Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(4-Biphenyl-1-yl)-3-hydroxy-1-phenylprop-2-en-1-one

Chunyang Zheng,^a* Dunjia Wang^b and Ling Fan^b

^aHubei Key Laboratory of Bioanalytical Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China, and ^bCollege of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China

Correspondence e-mail: zcy800204@163.com

Received 10 December 2008; accepted 15 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.078; wR factor = 0.154; data-to-parameter ratio = 13.2.

In the title compound, $C_{21}H_{16}O_2$, the six crystallographically independent molecules (Z' = 6) all exist in the enolized form. Strong intramolecular hydrogen bonds are observed: one approximate H-atom-centered $O \cdots H \cdots O$ hydrogen bond, two tautomeric forms $O-H \cdots O$ (three molecules) and $O \cdots H-O$ (two molecules). Only one weak intermolecular $C-H \cdots O$ hydrogen bond between two neighboring molecules is observed in the crystal structure. In addition, eight very weak non-conventional intermolecular $C-H \cdots \pi$ hydrogen-bonding contacts between molecules are observed.

Related literature

For proton transfer in solid 1-phenylbutane-1,3-dione and related 1,3-diones, see: Vila *et al.* (1991). For the crystal structures of eight intramolecular hydrogen-bonded 1,3-diaryl-1,3-propanedione enols, see: Bertolasi *et al.* (1991). For a discussion of the covalent *versus* the electrostatic nature of the strong hydrogen bond, see: Gilli *et al.* (2004). For electron transfer reactions of aromatic α,β -epoxy ketones, see: Hase-gawa *et al.* (1997). For 1,3-diketones used as ligands, see: Jang *et al.* (2006). For weak hydrogen bonds, see: Desiraju & Steiner (2001).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.980, T_{\rm max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.078$
$wR(F^2) = 0.154$
S = 1.07
16514 reflections
1255 parameters

H atoms treated by a mixture of

55512 measured reflections

 $R_{\rm int} = 0.034$

16514 independent reflections

9991 reflections with $I > 2\sigma(I)$

II atoms treated by a mixture o	2
independent and constrained	
refinement	
$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1A···O2	1.20 (5)	1.33 (5)	2.480 (4)	156 (4)
$O3-H3A\cdots O4$	1.21 (4)	1.33 (4)	2.479 (4)	156 (3)
$O5-H5A\cdots O6$	1.33 (5)	1.22 (5)	2.474 (4)	152 (4)
$O7 - H7A \cdots O8$	1.28 (5)	1.26 (5)	2.465 (4)	152 (4)
O9−H9A…O10	1.20 (5)	1.34 (5)	2.473 (4)	154 (3)
O11−H11A···O12	1.33 (5)	1.25 (5)	2.494 (4)	152 (4)
$C122 - H122 \cdot \cdot \cdot O10^{i}$	0.93	2.58	3.429 (5)	152
$C19-H19\cdots Cg10^{ii}$	0.93	2.93	3.739 (5)	147
$C23-H23\cdots Cg17^{iii}$	0.93	2.90	3.714 (4)	146
$C32-H32\cdots Cg17^{iv}$	0.93	2.94	3.749 (4)	147
$C39-H39\cdots Cg3^{i}$	0.93	2.82	3.674 (5)	152
$C48 - H48 \cdots Cg11^{v}$	0.93	2.79	3.618 (4)	149
$C69 - H69 \cdots Cg8^{i}$	0.93	2.95	3.820 (4)	155
$C93 - H93 \cdots Cg2^{vi}$	0.93	3.00	3.692 (3)	133
$C107 - H107 \cdot \cdot \cdot Cg14^{i}$	0.93	2.83	3.670 (4)	151

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) -x, -y, -z + 1; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 2, -y, -z + 1. *Cg2* is the centroid of atoms C7–C12, *Cg3* of atoms C16–C21, *Cg8* of atoms C49–C54, *Cg10* of atoms C64–C69, *Cg11* of atoms C70–C75, *Cg14* of atoms C91–C96 and *Cg17* of atoms C112–C117.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors are grateful to Hubei Normal University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2145).

References

- Bertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.
- Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (2001). *The Weak Hydrogen Bond In Structural Chemistry and Biology*. IUCr Monographs on Crystallography No. 9. Oxford University Press.
- Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845–3855.
- Hasegawa, E., Ishiyama, K., Fujita, T., Kato, T. & Abe, T. (1997). J. Org. Chem. 62, 2396–2400.
- Jang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718–725.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem. 95, 5069-5073.

supporting information

Acta Cryst. (2009). E65, o160-o161 [doi:10.1107/S1600536808042566]

3-(4-Biphenyl-1-yl)-3-hydroxy-1-phenylprop-2-en-1-one

Chunyang Zheng, Dunjia Wang and Ling Fan

S1. Comment

Both in solution and in the solid state, considerable attention has been focused on the structures of 1,3-diketones due to their enolic tautomeric forms and their ability to form strong intermolecular or intramolecular hydrogen bonds (Vila *et al.*, 1991; Bertolasi *et al.*, 1991; Gilli *et al.*, 2004). These compounds posses sometimes unique chemical properties, which make them extremely attractive as intermediates in syntheses (Hasegawa *et al.*, 1997). They are also used widely in the chemistry of metallocomplexes (Jang *et al.*, 2006).

The crystal structure of the title compound (Fig. 1), has six independent molecules which all exist in the enol form, stabilized by intramolecular hydrogen bonds. The O—H distances of enol six ring and dihedral angles in six independent molecules are different. In molecule 4, the intramolecular O···H···O hydrogen bond can be described as approximately proton-centered, and the others as dynamic or static mixtures (Gilli *et al.*, 2004) of two tautomeric O—H···O and O···H—O forms. Molecules 1, 2, 5 belong to O—H···O, and molecules 3 and 6 to the O···H—H tautomer (Table 1). In addition, there is only one weak intermolecular hydrogen bond between molecules 5 and 6, and other pairs of molecules do not show any C—H···O contacts, but probably C—H··· π interactions (Table 1). Details of such non-conventional π contacts are reviewed by Desiraju & Steiner (2001). The following Cgs in Table 1 are the centroids of the π acceptor ring systems: Cg2 = C7 - C12, Cg3 = C16 - C21, Cg8 = C49 - C54, Cg10 = C64 - C69, Cg11 = C70 - C75, Cg14 = C91 - C96, Cg17 = C112 - C117. The central benzene ring in molecule 1 (C7 - C12) makes dihedral angles of 28.04 (8) and 9.01 (7) ° with the benzene rings C1 - C6 and C16 - C21, respectively; in the other five molecules, the corresponding angles are 18.49 (3) and 5.74 (2) °, 30.57 (5) and 12.48 (4) °, 26.58 (4) and 29.54 (3) °, 25.09 (5) and 28.07 (3) °, 27.68 (2) and 13.52 (4) °, respectively.

S2. Experimental

1-(4-bilphenyl)ethanone (7.84 g, 0.04 mol), ethyl benzoate (6.02 g, 0.04 mol), NaNH₂ (1.95 g, 0.05 mol) and dry ether (100 ml) were placed into round bottom flask. The mixture was stirred 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO₃ solution, dried over anhydrous Na₂SO₄ and was removed by evaporation. The residual solid was recrystallized from ethanol solution to give the title compound (yield 4.60 g, 38.3%, m.p. 383 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of the CHCl₃—EtOH (1:4) solutions at room temperature.

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$. The H atoms of the hydroxyl groups were located in a difference Fourier map and their positions were refined freely with $U_{iso}(H) = 1.5 U_{iso}(O)$.

Figure 1

A view of the molecule 1 out of six independent molecules of the title compound, showing the atom-labeling scheme for non-hydrogen atoms. Displacement ellipsoids are drawn at the 50% probability level. It is difficult to show all molecules with atom labels. The dashed line indicates an intramolecular hydrogen bond.

Figure 2

A view of the six independent molecules, only O atoms were labelled and all H atoms have been omitted for clarity.

3-(4-Biphenyl-1-yl)-3-hydroxy-1-phenylprop-2-en-1-one

Crystal data	
$C_{21}H_{16}O_2$	Z = 12
$M_r = 300.34$	F(000) = 1896
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.263 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 383 K
a = 10.6087 (13) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 17.814 (2) Å	Cell parameters from 3181 reflections
c = 26.394 (3) Å	$\theta = 2.3 - 21.5^{\circ}$
$\alpha = 72.170 \ (2)^{\circ}$	$\mu=0.08~\mathrm{mm^{-1}}$
$\beta = 86.069 \ (2)^{\circ}$	T = 298 K
$\gamma = 89.450 \ (2)^{\circ}$	Block, colorless
$V = 4736.8 (10) \text{ Å}^3$	$0.20 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.989$ Refinement	55512 measured reflections 16514 independent reflections 9991 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -12 \rightarrow 12$ $k = -21 \rightarrow 19$ $l = -30 \rightarrow 31$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.154$ S = 1.07 16514 reflections 1255 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0276P)^2 + 3.4135P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5878 (3)	-0.04592 (19)	0.92533 (13)	0.0567 (8)	
C2	0.5157 (3)	-0.0527 (2)	0.88522 (14)	0.0655 (9)	
H2	0.4953	-0.0075	0.8584	0.079*	
C3	0.4738 (3)	-0.1249 (2)	0.88418 (15)	0.0744 (10)	
Н3	0.4253	-0.1280	0.8568	0.089*	
C4	0.5028 (4)	-0.1925 (2)	0.92335 (17)	0.0798 (11)	
H4	0.4742	-0.2414	0.9227	0.096*	
C5	0.5745 (4)	-0.1871 (2)	0.96328 (16)	0.0826 (11)	
Н5	0.5947	-0.2326	0.9899	0.099*	
C6	0.6170 (3)	-0.1146 (2)	0.96440 (14)	0.0693 (9)	
H6	0.6659	-0.1119	0.9917	0.083*	
C7	0.6346 (3)	0.03222 (18)	0.92581 (13)	0.0553 (8)	
C8	0.6563 (3)	0.09381 (19)	0.87890 (13)	0.0615 (8)	
H8	0.6389	0.0864	0.8467	0.074*	
C9	0.7029 (3)	0.16578 (18)	0.87886 (13)	0.0600 (8)	

H9	0.7172	0.2056	0.8466	0.072*
C10	0.7289 (3)	0.18012 (19)	0.92559 (13)	0.0574 (8)
C11	0.7056 (3)	0.1192 (2)	0.97302 (13)	0.0641 (9)
H11	0.7211	0.1272	1.0052	0.077*
C12	0.6600 (3)	0.0468 (2)	0.97290 (13)	0.0642 (9)
H12	0.6459	0.0070	1.0051	0.077*
C13	0.7833 (3)	0.2558 (2)	0.92644 (15)	0.0622 (9)
C14	0.7991 (3)	0.32151 (19)	0.88152 (14)	0.0618 (9)
H14	0.7713	0.3193	0.8494	0.074*
C15	0.8558 (3)	0.3906 (2)	0.88353 (15)	0.0655 (9)
C16	0.8740 (3)	0.46205 (19)	0.83683 (15)	0.0644 (9)
C17	0.8367 (3)	0.4650 (2)	0.78706 (16)	0.0777 (10)
H17	0.8013	0.4205	0.7820	0.093*
C18	0.8517 (4)	0.5335 (3)	0.74485 (18)	0.0937 (13)
H18	0.8252	0.5349	0.7117	0.112*
C19	0.9054 (4)	0.5995 (2)	0.7512 (2)	0.0959 (13)
H19	0.9160	0.6454	0.7226	0.115*
C20	0.9433 (4)	0.5968 (2)	0.8004 (2)	0.0927 (13)
H20	0.9796	0.6413	0.8051	0.111*
C21	0.9280 (3)	0.5292 (2)	0.84268 (17)	0.0804 (11)
H21	0.9542	0.5283	0.8758	0.097*
C22	0.2752 (3)	-0.08517 (18)	0.73658 (12)	0.0566 (8)
C23	0.1476 (3)	-0.1027 (2)	0.74626 (16)	0.0811 (11)
H23	0.0934	-0.0672	0.7558	0.097*
C24	0.0991 (4)	-0.1718 (2)	0.74203 (19)	0.0989 (14)
H24	0.0128	-0.1823	0.7488	0.119*
C25	0.1759 (4)	-0.2250 (2)	0.72810 (16)	0.0860 (12)
H25	0.1422	-0.2714	0.7251	0.103*
C26	0.3026 (4)	-0.2099 (2)	0.71852 (15)	0.0828 (11)
H26	0.3560	-0.2460	0.7092	0.099*
C27	0.3508 (3)	-0.1405 (2)	0.72289 (14)	0.0750 (10)
H27	0.4373	-0.1307	0.7164	0.090*
C28	0.3293 (3)	-0.00972 (18)	0.73938 (11)	0.0530 (8)
C29	0.2542 (3)	0.0553 (2)	0.73719 (14)	0.0699 (10)
H29	0.1677	0.0513	0.7345	0.084*
C30	0.3040 (3)	0.1256 (2)	0.73883 (14)	0.0668 (9)
H30	0.2510	0.1682	0.7368	0.080*
C31	0.4318 (3)	0.13387 (18)	0.74341 (12)	0.0533 (8)
C32	0.5075 (3)	0.06965 (19)	0.74514 (13)	0.0626 (9)
H32	0.5941	0.0738	0.7475	0.075*
C33	0.4568 (3)	-0.00013 (19)	0.74349 (13)	0.0628 (9)
H33	0.5102	-0.0424	0.7452	0.075*
C34	0.4883 (3)	0.20721 (18)	0.74734 (11)	0.0537 (8)
C35	0.4209 (3)	0.27266 (19)	0.75000 (12)	0.0598 (8)
H35	0.3335	0.2721	0.7488	0.072*
C36	0.4808 (3)	0.34033 (19)	0.75456 (12)	0.0577 (8)
C37	0.4095 (3)	0.41092 (18)	0.75769 (12)	0.0549 (8)
C38	0.2800 (3)	0.4143 (2)	0.75820 (15)	0.0763 (10)

H38	0.2346	0.3710	0.7562	0.092*
C39	0.2158 (4)	0.4804 (2)	0.76161 (17)	0.0897 (12)
H39	0.1280	0.4811	0.7625	0.108*
C40	0.2813 (4)	0.5451 (2)	0.76369 (15)	0.0813 (11)
H40	0.2384	0.5900	0.7657	0.098*
C41	0.4104 (4)	0.5433 (2)	0.76286 (14)	0.0765 (10)
H41	0.4553	0.5872	0.7641	0.092*
C42	0.47451 (17)	0.47661 (11)	0.76022 (7)	0.0677 (9)
H42	0.5622	0.4758	0.7601	0.081*
C43	0.66144 (17)	0.40465 (11)	0.57063 (7)	0.0542 (8)
C44	0.61617 (17)	0.33663 (11)	0.60936 (7)	0.0605 (8)
H44	0.5620	0.3412	0.6375	0.073*
C45	0.6498(3)	0.2625(2)	0.60731 (14)	0.0706 (10)
H45	0.6176	0.2180	0.6337	0.085*
C46	0.7308(3)	0.2542(2)	0.56646(15)	0.000
U40 H46	0.7542	0.2542(2) 0.2044	0.5651	0.086*
C47	0.7542 0.7767 (3)	0.2044	0.5051 0.52771 (14)	0.030
U47	0.7707 (3)	0.3200 (2)	0.32771 (14)	0.0708 (9)
П47 С49	0.0313	0.3130	0.4999	0.083°
	0.7422 (5)	0.3947 (2)	0.52958 (15)	0.0039 (9)
H48	0.7738	0.4389	0.5027	0.0//*
C49	0.6198 (3)	0.48401 (18)	0.57178 (12)	0.0546 (8)
C50	0.5856 (3)	0.4987 (2)	0.61940 (13)	0.0668 (9)
H50	0.5953	0.4593	0.6514	0.080*
C51	0.5372 (3)	0.5705 (2)	0.62040 (13)	0.0681 (9)
H51	0.5135	0.5784	0.6530	0.082*
C52	0.5238 (3)	0.63086 (19)	0.57366 (13)	0.0580 (8)
C53	0.5617 (3)	0.61754 (19)	0.52591 (13)	0.0630 (9)
H53	0.5558	0.6578	0.4940	0.076*
C54	0.6079 (3)	0.54530 (19)	0.52530 (13)	0.0619 (8)
H54	0.6319	0.5375	0.4927	0.074*
C55	0.4654 (3)	0.7057 (2)	0.57609 (14)	0.0631 (9)
C56	0.4660 (3)	0.77418 (19)	0.53215 (13)	0.0631 (9)
H56	0.5098	0.7746	0.5003	0.076*
C57	0.4030 (3)	0.8408 (2)	0.53510 (14)	0.0636 (9)
C58	0.3959 (3)	0.91392 (19)	0.48994 (13)	0.0582 (8)
C59	0.3344 (3)	0.9786 (2)	0.49812 (15)	0.0704 (9)
H59	0.2974	0.9751	0.5317	0.084*
C60	0.3274 (4)	1.0482 (2)	0.45687 (18)	0.0828 (11)
H60	0.2862	1.0912	0.4629	0.099*
C61	0.3807 (4)	1.0538 (2)	0.40745 (17)	0.0867 (12)
H61	0.3751	1.1004	0.3796	0.104*
C62	0.4426 (4)	0.9904 (2)	0.39914 (15)	0.0927 (13)
H62	0.4797	0.9945	0.3655	0.111*
C63	0.4507 (4)	0.9209 (2)	0.43984 (14)	0.0780 (10)
H63	0.4934	0.8784	0.4335	0.094*
C64	-0.0076(3)	0.64519 (19)	0.60137 (13)	0.0622 (9)
C65	0.0684(4)	0.7057(2)	0.60501(14)	0.0751(10)
H65	0.1556	0.6996	0.6039	0.090*
		0.0//0	0.0007	0.020

C66	0.0184 (4)	0.7749 (2)	0.61019 (16)	0.0867 (12)
H66	0.0718	0.8149	0.6121	0.104*
C67	-0.1092(5)	0.7849 (2)	0.61256 (18)	0.0971 (13)
H67	-0.1432	0.8309	0.6171	0.116*
C68	-0.1863 (4)	0.7270 (2)	0.60815 (19)	0.1032 (14)
H68	-0.2733	0.7340	0.6090	0.124*
C69	-0.1368 (4)	0.6580 (2)	0.60241 (16)	0.0827 (11)
H69	-0.1911	0.6192	0.5992	0.099*
C70	0.0463 (3)	0.56919 (18)	0.59860(12)	0.0575 (8)
C71	0.1609 (3)	0.5435 (2)	0.61956 (14)	0.0711 (10)
H71	0.2045	0.5748	0.6351	0.085*
C72	0.2018(3)	0.4727(2)	0.61792(14)	0.0685 (9)
е <i>т2</i> H72	0.2893	0.4576	0.6320	0.082*
C73	0.1497(3)	0.42378(18)	0.0520 0.59562 (12)	0.002
C74	0.0361(3)	0.44957(19)	0.57408(13)	0.0501(0)
С74 H74	-0.0069	0.4185	0.5582	0.0038 ())
C75	-0.0149(3)	0.52034(10)	0.57562 (13)	0.077
U75	-0.0018	0.52034 (19)	0.57502 (15)	0.0030 (9)
1175 C76	0.0918	0.3338 0.24770 (10)	0.5010	0.070
C70	0.2072(3)	0.34779(19) 0.20011(10)	0.39341(13)	0.0399(8)
U77	0.1470 (3)	0.29011 (19)	0.5691	0.0000 (9)
П// С79	0.0009	0.2990	0.3001	0.080°
C78	0.2039(3)	0.2173(2)	0.38404(14)	0.0679(9)
C79	0.1364 (3)	0.1508(2)	0.57505(14)	0.0655(9)
C80	0.1699 (4)	0.0748 (2)	0.60239 (15)	0.0791 (11)
H80	0.23//	0.0664	0.6239	0.095*
C81	0.1048 (5)	0.0114 (2)	0.59783 (17)	0.0919 (13)
H81	0.1273	-0.0395	0.6168	0.110*
C82	0.0065 (4)	0.0232 (3)	0.5654 (2)	0.0965 (14)
H82	-0.0381	-0.0198	0.5623	0.116*
C83	-0.0265 (4)	0.0987 (3)	0.5371 (2)	0.1031 (14)
H83	-0.0922	0.1068	0.5145	0.124*
C84	0.0386 (4)	0.1624 (2)	0.54246 (17)	0.0881 (12)
H84	0.0162	0.2134	0.5235	0.106*
C85	0.7565 (3)	-0.22780 (17)	0.09724 (12)	0.0546 (8)
C86	0.8340 (3)	-0.2897 (2)	0.09348 (15)	0.0724 (10)
H86	0.9211	-0.2821	0.0889	0.087*
C87	0.7834 (4)	-0.3621 (2)	0.09647 (16)	0.0827 (11)
H87	0.8365	-0.4029	0.0941	0.099*
C88	0.6558 (4)	-0.3740 (2)	0.10284 (15)	0.0753 (10)
H88	0.6220	-0.4228	0.1047	0.090*
C89	0.5777 (3)	-0.3141 (2)	0.10649 (14)	0.0710 (10)
H89	0.4907	-0.3223	0.1109	0.085*
C90	0.6274 (3)	-0.24147 (19)	0.10365 (13)	0.0631 (9)
H90	0.5733	-0.2011	0.1061	0.076*
C91	0.8121 (3)	-0.15018 (17)	0.09457 (12)	0.0541 (8)
C92	0.9297 (3)	-0.12523 (18)	0.06898 (13)	0.0599 (8)
H92	0.9749	-0.1579	0.0530	0.072*
C93	0.9814 (3)	-0.05386 (18)	0.06658 (13)	0.0619 (9)

1102	1.0(12	0.0206	0.0407	0.074*
П93	1.0013	-0.0390	0.0497	0.074°
C94	0.9167 (3)	-0.00299(17)	0.08885(12)	0.0525 (8)
C95	0.7998 (3)	-0.02/04 (18)	0.11531 (13)	0.0630 (9)
H95	0.7554	0.0058	0.1314	0.076*
C96	0.7484 (3)	-0.09917 (18)	0.11802 (13)	0.0632 (9)
H96	0.6697	-0.1140	0.1359	0.076*
C97	0.9728 (3)	0.07476 (19)	0.08389 (13)	0.0590 (8)
C98	0.9081 (3)	0.13606 (18)	0.09470 (13)	0.0625 (9)
H98	0.8248	0.1279	0.1088	0.075*
C99	0.9644 (4)	0.2103 (2)	0.08496 (14)	0.0668 (9)
C100	0.8937 (3)	0.27851 (19)	0.09247 (14)	0.0662 (9)
C101	0.7873 (4)	0.2697 (2)	0.12713 (16)	0.0782 (11)
H101	0.7595	0.2194	0.1473	0.094*
C102	0.7220 (4)	0.3343 (2)	0.13221 (18)	0.0944 (13)
H102	0.6510	0.3277	0.1559	0.113*
C103	0.7623 (5)	0.4089 (3)	0.1020 (2)	0.1068 (15)
H103	0.7178	0.4527	0.1051	0.128*
C104	0.8675 (5)	0.4189 (2)	0.0675 (2)	0.1082 (15)
H104	0.8944	0.4694	0.0472	0.130*
C105	0.9333 (4)	0.3543 (2)	0.06286 (16)	0.0860 (12)
H105	1.0053	0.3613	0.0396	0.103*
C106	0.0752 (3)	-0.15222 (19)	0.25599 (13)	0.0562 (8)
C107	0.0131 (3)	-0.1710 (2)	0.21710 (14)	0.0693 (9)
H107	-0.0088	-0.1308	0.1872	0.083*
C108	-0.0173 (4)	-0.2479 (2)	0.22154 (16)	0.0811 (11)
H108	-0.0593	-0.2589	0.1948	0.097*
C109	0.0138 (4)	-0.3083(2)	0.26497 (19)	0.0856 (12)
H109	-0.0065	-0.3602	0.2679	0.103*
C110	0.0754 (4)	-0.2910(2)	0.30415 (18)	0.0918 (13)
H110	0.0975	-0.3316	0.3338	0.110*
C111	0.1046 (3)	-0.2143(2)	0.29990 (15)	0.0800 (11)
H111	0.1451	-0.2037	0.3272	0.096*
C112	0.1156 (3)	-0.07058(19)	0.25050 (13)	0.0556 (8)
C113	0.1400 (3)	-0.01567(19)	0.20068 (14)	0.0616 (8)
H113	0.1245	-0.0296	0.1705	0.074*
C114	0.1862 (3)	0.0587(2)	0.19444 (14)	0.0631 (9)
H114	0.2022	0.0935	0.1603	0.076*
C115	0.2022	0.0933 0.0824(2)	0.23827(14)	0.0592 (8)
C116	0.2094(3) 0.1825(3)	0.0024(2)	0.23827(14) 0.28834(15)	0.0332(0)
H116	0.1025 (5)	0.0292 (2)	0.3184	0.0757 (10)
C117	0.1356 (3)	-0.0453(2)	0.3104 0.20452 (14)	0.0684 (9)
U117	0.1350 (5)	-0.0794	0.29432(14)	0.0004 (9)
C118	0.1109 0.2652 (3)	0.0794 0.1608 (2)	0.3287	0.082
C110	0.2032(3)	0.1000(2) 0.2225(2)	0.23200(10) 0.18547(15)	0.0090 (9)
U119 U110	0.2092 (3)	0.2223(2)	0.1034/(13)	0.0003 (9)
ППУ С120	0.2310	0.2133	0.1303 0.17056 (17)	0.082
C120	0.3283(3)	0.2940 (2)	0.1/930 (1/)	0.0730(10)
C121	0.3304 (3)	0.3013(2)	0.12977(10)	0.0079 (9)
C122	0.2953 (4)	0.3548 (2)	0.08281 (17)	0.0834 (11)

H122	0.2627	0.3070	0.0819	0.100*
C123	0.3021 (4)	0.4183 (3)	0.03741 (18)	0.1027 (14)
H123	0.2742	0.4128	0.0061	0.123*
C124	0.3493 (4)	0.4896 (3)	0.0375 (2)	0.0992 (13)
H124	0.3534	0.5324	0.0065	0.119*
C125	0.3899 (4)	0.4970 (2)	0.0834 (2)	0.0974 (14)
H125	0.4218	0.5452	0.0838	0.117*
C126	0.3846 (3)	0.4337 (2)	0.12953 (19)	0.0884 (12)
H126	0.4134	0.4396	0.1606	0.106*
O1	0.8195 (3)	0.25799 (15)	0.97179 (10)	0.0871 (8)
H1A	0.857 (4)	0.325 (3)	0.9602 (17)	0.131*
O2	0.8954 (2)	0.39522 (15)	0.92758 (11)	0.0836 (7)
O3	0.6110 (2)	0.20682 (14)	0.74853 (9)	0.0714 (6)
H3A	0.631 (3)	0.272 (2)	0.7511 (14)	0.107*
O4	0.6002 (2)	0.34201 (14)	0.75623 (10)	0.0741 (7)
O5	0.4111 (3)	0.70518 (15)	0.62114 (10)	0.0903 (8)
H5A	0.363 (4)	0.777 (3)	0.6100 (17)	0.135*
O6	0.3433 (3)	0.84226 (15)	0.57949 (10)	0.0863 (8)
O7	0.3205 (2)	0.33673 (15)	0.61127 (11)	0.0833 (7)
H7A	0.347 (4)	0.269 (3)	0.6064 (16)	0.125*
O8	0.3175 (2)	0.20547 (15)	0.59834 (11)	0.0851 (7)
O9	1.0918 (2)	0.08344 (15)	0.06661 (10)	0.0750 (7)
H9A	1.109 (3)	0.152 (3)	0.0606 (14)	0.112*
O10	1.0808 (3)	0.22160 (15)	0.06791 (11)	0.0878 (8)
O11	0.3126 (3)	0.16920 (17)	0.27458 (11)	0.0952 (8)
H11A	0.345 (4)	0.245 (3)	0.2566 (18)	0.143*
012	0.3820 (3)	0.30490 (17)	0.21993 (13)	0.1007 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0436 (18)	0.061 (2)	0.065 (2)	0.0014 (15)	0.0072 (16)	-0.0211 (18)
C2	0.056 (2)	0.061 (2)	0.081 (2)	0.0003 (17)	-0.0077 (18)	-0.0231 (19)
C3	0.068 (2)	0.071 (3)	0.089 (3)	-0.0040 (19)	-0.011 (2)	-0.031 (2)
C4	0.081 (3)	0.064 (3)	0.098 (3)	-0.006 (2)	0.000 (2)	-0.031 (2)
C5	0.099 (3)	0.060(2)	0.083 (3)	-0.002 (2)	-0.007 (2)	-0.014 (2)
C6	0.075 (2)	0.065 (2)	0.066 (2)	-0.0018 (19)	-0.0002 (18)	-0.0169 (19)
C7	0.0460 (18)	0.062 (2)	0.059 (2)	0.0012 (15)	0.0059 (15)	-0.0215 (18)
C8	0.064 (2)	0.065 (2)	0.059 (2)	-0.0029 (17)	-0.0030 (17)	-0.0237 (18)
C9	0.061 (2)	0.054 (2)	0.061 (2)	0.0006 (16)	-0.0005 (16)	-0.0128 (17)
C10	0.0492 (19)	0.061 (2)	0.064 (2)	0.0019 (15)	0.0015 (16)	-0.0241 (18)
C11	0.066 (2)	0.069 (2)	0.060 (2)	0.0010 (18)	0.0013 (17)	-0.0249 (19)
C12	0.067 (2)	0.064 (2)	0.057 (2)	-0.0033 (17)	0.0066 (17)	-0.0139 (17)
C13	0.053 (2)	0.067 (2)	0.072 (2)	0.0048 (17)	-0.0052 (17)	-0.029 (2)
C14	0.055 (2)	0.062 (2)	0.071 (2)	-0.0022 (16)	-0.0109 (17)	-0.0220 (19)
C15	0.053 (2)	0.064 (2)	0.085 (3)	0.0037 (17)	-0.0056 (18)	-0.030 (2)
C16	0.0484 (19)	0.058 (2)	0.089 (3)	0.0004 (16)	-0.0038 (18)	-0.026 (2)
C17	0.065 (2)	0.067 (2)	0.096 (3)	-0.0107 (19)	-0.005 (2)	-0.017 (2)

C18	0.082 (3)	0.087 (3)	0.099 (3)	-0.019 (2)	-0.012 (2)	-0.009 (3)
C19	0.077 (3)	0.069 (3)	0.122 (4)	-0.010 (2)	0.002 (3)	-0.001 (3)
C20	0.082 (3)	0.062 (3)	0.131 (4)	-0.008(2)	0.007 (3)	-0.027(3)
C21	0.070 (2)	0.068 (3)	0.109 (3)	-0.004(2)	-0.003(2)	-0.036(2)
C22	0.062 (2)	0.056 (2)	0.0523 (19)	0.0034 (16)	-0.0018 (16)	-0.0172 (16)
C23	0.065 (2)	0.061 (2)	0.119 (3)	0.0034 (19)	-0.010 (2)	-0.029 (2)
C24	0.069 (3)	0.067 (3)	0.165 (4)	0.001 (2)	-0.023(3)	-0.037(3)
C25	0.098 (3)	0.061 (2)	0.099 (3)	-0.009(2)	-0.023(3)	-0.022(2)
C26	0.104 (3)	0.063 (2)	0.089 (3)	-0.003(2)	0.009 (2)	-0.037(2)
C27	0.072 (2)	0.073 (2)	0.085 (3)	-0.004(2)	0.012 (2)	-0.036(2)
C28	0.053 (2)	0.058 (2)	0.0500 (19)	0.0029 (16)	-0.0018(15)	-0.0201(15)
C29	0.048(2)	0.073(2)	0.097 (3)	0.0004 (18)	-0.0002(18)	-0.040(2)
C30	0.053(2)	0.063(2)	0.093(3)	0.0052(17)	-0.0014(18)	-0.038(2)
C31	0.052(2)	0.060(2)	0.0499(18)	0.0031(16)	-0.0031(15)	-0.0199(15)
C32	0.0468(19)	0.070(2)	0.077(2)	0.0050(17)	-0.0113(16)	-0.0301(19)
C33	0.059(2)	0.060(2)	0.076(2)	0.0110(17)	-0.0099(17)	-0.0301(18)
C34	0.053(2)	0.060(2)	0.0447(18)	-0.0018(16)	-0.0005(15)	-0.0172(15)
C35	0.033(2)	0.061(2) 0.065(2)	0.068(2)	-0.0016(17)	-0.0031(16)	-0.0264(18)
C36	0.058(2)	0.062(2)	0.054(2)	-0.0115(17)	0.0001 (16)	-0.0197(16)
C37	0.050(2)	0.002(2) 0.057(2)	0.051(2)	-0.0034(16)	-0.0026(15)	-0.0195(15)
C38	0.057(2)	0.057(2) 0.063(2)	0.000 + (1)	-0.0023(19)	-0.012(2)	-0.037(2)
C39	0.007(2)	0.002(2) 0.082(3)	0.127(4)	0.0023(13)	-0.012(2)	-0.048(3)
C40	0.072(3)	0.062(2)	0.027(1) 0.095(3)	0.000(2)	-0.020(2)	-0.031(2)
C41	0.091(3)	0.052(2)	0.078(3)	-0.010(2)	-0.016(2)	-0.0263(19)
C42	0.073(2)	0.050(2) 0.064(2)	0.070(2)	-0.0131(19)	-0.0098(18)	-0.0245(18)
C43	0.0445(18)	0.061(2)	0.055(2)	-0.0007(15)	-0.0094(15)	-0.0135(16)
C44	0.056(2)	0.061(2)	0.052(2)	0.0019 (16)	-0.0092(16)	-0.0159(18)
C45	0.020(2)	0.062(2)	0.002(2)	-0.0041(18)	-0.0132(19)	-0.0089(19)
C46	0.077(3)	0.061(2)	0.077(3)	0.0049 (19)	-0.013(2)	-0.021(2)
C47	0.071(2)	0.074(3)	0.070(2)	0.0074 (19)	-0.0018(19)	-0.026(2)
C48	0.063(2)	0.064(2)	0.061(2)	0.0007(17)	-0.0015(17)	-0.0134(17)
C49	0.0493(19)	0.060(2)	0.052(2)	-0.0041(15)	-0.0074(15)	-0.0123(17)
C50	0.080(2)	0.062(2)	0.051(2)	-0.0015(18)	-0.0052(17)	-0.0062(17)
C51	0.083(3)	0.066(2)	0.052(2)	0.0007 (19)	0.0033(18)	-0.0166(18)
C52	0.059(2)	0.060(2)	0.053(2)	-0.0043(16)	-0.0029(16)	-0.0140(17)
C53	0.071(2)	0.061(2)	0.052(2)	0.0008 (17)	-0.0098(17)	-0.0084(17)
C54	0.065 (2)	0.066 (2)	0.055(2)	0.0013 (17)	-0.0022(16)	-0.0189(18)
C55	0.064 (2)	0.065(2)	0.063(2)	-0.0021(17)	-0.0045(18)	-0.0221(19)
C56	0.066 (2)	0.064(2)	0.058(2)	0.0040 (17)	-0.0005(17)	-0.0168(18)
C57	0.061 (2)	0.070(2)	0.065(2)	-0.0046(18)	0.0021 (18)	-0.0292(19)
C58	0.0531 (19)	0.060 (2)	0.064 (2)	-0.0036(16)	-0.0092(16)	-0.0210(18)
C59	0.069 (2)	0.069 (2)	0.076 (2)	0.0100 (19)	-0.0080(19)	-0.027(2)
C60	0.088 (3)	0.068 (3)	0.098 (3)	0.016 (2)	-0.023 (2)	-0.030(2)
C61	0.100 (3)	0.075 (3)	0.080 (3)	0.014 (2)	-0.024(2)	-0.014(2)
C62	0.125 (4)	0.083 (3)	0.062 (3)	0.016 (3)	-0.004 (2)	-0.012 (2)
C63	0.098 (3)	0.065 (2)	0.069 (3)	0.009 (2)	0.000 (2)	-0.020 (2)
C64	0.068 (2)	0.056 (2)	0.062 (2)	-0.0013 (17)	-0.0076 (17)	-0.0170 (17)
C65	0.073 (2)	0.068 (2)	0.091 (3)	0.002 (2)	-0.018 (2)	-0.033 (2)
	× /	· /	· /	× /	× /	× /

C66	0.093 (3)	0.063 (3)	0.112 (3)	0.001 (2)	-0.023 (3)	-0.036 (2)
C67	0.102 (4)	0.068 (3)	0.132 (4)	0.020(2)	-0.028(3)	-0.043(3)
C68	0.082 (3)	0.081 (3)	0.157 (4)	0.023 (2)	-0.031 (3)	-0.047 (3)
C69	0.072 (3)	0.067 (3)	0.115 (3)	0.003 (2)	-0.022(2)	-0.034(2)
C70	0.054 (2)	0.059 (2)	0.058 (2)	-0.0075 (16)	-0.0053 (16)	-0.0165 (16)
C71	0.067 (2)	0.073 (2)	0.084 (3)	-0.0020(19)	-0.018(2)	-0.037(2)
C72	0.060(2)	0.072 (2)	0.080(2)	0.0055 (18)	-0.0227(18)	-0.029(2)
C73	0.0509 (19)	0.059 (2)	0.060 (2)	-0.0048(16)	-0.0032(16)	-0.0178(16)
C74	0.060 (2)	0.059(2)	0.075(2)	-0.0080(17)	-0.0123(18)	-0.0219(18)
C75	0.052(2)	0.060(2)	0.082(2)	0.0000 (16)	-0.0160(17)	-0.0236(18)
C76	0.053(2)	0.064(2)	0.061(2)	-0.0011(17)	-0.0046(16)	-0.0171(17)
C77	0.053(2)	0.066(2)	0.001(2) 0.086(3)	0.0055(17)	-0.0087(18)	-0.031(2)
C78	0.055(2)	0.000(2)	0.000(3)	0.0034(19)	-0.0022(18)	-0.0269(19)
C79	0.050(2)	0.070(3)	0.072(2) 0.074(2)	0.0034(19)	0.0022(10) 0.0044(19)	-0.0269(19)
C80	0.007(2) 0.097(3)	0.050(2)	0.074(2) 0.078(3)	0.0050(10)	-0.001(2)	-0.0200(1)
C81	0.077(3) 0.123(4)	0.005(3)	0.078(3)	-0.003(3)	0.001(2)	-0.027(2)
C82	0.123(4)	0.000(3)	0.037(3)	-0.016(3)	0.009(3)	-0.029(2)
C82	0.101(3)	0.077(3)	0.120(4)	0.010(3)	-0.022(3)	-0.062(3)
C83	0.088(3)	0.088(3)	0.133(4)	0.004(3)	-0.023(3)	-0.003(3)
C04	0.081(3)	0.072(3)	0.122(4)	0.011(2)	-0.021(3)	-0.043(2)
C85	0.039(2)	0.0490(19)	0.039(2)	0.0033(13)	-0.0113(10)	-0.0193(13)
C80	0.033(2)	0.064(2)	0.108(3)	0.0037(17)	-0.0120(19)	-0.039(2)
	0.075(3)	0.037(2)	0.128(3)	0.0077(19)	-0.013(2)	-0.043(2)
C88	0.075(3)	0.057(2)	0.098(3)	-0.0052(19)	-0.013(2)	-0.029(2)
C89	0.061(2)	0.066(2)	0.087(3)	-0.0089(19)	-0.0056 (19)	-0.024(2)
C90	0.059 (2)	0.058 (2)	0.075 (2)	0.0031 (17)	-0.0055 (17)	-0.0244 (18)
C91	0.053 (2)	0.0501 (19)	0.059 (2)	0.0047 (15)	-0.00//(16)	-0.0164 (16)
C92	0.061 (2)	0.056 (2)	0.069 (2)	0.0076 (16)	-0.0012(17)	-0.0282 (17)
C93	0.057 (2)	0.059 (2)	0.072 (2)	-0.0007 (16)	0.0008 (17)	-0.0253 (18)
C94	0.0493 (19)	0.0483 (18)	0.062 (2)	0.0015 (15)	-0.0066 (15)	-0.0184 (16)
C95	0.064 (2)	0.053 (2)	0.077 (2)	0.0032 (17)	0.0024 (18)	-0.0292 (18)
C96	0.053 (2)	0.061 (2)	0.079 (2)	-0.0011 (16)	0.0064 (17)	-0.0284 (18)
C97	0.056 (2)	0.061 (2)	0.064 (2)	0.0019 (17)	-0.0113 (17)	-0.0227 (17)
C98	0.056 (2)	0.055 (2)	0.079 (2)	0.0007 (16)	-0.0056 (17)	-0.0253 (18)
C99	0.069 (2)	0.059 (2)	0.080 (2)	-0.0040 (19)	-0.015 (2)	-0.0297 (19)
C100	0.075 (2)	0.054 (2)	0.076 (2)	-0.0007 (18)	-0.026(2)	-0.0258 (19)
C101	0.087 (3)	0.060 (2)	0.094 (3)	-0.001 (2)	-0.014 (2)	-0.030 (2)
C102	0.103 (3)	0.077 (3)	0.117 (4)	0.018 (3)	-0.016 (3)	-0.048 (3)
C103	0.135 (4)	0.066 (3)	0.133 (4)	0.027 (3)	-0.037 (3)	-0.045 (3)
C104	0.144 (5)	0.056 (3)	0.127 (4)	0.008 (3)	-0.034 (4)	-0.027 (3)
C105	0.106 (3)	0.058 (2)	0.096 (3)	-0.003 (2)	-0.022 (2)	-0.022 (2)
C106	0.0381 (17)	0.066 (2)	0.062 (2)	0.0002 (15)	0.0003 (15)	-0.0163 (18)
C107	0.065 (2)	0.066 (2)	0.075 (2)	0.0034 (18)	-0.0113 (19)	-0.0184 (19)
C108	0.082 (3)	0.071 (3)	0.090 (3)	-0.008 (2)	-0.011 (2)	-0.023 (2)
C109	0.070 (3)	0.067 (3)	0.115 (4)	-0.010 (2)	0.006 (2)	-0.024 (3)
C110	0.080 (3)	0.073 (3)	0.101 (3)	-0.012 (2)	-0.014 (2)	0.007 (2)
C111	0.069 (2)	0.084 (3)	0.074 (3)	-0.012 (2)	-0.007 (2)	-0.004 (2)
C112	0.0372 (17)	0.067 (2)	0.062 (2)	0.0049 (15)	-0.0038 (15)	-0.0192 (18)
C113	0.056 (2)	0.066 (2)	0.066 (2)	0.0043 (17)	-0.0096 (17)	-0.0254 (19)

supporting information

C114	0.060 (2)	0.065 (2)	0.065 (2)	0.0043 (17)	-0.0064 (17)	-0.0217 (18)
C115	0.0479 (19)	0.067 (2)	0.069 (2)	0.0093 (16)	-0.0071 (16)	-0.0292 (19)
C116	0.071 (2)	0.090 (3)	0.070 (3)	0.000 (2)	-0.0104 (19)	-0.038 (2)
C117	0.063 (2)	0.081 (3)	0.060 (2)	-0.0004 (19)	-0.0060 (17)	-0.0192 (19)
C118	0.053 (2)	0.080 (3)	0.085 (3)	0.0089 (18)	-0.0155 (19)	-0.039 (2)
C119	0.061 (2)	0.070 (2)	0.084 (3)	-0.0013 (18)	-0.0140 (19)	-0.034 (2)
C120	0.057 (2)	0.078 (3)	0.100 (3)	0.0080 (19)	-0.021 (2)	-0.048 (2)
C121	0.053 (2)	0.062 (2)	0.096 (3)	0.0003 (17)	-0.0075 (19)	-0.034 (2)
C122	0.096 (3)	0.070 (3)	0.095 (3)	-0.007(2)	-0.004 (2)	-0.041 (2)
C123	0.133 (4)	0.085 (3)	0.092 (3)	-0.017 (3)	-0.005 (3)	-0.028 (3)
C124	0.085 (3)	0.090 (3)	0.120 (4)	-0.015 (2)	-0.003 (3)	-0.028 (3)
C125	0.074 (3)	0.067 (3)	0.151 (4)	-0.011 (2)	-0.022 (3)	-0.029 (3)
C126	0.073 (3)	0.079 (3)	0.126 (4)	-0.002 (2)	-0.030 (2)	-0.043 (3)
01	0.115 (2)	0.0733 (17)	0.0788 (18)	-0.0072 (15)	-0.0237 (16)	-0.0285 (14)
O2	0.0937 (19)	0.0717 (17)	0.094 (2)	-0.0030 (14)	-0.0219 (16)	-0.0346 (15)
03	0.0497 (14)	0.0723 (16)	0.0941 (18)	-0.0024 (12)	-0.0069 (12)	-0.0277 (14)
O4	0.0568 (15)	0.0720 (16)	0.0970 (18)	-0.0068 (12)	-0.0079 (13)	-0.0301 (14)
05	0.127 (2)	0.0739 (17)	0.0641 (16)	0.0133 (16)	0.0173 (15)	-0.0177 (13)
O6	0.106 (2)	0.0730 (17)	0.0753 (17)	0.0084 (15)	0.0215 (15)	-0.0215 (14)
O7	0.0647 (16)	0.0781 (17)	0.115 (2)	0.0099 (13)	-0.0272 (15)	-0.0376 (16)
08	0.0710 (18)	0.0760 (18)	0.114 (2)	0.0137 (14)	-0.0186 (15)	-0.0355 (16)
09	0.0578 (15)	0.0729 (16)	0.0995 (19)	-0.0068 (12)	0.0041 (13)	-0.0359 (14)
O10	0.0745 (18)	0.0729 (17)	0.122 (2)	-0.0160 (14)	0.0023 (16)	-0.0406 (16)
011	0.113 (2)	0.090 (2)	0.093 (2)	-0.0050 (16)	-0.0384 (17)	-0.0355 (16)
012	0.111 (2)	0.086 (2)	0.117 (2)	-0.0121 (16)	-0.0431 (19)	-0.0391 (18)

Geometric parameters (Å, °)

C1—C2	1.382 (4)	С65—Н65	0.9300	
C1—C6	1.386 (4)	C66—C67	1.363 (5)	
C1—C7	1.486 (4)	С66—Н66	0.9300	
С2—С3	1.374 (4)	C67—C68	1.360 (5)	
С2—Н2	0.9300	С67—Н67	0.9300	
C3—C4	1.375 (5)	C68—C69	1.379 (5)	
С3—Н3	0.9300	C68—H68	0.9300	
C4—C5	1.368 (5)	С69—Н69	0.9300	
C4—H4	0.9300	C70—C71	1.385 (4)	
С5—С6	1.382 (5)	C70—C75	1.391 (4)	
С5—Н5	0.9300	C71—C72	1.379 (4)	
С6—Н6	0.9300	C71—H71	0.9300	
С7—С8	1.387 (4)	C72—C73	1.385 (4)	
C7—C12	1.389 (4)	C72—H72	0.9300	
С8—С9	1.378 (4)	C73—C74	1.382 (4)	
С8—Н8	0.9300	C73—C76	1.481 (4)	
C9—C10	1.380 (4)	C74—C75	1.378 (4)	
С9—Н9	0.9300	C74—H74	0.9300	
C10-C11	1.392 (4)	С75—Н75	0.9300	
C10—C13	1.479 (4)	C76—O7	1.293 (4)	

C11—C12	1.382 (4)	C76—C77	1.379 (4)
C11—H11	0.9300	C77—C78	1.399 (4)
C12—H12	0.9300	С77—Н77	0.9300
C13—O1	1.294 (4)	C78—O8	1.280 (4)
C13—C14	1.390 (4)	C78—C79	1.481 (5)
C14—C15	1.393 (4)	C79—C84	1.377 (5)
C14—H14	0.9300	C79—C80	1.378 (5)
C15—O2	1.288 (4)	C80—C81	1.369 (5)
C15—C16	1 479 (5)	C80—H80	0.9300
C16—C17	1.383 (5)	C81—C82	1.369 (6)
C16—C21	1 386 (4)	C81—H81	0.9300
C17 - C18	1 379 (5)	C82-C83	1 379 (6)
C17_H17	0.9300	C82_H82	0.9300
C18 $C19$	1 372 (5)	C_{02} C_{02} C_{02} C_{02}	1 383 (5)
	1.372(3)	C82 U83	0.0300
C_{10} C_{20}	0.3300	C83—1183 C84 H84	0.9300
C19-C20	1.373 (0)	C84—R84	0.9300
C19—H19	0.9300	C85 - C90	1.383 (4)
C20—C21	1.3/1 (3)	C85 - C85	1.392 (4)
C20—H20	0.9300	C85—C91	1.488 (4)
C21—H21	0.9300		1.379 (4)
C22—C23	1.381 (4)	C86—H86	0.9300
C22—C27	1.381 (4)	C87—C88	1.362 (5)
C22—C28	1.491 (4)	C87—H87	0.9300
C23—C24	1.377 (5)	C88—C89	1.368 (4)
C23—H23	0.9300	C88—H88	0.9300
C24—C25	1.362 (5)	C89—C90	1.380 (4)
C24—H24	0.9300	C89—H89	0.9300
C25—C26	1.365 (5)	С90—Н90	0.9300
С25—Н25	0.9300	C91—C92	1.387 (4)
C26—C27	1.383 (5)	C91—C96	1.393 (4)
С26—Н26	0.9300	C92—C93	1.372 (4)
С27—Н27	0.9300	С92—Н92	0.9300
C28—C33	1.381 (4)	C93—C94	1.377 (4)
C28—C29	1.388 (4)	С93—Н93	0.9300
C29—C30	1.379 (4)	C94—C95	1.385 (4)
С29—Н29	0.9300	C94—C97	1.478 (4)
C30—C31	1.382 (4)	C95—C96	1.380 (4)
С30—Н30	0.9300	С95—Н95	0.9300
C31—C32	1.382 (4)	С96—Н96	0.9300
C31—C34	1.477 (4)	C97—O9	1.307 (4)
$C_{32} - C_{33}$	1 374 (4)	C97—C98	1 376 (4)
C32—H32	0.9300	C98—C99	1.370(1) 1 400(4)
C33—H33	0.9300	C98—H98	0.9300
C_{34}	1 304 (3)	C99-010	1 281 (4)
C_{34} C 35	1 379 (4)	C99—C100	1 479 (5)
C_{35} C_{36}	1.375(7) 1 409 (4)	C100_C101	1.77(3) 1 382 (5)
C35_H35	0.9300	C100-C101	1.302(3) 1.388(5)
$C_{35} = 1155$	1.7500	C100 - C103	1.300(3) 1.374(5)
030-04	1.2/1 (4)	C101-C102	1.374(3)

C36—C37	1.482 (4)	C101—H101	0.9300
C37—C38	1.374 (4)	C102—C103	1.379 (6)
C37—C42	1.385 (3)	C102—H102	0.9300
C38—C39	1.379 (5)	C103—C104	1.368 (6)
C38—H38	0.9300	C103—H103	0.9300
$C_{39}-C_{40}$	1 368 (5)	C104 - C105	1.374(5)
C_{30} H_{30}	0.0300	C104 H104	0.0300
C40 C41	0.9300	C104—11104	0.9300
	1.309 (3)	C105—H105	0.9300
С40—Н40	0.9300	C106—C107	1.381 (4)
C41—C42	1.380 (4)	C106—C111	1.386 (4)
C41—H41	0.9300	C106—C112	1.481 (4)
C42—H42	0.9300	C107—C108	1.379 (5)
C43—C48	1.388	C107—H107	0.9300
C43—C44	1.3890	C108—C109	1.367 (5)
C43—C49	1.486	C108—H108	0.9300
C44—C45	1.381	C109—C110	1.372 (5)
C44—H44	0.9300	C109—H109	0.9300
C_{45} C_{46}	1 375 (5)		1.374(5)
C_{45} U_{45}	1.375(3)		1.374(3)
	0.9300		0.9300
	1.3/3 (5)		0.9300
C46—H46	0.9300	C112—C113	1.387 (4)
C47—C48	1.381 (4)	C112—C117	1.398 (4)
C47—H47	0.9300	C113—C114	1.375 (4)
C48—H48	0.9300	C113—H113	0.9300
C49—C54	1.383 (4)	C114—C115	1.385 (4)
C49—C50	1.384 (4)	C114—H114	0.9300
C50—C51	1.381 (4)	C115—C116	1.383 (5)
C50—H50	0.9300	C115—C118	1 484 (5)
C_{51} C_{52}	1 381 (4)	C116—C117	1.101(3) 1.379(4)
C51 H51	0.0300	C116 H116	0.0300
C52 C53	1.285(4)	C117 H117	0.9300
C52—C55	1.363(4)		0.9300
C52—C55	1.482 (4)		1.291 (4)
C53—C54	1.377 (4)	C118—C119	1.388 (5)
С53—Н53	0.9300	C119—C120	1.396 (5)
C54—H54	0.9300	С119—Н119	0.9300
C55—O5	1.283 (4)	C120—O12	1.303 (4)
C55—C56	1.402 (4)	C120—C121	1.475 (5)
C56—C57	1.377 (4)	C121—C122	1.379 (5)
С56—Н56	0.9300	C121—C126	1.390 (5)
С57—Об	1.300 (4)	C122—C123	1.371 (5)
C57—C58	1.477 (4)	С122—Н122	0.9300
C_{58} — C_{63}	1 378 (4)	C_{123} C_{124}	1 371 (5)
C58 C59	1.370(4)	C123 H123	0.0300
C50 C60	1 282 (5)	C123 III23	1 258 (6)
C_{50} U_{50}	1.302(3)	C124 - C123	1.336 (0)
	0.9500	C124—H124	0.9300
C60—C61	1.360 (5)	C125—C126	1.381 (5)
С60—Н60	0.9300	C125—H125	0.9300
C61—C62	1.368 (5)	С126—Н126	0.9300

C61—H61	0.9300	O1—H1A	1.21 (5)
C62—C63	1.376 (5)	ОЗ—НЗА	1.20 (4)
С62—Н62	0.9300	O6—H5A	1.22 (5)
С63—Н63	0.9300	O7—H7A	1.27 (5)
C64—C65	1.383 (4)	O8—H7A	1.26 (4)
C64—C69	1.387 (5)	O9—H9A	1.19 (4)
C64—C70	1.485 (4)	O12—H11A	1.24 (5)
C65—C66	1.378 (5)		
C2—C1—C6	117.7 (3)	C67—C66—C65	120.2 (4)
C2—C1—C7	121.1 (3)	С67—С66—Н66	119.9
C6—C1—C7	121.2 (3)	С65—С66—Н66	119.9
C3—C2—C1	121.3 (3)	C68—C67—C66	119.4 (4)
С3—С2—Н2	119.4	С68—С67—Н67	120.3
C1—C2—H2	119.4	С66—С67—Н67	120.3
C2—C3—C4	120.4 (4)	C67—C68—C69	120.7 (4)
С2—С3—Н3	119.8	C67—C68—H68	119.6
С4—С3—Н3	119.8	С69—С68—Н68	119.6
C5—C4—C3	119.2 (4)	C68—C69—C64	121.2 (4)
C5—C4—H4	120.4	С68—С69—Н69	119.4
C3—C4—H4	120.4	С64—С69—Н69	119.4
C4—C5—C6	120.5 (4)	C71—C70—C75	116.9 (3)
С4—С5—Н5	119.7	C71—C70—C64	120.8 (3)
С6—С5—Н5	119.7	C75—C70—C64	122.4 (3)
C5—C6—C1	120.9 (3)	C72—C71—C70	121.6 (3)
С5—С6—Н6	119.6	C72—C71—H71	119.2
С1—С6—Н6	119.6	С70—С71—Н71	119.2
C8—C7—C12	116.9 (3)	C71—C72—C73	121.3 (3)
C8—C7—C1	121.2 (3)	С71—С72—Н72	119.4
C12—C7—C1	121.9 (3)	С73—С72—Н72	119.4
C9—C8—C7	121.6 (3)	C74—C73—C72	117.3 (3)
С9—С8—Н8	119.2	C74—C73—C76	123.3 (3)
С7—С8—Н8	119.2	C72—C73—C76	119.4 (3)
C8—C9—C10	121.5 (3)	C75—C74—C73	121.5 (3)
С8—С9—Н9	119.3	С75—С74—Н74	119.3
С10—С9—Н9	119.3	С73—С74—Н74	119.3
C9—C10—C11	117.5 (3)	C74—C75—C70	121.4 (3)
C9—C10—C13	122.5 (3)	С74—С75—Н75	119.3
C11—C10—C13	120.0 (3)	С70—С75—Н75	119.3
C12—C11—C10	120.9 (3)	O7—C76—C77	120.2 (3)
C12—C11—H11	119.5	O7—C76—C73	115.5 (3)
C10—C11—H11	119.5	C77—C76—C73	124.3 (3)
C11—C12—C7	121.6 (3)	C76—C77—C78	121.4 (3)
C11—C12—H12	119.2	С76—С77—Н77	119.3
C7—C12—H12	119.2	С78—С77—Н77	119.3
O1—C13—C14	120.3 (3)	O8—C78—C77	120.2 (3)
O1—C13—C10	116.4 (3)	O8—C78—C79	116.9 (3)
C14—C13—C10	123.3 (3)	C77—C78—C79	122.9 (3)

C13—C14—C15	121.5 (3)	C84—C79—C80	118.8 (3)
C13—C14—H14	119.2	C84—C79—C78	121.9 (3)
C15—C14—H14	119.2	C80—C79—C78	119.2 (4)
O2—C15—C14	120.4 (3)	C81—C80—C79	121.1 (4)
O2—C15—C16	116.2 (3)	C81—C80—H80	119.4
C14—C15—C16	123.4 (3)	С79—С80—Н80	119.4
C17—C16—C21	118.2 (4)	C82—C81—C80	119.9 (4)
C17—C16—C15	122.2 (3)	С82—С81—Н81	120.1
C_{21} C_{16} C_{15}	1196(4)	C80—C81—H81	120.1
C18 - C17 - C16	1204(4)	C81 - C82 - C83	120.1 120.0(4)
C18 - C17 - H17	119.8	C81 - C82 - H82	120.0
$C_{16} C_{17} H_{17}$	110.8	C_{83} C_{82} H_{82}	120.0
$C_{10} = C_{17} = M_{17}$	119.8 120.7(4)	$C_{82} = C_{82} = C_{84}$	120.0
$C_{10} = C_{10} = C_{17}$	120.7 (4)	$C_{02} = C_{03} = C_{04}$	119.8 (4)
C17 C18 H18	119.0	$C_{82} = C_{83} = H_{83}$	120.1
C17 - C18 - H18	119.0	C70 C84 C82	120.1
C18 - C19 - C20	119.1 (4)	C/9 = C84 = C83	120.4 (4)
C18—C19—H19	120.5	C/9—C84—H84	119.8
С20—С19—Н19	120.5	С83—С84—Н84	119.8
C21—C20—C19	120.6 (4)	C90—C85—C86	117.6 (3)
С21—С20—Н20	119.7	C90—C85—C91	121.8 (3)
С19—С20—Н20	119.7	C86—C85—C91	120.6 (3)
C20—C21—C16	120.9 (4)	C87—C86—C85	121.0 (3)
C20—C21—H21	119.5	С87—С86—Н86	119.5
C16—C21—H21	119.5	С85—С86—Н86	119.5
C23—C22—C27	116.6 (3)	C88—C87—C86	120.3 (3)
C23—C22—C28	122.2 (3)	С88—С87—Н87	119.9
C27—C22—C28	121.2 (3)	С86—С87—Н87	119.9
C24—C23—C22	121.3 (4)	C87—C88—C89	119.8 (3)
C24—C23—H23	119.4	C87—C88—H88	120.1
С22—С23—Н23	119.4	C89—C88—H88	120.1
C25—C24—C23	120.8 (4)	C88—C89—C90	120.4 (3)
C25—C24—H24	119.6	С88—С89—Н89	119.8
C23—C24—H24	119.6	С90—С89—Н89	119.8
C24—C25—C26	119.6 (4)	C89—C90—C85	121.0 (3)
C24—C25—H25	120.2	С89—С90—Н90	119.5
$C_{26} = C_{25} = H_{25}$	120.2	C85—C90—H90	119.5
C_{25} C_{26} C_{27}	119 3 (4)	C92 - C91 - C96	116.7(3)
$C_{25} = C_{26} = H_{26}$	120.3	C_{92} C_{91} C_{85}	121.8(3)
$C_{23} = C_{20} = H_{20}$	120.3	$C_{2}^{0} = C_{1}^{0} = C_{3}^{0}$	121.0(3) 121.5(3)
$C_{27} = C_{20} = H_{20}$	120.3	$C_{00} = C_{01} = C_{00}$	121.3(3)
$C_{22} = C_{27} = C_{20}$	122.4 (4)	$C_{93} = C_{92} = C_{91}$	122.0 (3)
$C_{22} = C_{27} = H_{27}$	110.0	$C_{93} - C_{92} - H_{92}$	119.0
$C_{20} = C_{27} = H_{27}$	110.0 116.2(2)	C91 - C92 - H92	119.0
$C_{33} = C_{20} = C_{29}$	110.3(3)	C92 - C93 - C94	120.9 (5)
$C_{23} = C_{28} = C_{22}$	122.0(3)	C_{92} — C_{93} — H_{93}	119.5
$C_{29} = C_{28} = C_{22}$	121.7 (3)	C94—C93—H93	119.5
C30—C29—C28	122.0 (3)	C93—C94—C95	118.1 (3)
C30—C29—H29	119.0	C93—C94—C97	119.7 (3)
C28—C29—H29	119.0	C95—C94—C97	122.1 (3)

C29—C30—C31	120.9 (3)	C96—C95—C94	120.8 (3)
С29—С30—Н30	119.5	С96—С95—Н95	119.6
С31—С30—Н30	119.5	С94—С95—Н95	119.6
C32—C31—C30	117.5 (3)	C95—C96—C91	121.4 (3)
C32—C31—C34	119.8 (3)	С95—С96—Н96	119.3
C30—C31—C34	122.6 (3)	С91—С96—Н96	119.3
C33—C32—C31	121.0 (3)	09-097-098	120.3 (3)
С33—С32—Н32	119.5	09-097-094	114.9 (3)
C31—C32—H32	119.5	C98—C97—C94	1247(3)
C_{32} C_{33} C_{28}	122.3 (3)	C97—C98—C99	121.7(3)
C32—C33—H33	118.8	C97—C98—H98	119.2
C28—C33—H33	118.8	C99—C98—H98	119.2
03-C34-C35	120.2(3)	010-09-098	119.2 120.1 (3)
03 - C34 - C31	120.2(3) 1150(3)	010 - C99 - C100	120.1(3) 117.5(3)
$C_{35} = C_{34} = C_{31}$	113.0(3) 124.8(3)	C98 - C99 - C100	117.5(3)
C_{34} C_{35} C_{36} C_{36}	124.8(3)	$C_{101} - C_{100} - C_{105}$	122.3(3) 1184(3)
$C_{34} = C_{35} = C_{30}$	121.8 (5)	$C_{101} = C_{100} = C_{103}$	110.4(3)
$C_{34} = C_{35} = H_{35}$	119.1	$C_{101} = C_{100} = C_{99}$	122.4(3)
$C_{30} - C_{35} - 1155$	119.1	$C_{103} = C_{100} = C_{33}$	119.2(4)
$04 - C_{30} - C_{33}$	117.8(3)	C_{102} C_{101} U_{101}	120.9 (4)
04 - 030 - 037	117.0(3)	C102 - C101 - H101	119.0
$C_{33} = C_{30} = C_{37}$	122.5(3)	C100 - C101 - H101	119.0
$C_{38} = C_{37} = C_{42}$	117.9 (3)	C101 - C102 - C103	119.7 (4)
$C_{38} = C_{37} = C_{36}$	122.6 (3)	C101 - C102 - H102	120.2
C42 - C37 - C36	119.5 (3)	C103—C102—H102	120.2
C37—C38—C39	121.5 (3)	C104—C103—C102	120.3 (4)
С37—С38—Н38	119.2	C104—C103—H103	119.8
С39—С38—Н38	119.2	C102—C103—H103	119.8
C40—C39—C38	119.9 (4)	C103—C104—C105	119.9 (4)
С40—С39—Н39	120.0	C103—C104—H104	120.1
С38—С39—Н39	120.0	C105—C104—H104	120.1
C39—C40—C41	119.6 (4)	C104—C105—C100	120.8 (4)
C39—C40—H40	120.2	C104—C105—H105	119.6
C41—C40—H40	120.2	C100—C105—H105	119.6
C40—C41—C42	120.4 (3)	C107—C106—C111	116.9 (3)
C40—C41—H41	119.8	C107—C106—C112	122.4 (3)
C42—C41—H41	119.8	C111—C106—C112	120.7 (3)
C41—C42—C37	120.7 (3)	C108—C107—C106	121.5 (3)
C41—C42—H42	119.7	C108—C107—H107	119.2
С37—С42—Н42	119.7	C106—C107—H107	119.2
C48—C43—C44	116.86	C109—C108—C107	120.6 (4)
C48—C43—C49	121.8	C109—C108—H108	119.7
C44—C43—C49	121.30	C107—C108—H108	119.7
C45—C44—C43	121.73	C108—C109—C110	118.9 (4)
C45—C44—H44	119.2	C108—C109—H109	120.5
C43—C44—H44	119.1	C110—C109—H109	120.5
C46—C45—C44	120.3	C109—C110—C111	120.5 (4)
C46—C45—H45	119.9	C109—C110—H110	119.8
C44—C45—H45	119.9	C111—C110—H110	119.8

C47—C46—C45	119.0 (3)	C110—C111—C106	121.6 (4)
C47—C46—H46	120.5	C110—C111—H111	119.2
C45—C46—H46	120.5	C106—C111—H111	119.2
C46—C47—C48	120.7 (3)	C113—C112—C117	116.4 (3)
C46—C47—H47	119.7	C113—C112—C106	121.1 (3)
C48—C47—H47	119.7	C117—C112—C106	122.5 (3)
C47—C48—C43	121.4	C114—C113—C112	122.2 (3)
C47—C48—H48	119.3	C114—C113—H113	118.9
C43—C48—H48	119.3	С112—С113—Н113	118.9
C54—C49—C50	117.2 (3)	C113—C114—C115	121.0 (3)
C54—C49—C43	121.4	C113—C114—H114	119.5
C50—C49—C43	121.3	C115—C114—H114	119.5
C51—C50—C49	121.4 (3)	C116—C115—C114	117.6 (3)
С51—С50—Н50	119.3	C116—C115—C118	120.1 (3)
С49—С50—Н50	119.3	C114—C115—C118	122.2 (3)
C52—C51—C50	120.9 (3)	C117—C116—C115	121.3 (3)
С52—С51—Н51	119.6	C117—C116—H116	119.3
C50—C51—H51	119.6	C115—C116—H116	119.3
C51—C52—C53	118.1 (3)	C116—C117—C112	121.4 (3)
C51—C52—C55	119.4 (3)	C116—C117—H117	119.3
C53—C52—C55	122.5 (3)	С112—С117—Н117	119.3
C54—C53—C52	120.6 (3)	O11—C118—C119	120.6 (3)
С54—С53—Н53	119.7	O11—C118—C115	116.7 (4)
С52—С53—Н53	119.7	C119—C118—C115	122.7 (3)
C53—C54—C49	121.8 (3)	C118—C119—C120	122.6 (3)
С53—С54—Н54	119.1	C118—C119—H119	118.7
С49—С54—Н54	119.1	C120—C119—H119	118.7
O5—C55—C56	120.3 (3)	O12—C120—C119	119.1 (4)
O5—C55—C52	116.4 (3)	O12—C120—C121	116.6 (3)
C56—C55—C52	123.3 (3)	C119—C120—C121	124.3 (3)
C57—C56—C55	121.4 (3)	C122—C121—C126	118.1 (4)
С57—С56—Н56	119.3	C122—C121—C120	122.0 (3)
С55—С56—Н56	119.3	C126—C121—C120	119.9 (4)
O6—C57—C56	120.4 (3)	C123—C122—C121	120.6 (4)
O6—C57—C58	115.3 (3)	C123—C122—H122	119.7
C56—C57—C58	124.3 (3)	C121—C122—H122	119.7
C63—C58—C59	118.4 (3)	C122—C123—C124	121.1 (4)
C63—C58—C57	122.3 (3)	C122—C123—H123	119.5
C59—C58—C57	119.3 (3)	C124—C123—H123	119.5
C60—C59—C58	120.7 (4)	C125—C124—C123	119.0 (5)
С60—С59—Н59	119.6	C125—C124—H124	120.5
С58—С59—Н59	119.6	C123—C124—H124	120.5
C61—C60—C59	120.2 (4)	C124—C125—C126	120.8 (4)
С61—С60—Н60	119.9	C124—C125—H125	119.6
С59—С60—Н60	119.9	C126—C125—H125	119.6
C60—C61—C62	119.4 (4)	C125—C126—C121	120.4 (4)
С60—С61—Н61	120.3	C125—C126—H126	119.8
C62—C61—H61	120.3	C121—C126—H126	119.8

C61—C62—C63	121.0 (4)	C13—O1—H1A	101 (2)
С61—С62—Н62	119.5	C15—O2—H1A	99.8 (18)
С63—С62—Н62	119.5	С34—О3—НЗА	101.3 (17)
C62—C63—C58	120.2 (4)	C36—O4—H3A	101.2 (16)
С62—С63—Н63	119.9	С55—О5—Н5А	102.3 (18)
С58—С63—Н63	119.9	С57—О6—Н5А	103 (2)
C65—C64—C69	116.7 (3)	С76—О7—Н7А	102.5 (18)
C65—C64—C70	121.5 (3)	C78—O8—H7A	102.8 (18)
C69—C64—C70	121.7 (3)	С97—О9—Н9А	101.3 (18)
C66—C65—C64	121.7 (4)	С99—О10—Н9А	100.7 (16)
С66—С65—Н65	119.1	C118—O11—H11A	100.3 (19)
С64—С65—Н65	119.1	C120—O12—H11A	102 (2)
C6—C1—C2—C3	0.4 (5)	C69—C64—C65—C66	0.9 (5)
C7—C1—C2—C3	179.1 (3)	C70—C64—C65—C66	-176.8 (3)
C1—C2—C3—C4	-0.1 (5)	C64—C65—C66—C67	0.9 (6)
C2—C3—C4—C5	-0.2 (6)	C65—C66—C67—C68	-2.0 (7)
C3—C4—C5—C6	0.2 (6)	C66—C67—C68—C69	1.3 (7)
C4—C5—C6—C1	0.2 (6)	C67—C68—C69—C64	0.5 (7)
C2-C1-C6-C5	-0.5 (5)	C65—C64—C69—C68	-1.6 (6)
C7—C1—C6—C5	-179.1 (3)	C70—C64—C69—C68	176.1 (4)
C2-C1-C7-C8	-27.5 (4)	C65—C64—C70—C71	25.2 (5)
C6—C1—C7—C8	151.1 (3)	C69—C64—C70—C71	-152.4 (4)
C2-C1-C7-C12	153.2 (3)	C65—C64—C70—C75	-155.3 (3)
C6-C1-C7-C12	-28.1 (4)	C69—C64—C70—C75	27.1 (5)
C12—C7—C8—C9	1.1 (5)	C75—C70—C71—C72	-0.2 (5)
C1—C7—C8—C9	-178.2 (3)	C64—C70—C71—C72	179.3 (3)
C7—C8—C9—C10	-0.7 (5)	C70—C71—C72—C73	-0.6 (6)
C8—C9—C10—C11	-0.3 (5)	C71—C72—C73—C74	1.4 (5)
C8—C9—C10—C13	177.7 (3)	C71—C72—C73—C76	-179.2 (3)
C9—C10—C11—C12	0.9 (5)	C72—C73—C74—C75	-1.3 (5)
C13—C10—C11—C12	-177.1 (3)	C76—C73—C74—C75	179.3 (3)
C10-C11-C12-C7	-0.5 (5)	C73—C74—C75—C70	0.5 (5)
C8—C7—C12—C11	-0.4 (5)	C71—C70—C75—C74	0.3 (5)
C1-C7-C12-C11	178.8 (3)	C64—C70—C75—C74	-179.2 (3)
C9—C10—C13—O1	-170.7 (3)	C74—C73—C76—O7	172.0 (3)
C11—C10—C13—O1	7.3 (4)	C72—C73—C76—O7	-7.4 (5)
C9—C10—C13—C14	7.8 (5)	C74—C73—C76—C77	-9.4 (5)
C11—C10—C13—C14	-174.3 (3)	C72—C73—C76—C77	171.2 (3)
O1—C13—C14—C15	1.1 (5)	O7—C76—C77—C78	2.6 (5)
C10-C13-C14-C15	-177.2 (3)	C73—C76—C77—C78	-176.0 (3)
C13—C14—C15—O2	0.1 (5)	C76—C77—C78—O8	-5.1 (5)
C13—C14—C15—C16	-179.7 (3)	C76—C77—C78—C79	172.3 (3)
O2—C15—C16—C17	179.5 (3)	O8—C78—C79—C84	-154.5 (4)
C14—C15—C16—C17	-0.7 (5)	C77—C78—C79—C84	28.1 (5)
O2-C15-C16-C21	-1.7 (5)	O8—C78—C79—C80	27.5 (5)
C14—C15—C16—C21	178.1 (3)	C77—C78—C79—C80	-150.0 (3)
C21—C16—C17—C18	-0.8 (5)	C84—C79—C80—C81	-2.3 (5)

C15—C16—C17—C18	177.9 (3)	C78—C79—C80—C81	175.9 (3)
C16—C17—C18—C19	0.9 (6)	C79—C80—C81—C82	1.4 (6)
C17—C18—C19—C20	-0.5 (6)	C80—C81—C82—C83	0.3 (6)
C18—C19—C20—C21	0.1 (6)	C81—C82—C83—C84	-1.2 (7)
C19—C20—C21—C16	0.0 (6)	C80—C79—C84—C83	1.4 (6)
C17—C16—C21—C20	0.4 (5)	C78—C79—C84—C83	-176.7 (4)
C15—C16—C21—C20	-178.4 (3)	C82—C83—C84—C79	0.3 (6)
C27—C22—C23—C24	-0.4 (6)	C90—C85—C86—C87	-0.5(5)
C28—C22—C23—C24	178.2 (4)	C91—C85—C86—C87	179.3 (3)
C22—C23—C24—C25	0.0 (7)	C85—C86—C87—C88	0.4 (6)
C23—C24—C25—C26	0.4 (7)	C86—C87—C88—C89	-0.2(6)
C24—C25—C26—C27	-0.3 (6)	C87—C88—C89—C90	0.1 (6)
C23—C22—C27—C26	0.5 (5)	C88—C89—C90—C85	-0.2(5)
C28—C22—C27—C26	-178.1(3)	C86—C85—C90—C89	0.4 (5)
C25—C26—C27—C22	-0.1 (6)	C91—C85—C90—C89	-179.4(3)
C23—C22—C28—C33	162.9 (3)	C90—C85—C91—C92	-155.1(3)
C_{27} C_{22} C_{28} C_{33}	-18.6(5)	C86—C85—C91—C92	25.1 (5)
C_{23} C_{22} C_{28} C_{29}	-18.1(5)	C90-C85-C91-C96	25.3 (5)
C_{27} C_{22} C_{28} C_{29}	160.4 (3)	C86-C85-C91-C96	-154.5(3)
C_{33} C_{28} C_{29} C_{30}	0.2 (5)	C96-C91-C92-C93	-0.2(5)
C22-C28-C29-C30	-178.9(3)	C85—C91—C92—C93	-179.8(3)
C28—C29—C30—C31	-0.8(5)	C91—C92—C93—C94	-1.3(5)
C29—C30—C31—C32	1.3 (5)	C92—C93—C94—C95	2.2 (5)
C29—C30—C31—C34	-177.7(3)	C92—C93—C94—C97	-177.7(3)
C30—C31—C32—C33	-1.3 (5)	C93—C94—C95—C96	-1.6(5)
C34—C31—C32—C33	177.7 (3)	C97—C94—C95—C96	178.2 (3)
C31—C32—C33—C28	0.8 (5)	C94—C95—C96—C91	0.2 (5)
C29—C28—C33—C32	-0.2 (5)	C92—C91—C96—C95	0.7 (5)
C22—C28—C33—C32	178.8 (3)	C85—C91—C96—C95	-179.7 (3)
C32—C31—C34—O3	4.6 (4)	C93—C94—C97—O9	-12.0 (4)
C30—C31—C34—O3	-176.5 (3)	C95—C94—C97—O9	168.1 (3)
C32—C31—C34—C35	-175.0 (3)	C93—C94—C97—C98	166.3 (3)
C30—C31—C34—C35	3.9 (5)	C95—C94—C97—C98	-13.6 (5)
O3—C34—C35—C36	-0.6 (5)	O9—C97—C98—C99	3.5 (5)
C31—C34—C35—C36	179.0 (3)	C94—C97—C98—C99	-174.7 (3)
C34—C35—C36—O4	0.1 (5)	C97—C98—C99—O10	-3.3 (5)
C34—C35—C36—C37	-179.7 (3)	C97—C98—C99—C100	175.3 (3)
O4—C36—C37—C38	-177.6 (3)	O10-C99-C100-C101	-156.2 (3)
C35—C36—C37—C38	2.3 (5)	C98—C99—C100—C101	25.1 (5)
O4—C36—C37—C42	2.5 (4)	O10-C99-C100-C105	25.3 (5)
C35—C36—C37—C42	-177.7 (3)	C98—C99—C100—C105	-153.3 (3)
C42—C37—C38—C39	-0.6 (5)	C105—C100—C101—C102	0.0 (5)
C36—C37—C38—C39	179.4 (3)	C99—C100—C101—C102	-178.4 (3)
C37—C38—C39—C40	1.1 (6)	C100—C101—C102—C103	0.7 (6)
C38—C39—C40—C41	-0.6 (6)	C101—C102—C103—C104	-0.7 (7)
C39—C40—C41—C42	-0.3 (6)	C102—C103—C104—C105	0.0 (7)
C40—C41—C42—C37	0.8 (5)	C103—C104—C105—C100	0.7 (7)
C38—C37—C42—C41	-0.4 (4)	C101—C100—C105—C104	-0.7 (5)

C36—C37—C42—C41	179.6 (3)	C99—C100—C105—C104	177.8 (3)
C48—C43—C44—C45	0.1	C111—C106—C107—C108	-0.6 (5)
C49—C43—C44—C45	177.0	C112—C106—C107—C108	176.2 (3)
C43—C44—C45—C46	0.4	C106—C107—C108—C109	-0.1 (6)
C44—C45—C46—C47	-0.5	C107—C108—C109—C110	0.2 (6)
C45—C46—C47—C48	0.0 (5)	C108—C109—C110—C111	0.4 (6)
C46—C47—C48—C43	0.5	C109—C110—C111—C106	-1.1 (6)
C44—C43—C48—C47	-0.6	C107—C106—C111—C110	1.1 (5)
C49—C43—C48—C47	-177.5	C112—C106—C111—C110	-175.7 (3)
C48—C43—C49—C54	30.0	C107—C106—C112—C113	-26.1 (4)
C44—C43—C49—C54	-146.8	C111—C106—C112—C113	150.6 (3)
C48—C43—C49—C50	-153.1	C107—C106—C112—C117	156.3 (3)
C44—C43—C49—C50	30.1	C111—C106—C112—C117	-27.0 (5)
C54—C49—C50—C51	2.3 (5)	C117—C112—C113—C114	2.6 (5)
C43—C49—C50—C51	-174.7	C106—C112—C113—C114	-175.2 (3)
C49—C50—C51—C52	-1.2 (5)	C112—C113—C114—C115	-0.7 (5)
C50—C51—C52—C53	-0.9 (5)	C113—C114—C115—C116	-1.0 (5)
C50—C51—C52—C55	176.8 (3)	C113—C114—C115—C118	176.9 (3)
C51—C52—C53—C54	1.9 (5)	C114—C115—C116—C117	0.8 (5)
C55—C52—C53—C54	-175.7 (3)	C118—C115—C116—C117	-177.2 (3)
C52—C53—C54—C49	-0.8 (5)	C115—C116—C117—C112	1.2 (5)
C50—C49—C54—C53	-1.3 (5)	C113—C112—C117—C116	-2.8 (5)
C43—C49—C54—C53	175.7	C106—C112—C117—C116	174.9 (3)
C51—C52—C55—O5	-11.5 (5)	C116-C115-C118-O11	15.4 (5)
C53—C52—C55—O5	166.1 (3)	C114—C115—C118—O11	-162.5 (3)
C51—C52—C55—C56	169.5 (3)	C116—C115—C118—C119	-165.7 (3)
C53—C52—C55—C56	-13.0 (5)	C114—C115—C118—C119	16.4 (5)
O5—C55—C56—C57	-3.6 (5)	O11—C118—C119—C120	2.8 (5)
C52—C55—C56—C57	175.4 (3)	C115—C118—C119—C120	-176.1 (3)
C55—C56—C57—O6	1.5 (5)	C118—C119—C120—O12	0.0 (5)
C55—C56—C57—C58	-177.7 (3)	C118—C119—C120—C121	179.1 (3)
O6—C57—C58—C63	-177.9 (3)	O12—C120—C121—C122	173.0 (3)
C56—C57—C58—C63	1.3 (5)	C119—C120—C121—C122	-6.2 (5)
O6—C57—C58—C59	3.5 (4)	O12—C120—C121—C126	-8.2 (5)
C56—C57—C58—C59	-177.2 (3)	C119—C120—C121—C126	172.7 (3)
C63—C58—C59—C60	0.5 (5)	C126—C121—C122—C123	0.0 (6)
C57—C58—C59—C60	179.1 (3)	C120—C121—C122—C123	178.9 (4)
C58—C59—C60—C61	0.3 (6)	C121—C122—C123—C124	-0.2 (7)
C59—C60—C61—C62	-0.9 (6)	C122—C123—C124—C125	0.1 (7)
C60—C61—C62—C63	0.6 (7)	C123—C124—C125—C126	0.2 (7)
C61—C62—C63—C58	0.2 (6)	C124—C125—C126—C121	-0.5 (6)
C59—C58—C63—C62	-0.8 (5)	C122—C121—C126—C125	0.4 (6)
C57—C58—C63—C62	-179.3 (3)	C120—C121—C126—C125	-178.5 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>A</i> ···O2	1.20 (5)	1.33 (5)	2.480 (4)	156 (4)

O3—H3 <i>A</i> ···O4	1.21 (4)	1.33 (4)	2.479 (4)	156 (3)
O5—H5A···O6	1.33 (5)	1.22 (5)	2.474 (4)	152 (4)
O7—H7 <i>A</i> ···O8	1.28 (5)	1.26 (5)	2.465 (4)	152 (4)
O9—H9A…O10	1.20 (5)	1.34 (5)	2.473 (4)	154 (3)
O11—H11A···O12	1.33 (5)	1.25 (5)	2.494 (4)	152 (4)
C122—H122····O10 ⁱ	0.93	2.58	3.429 (5)	152
C19—H19…Cg10 ⁱⁱ	0.93	2.93	3.739 (5)	147
C23—H23…Cg17 ⁱⁱⁱ	0.93	2.90	3.714 (4)	146
C32—H32··· <i>Cg</i> 17 ^{iv}	0.93	2.94	3.749 (4)	147
C39—H39… <i>Cg</i> 3 ⁱ	0.93	2.82	3.674 (5)	152
C48—H48···· $Cg11^{v}$	0.93	2.79	3.618 (4)	149
C69—H69…Cg8 ⁱ	0.93	2.95	3.820 (4)	155
C93—H93···· $Cg2^{vi}$	0.93	3.00	3.692 (3)	133
C107—H107…Cg14 ⁱ	0.93	2.83	3.670 (4)	151

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+2, -*y*, -*z*+1.