.1942 (5)	0.60542 (10)	0.0281 (8)	
H10A	0.7059	0.1395	0.6091	0.034*	
C11	0.5087 (3)	0.0226 (5)	0.60427 (11)	0.0313 (8)	
H11A	0.5142	-0.0706	0.5761	0.038*	
H11B	0.5046	-0.0617	0.6339	0.038*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0170 (9)	0.0410 (13)	0.0288 (11)	-0.0049 (10)	0.0050 (9)	-0.0077 (10)
C1	0.062 (2)	0.034 (2)	0.0297 (18)	-0.0094 (19)	-0.0103 (17)	-0.0012 (16)
O2	0.0185 (10)	0.0364 (13)	0.0311 (12)	0.0070 (10)	-0.0050 (9)	-0.0120 (10)
C2	0.056 (2)	0.034 (2)	0.0277 (18)	0.0070 (18)	0.0077 (16)	-0.0010 (15)
C3	0.0305 (17)	0.0378 (19)	0.0315 (17)	0.0057 (16)	0.0044 (14)	0.0014 (15)
C4	0.0233 (15)	0.0265 (17)	0.0206 (15)	0.0022 (13)	0.0038 (12)	0.0031 (13)
C5	0.0254 (15)	0.0266 (17)	0.0255 (16)	0.0016 (13)	-0.0039 (12)	0.0037 (13)
C6	0.0338 (18)	0.041 (2)	0.0324 (18)	-0.0073 (17)	-0.0066 (15)	0.0035 (16)
C7	0.0203 (14)	0.0264 (17)	0.0315 (17)	-0.0076 (13)	0.0012 (12)	-0.0020 (14)
C8	0.0156 (14)	0.0181 (15)	0.0270 (15)	0.0034 (12)	-0.0020 (12)	-0.0022 (13)
C9	0.0146 (13)	0.0233 (15)	0.0263 (15)	-0.0023 (12)	0.0022 (12)	-0.0024 (13)
C10	0.0200 (15)	0.0345 (19)	0.0297 (16)	0.0114 (14)	-0.0018 (12)	0.0050 (15)
C11	0.0453 (19)	0.0222 (16)	0.0265 (16)	0.0034 (15)	0.0021 (14)	0.0030 (14)

Geometric parameters (Å, °)

01-C9	1.415 (3)	C5—C10	1.513 (4)	
O1—H1A	0.8501	C6—H6A	0.9300	
C1—C6	1.390 (5)	C7—C8	1.527 (4)	
C1—C2	1.399 (5)	C7—C11	1.538 (4)	
C1—H1B	0.9300	C7—H7A	0.9800	
O2—C8	1.422 (3)	C8—C9	1.572 (4)	
O2—H2A	0.8200	C8—H8A	0.9800	

C2—C3	1.388 (5)	C9—C10	1.539 (4)
C2—H2B	0.9300	С9—Н9А	0.9800
C3—C4	1.365 (4)	C10—C11	1.540 (4)
С3—НЗА	0.9300	C10—H10A	0.9800
C4—C5	1.408 (4)	C11—H11A	0.9700
C4—C7	1.522 (4)	С11—Н11В	0.9700
C5—C6	1.374 (4)		
C9—O1—H1A	119.8	С11—С7—Н7А	115.1
C6—C1—C2	120.4 (3)	O2—C8—C7	112.1 (2)
C6—C1—H1B	119.8	O2—C8—C9	108.3 (2)
C2—C1—H1B	119.8	C7—C8—C9	102.6 (2)
C8—O2—H2A	109.5	O2—C8—H8A	111.1
C3—C2—C1	120.3 (3)	С7—С8—Н8А	111.1
С3—С2—Н2В	119.8	С9—С8—Н8А	111.1
C1—C2—H2B	119.8	O1—C9—C10	113.4 (2)
C4—C3—C2	119.1 (3)	O1—C9—C8	113.1 (2)
С4—С3—НЗА	120.4	C10—C9—C8	102.6 (2)
С2—С3—НЗА	120.4	O1—C9—H9A	109.2
C3—C4—C5	120.8 (3)	С10—С9—Н9А	109.2
C3—C4—C7	133.6 (3)	С8—С9—Н9А	109.2
C5—C4—C7	105.5 (2)	C5—C10—C9	106.9 (2)
C6—C5—C4	120.5 (3)	C5—C10—C11	99.9 (2)
C6—C5—C10	133.1 (3)	C9—C10—C11	101.7 (2)
C4—C5—C10	106.4 (3)	C5-C10-H10A	115.5
C5—C6—C1	118.9 (3)	C9—C10—H10A	115.5
С5—С6—Н6А	120.6	C11—C10—H10A	115.5
С1—С6—Н6А	120.6	C7—C11—C10	93.6 (2)
C4—C7—C8	108.1 (2)	C7—C11—H11A	113.0
C4—C7—C11	100.1 (2)	C10-C11-H11A	113.0
C8—C7—C11	101.5 (2)	C7—C11—H11B	113.0
С4—С7—Н7А	115.1	C10-C11-H11B	113.0
С8—С7—Н7А	115.1	H11A—C11—H11B	110.4
C6—C1—C2—C3	0.8 (5)	C11—C7—C8—C9	-37.4 (3)
C1—C2—C3—C4	0.0 (5)	O2—C8—C9—O1	5.3 (3)
C2—C3—C4—C5	-0.7 (5)	C7—C8—C9—O1	124.1 (2)
C2—C3—C4—C7	-178.0 (3)	O2—C8—C9—C10	-117.2 (2)
C3—C4—C5—C6	0.7 (5)	C7—C8—C9—C10	1.5 (3)
C7—C4—C5—C6	178.6 (3)	C6—C5—C10—C9	-107.6 (4)
C3—C4—C5—C10	-177.9 (3)	C4—C5—C10—C9	70.6 (3)
C7—C4—C5—C10	0.1 (3)	C6—C5—C10—C11	146.8 (3)
C4—C5—C6—C1	0.2 (5)	C4—C5—C10—C11	-34.9 (3)
C10-C5-C6-C1	178.2 (3)	O1—C9—C10—C5	168.1 (2)
C2—C1—C6—C5	-0.9 (5)	C8—C9—C10—C5	-69.6 (3)
C3—C4—C7—C8	106.6 (4)	O1—C9—C10—C11	-87.6 (3)
C5—C4—C7—C8	-71.0 (3)	C8—C9—C10—C11	34.7 (3)
C3—C4—C7—C11	-147.6 (3)	C4—C7—C11—C10	-53.4 (2)

C5—C4—C7—C11	34.8 (3)	C8—C7—C11—C10	57.6 (2)
C4—C7—C8—O2	-176.5 (2)	C5-C10-C11-C7	53.4 (2)
C11—C7—C8—O2	78.7 (3)	C9—C10—C11—C7	-56.4 (2)
C4—C7—C8—C9	67.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
01—H1A····O2	0.85	2.16	2.578 (3)	110	
O1—H1A····O2 ⁱ	0.85	2.34	2.818 (3)	116	
O2—H2A···O1 ⁱⁱ	0.82	1.90	2.714 (3)	176	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1/2, -*y*+1/2, -*z*+1.