organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2*R*,3*R*)-2-[(4-Chlorophenyl)hydroxymethyl]cyclopentanone

Dongsheng Deng,^a Ping Liu,^b Weijun Fu^a and Baoming Ji^a*

^aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China Correspondence e-mail: lyhxxjbm@126.com

Received 4 December 2008; accepted 15 December 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.168; data-to-parameter ratio = 13.3.

The title compound, $C_{12}H_{13}ClO_2$, was prepared by the direct asymmetric intermolecular aldol reaction of cyclopentanone and 4-chlorobenzaldehyde catalysed by L-tryptophan in water. The absolute molecular structure was determined to be a racemic twin with 91% (2R,3R) isomer and 9% of the (2S,3S)form. In the crystal structure, the molecules are connected into a one-dimensional chain along the a axis through the formation of intermolecular O-H···O hydrogen bonds. Further, non-conventional C–H···O and C–H·· π contacts are observed in the structure, which consolidate the crystal packing.

Related literature

For the structure of 2-[hydroxy(4-nitrophenyl)methyl]-4methylcyclohexanone, see: Li (2007). For a structure with C- $H \cdots O$ hydrogen bonds, see: Nangia (2002). For a database study of $C-H \cdots \pi$ interactions in the conformation of peptides, see: Umezawa et al. (1999). For direct intermolecular aldol reactions catalysed by acyclic amino acids, see: Córdova et al. (2006); Deng & Cai (2007). For asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst, see: Torii et al. (2004). For the development of direct catalytic asymmetric aldol, Mannich, Michael and Diels-Alder reactions, see: Notz et al. (2004).

Experimental

Crystal data

C12H13ClO2 $M_r = 224.67$ Orthorhombic, $P2_12_12_1$ a = 5.7401 (1) Åb = 10.4549(2) Å c = 18.2135 (3) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.336, T_{\max} = 0.484$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.168$	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
S = 1.14	Absolute structure: Flack (1983),
1936 reflections	572 Friedel pairs
146 parameters	Flack parameter: 0.09 (3)
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
01-H1···O2 ⁱ	0.92 (7)	1.89 (7)	2.793 (4)	165 (7)
$C10-H10A\cdots O2^{ii}$	0.99	2.53	3.328 (5)	138
$C5-H5A\cdots Cg2^{iii}$	0.95	2.96	3.818 (4)	150

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (iii) $-x, y + \frac{3}{2}, -z + \frac{1}{2}$. Cg2 is the centroid of the C1-C5,C12 ring.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the Doctoral Foundation and Cultivatable Foundation (2008-PYJJ-011) of Luoyang Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2143).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Córdova, A., Zou, W. B., Dziedzic, P., Ibrahem, I., Reyes, E. & Xu, Y. M. (2006). Chem. Eur. J. 12, 5383-5397.
- Deng, D. S. & Cai, J. W. (2007). Helv. Chim. Acta, 90, 114-120.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, Y.-P. (2007). Acta Cryst. E63, 03834.
- Nangia, A. (2002). CrystEngComm, 4, 93-101.
- Notz, W., Tanaka, F. & Barbas, C. F. III (2004). Acc. Chem. Res. 37, 580-591. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

V = 1093.03 (3) Å³

 $0.43 \times 0.31 \times 0.25 \text{ mm}$

3762 measured reflections

1936 independent reflections

1865 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 2.90 \text{ mm}^{-1}$

T = 150 (2) K

 $R_{\rm int} = 0.040$

Z = 4

- Torii, H., Nakadai, M., Ishihara, K., Saito, S. & Yamamoto, H. (2004). Angew. Chem. Int. Ed. 43, 1983–1986.
- Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J. & Nishio, M. (1999). *Bioorg. Med. Chem.* **7**, 2021–2026.

supporting information

Acta Cryst. (2009). E65, o164–o165 [doi:10.1107/S160053680804261X]

(2R,3R)-2-[(4-Chlorophenyl)hydroxymethyl]cyclopentanone

Dongsheng Deng, Ping Liu, Weijun Fu and Baoming Ji

S1. Comment

The direct asymmetric aldol reaction is one of the most important C—C bond-forming reactions (Notz *et al.*, 2004.). It is not surprising that a large number of catalysts and methods have been developed to achieve efficient adducts with high diastereo- and enantioselectivities (Córdova *et al.* 2006; Torii *et al.* 2004.). Our primary results demonstrating that acyclic amino acids could catalyze the direct stereoseletive aldol reaction in water micelles (Deng & Cai, 2007). In this contribution, as an extension to our previous studies, we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1.), the bond lengths and angles are within ranges as reported by Li (2007). The structural analysis reveals that the absolute molecular structure was a (2R, 3R)- isomer. The most striking feature of the title compound is the interesting arrangement of the title molecules, which connect each other to form a one-dimension chain along the *a* axis by intermolecular O—H···O hydrogen bonds (Fig. 2). Furthermore, the weak non-conventional intermolecular C—H··· π contact is observed, in which C5—H5A is donor and the chlorophenyl ring *Cg*2 (C1, C2, C3, C4, C12, C5) is π acceptor (Umezawa *et al.*, 1999). This contact, with additional intermolecular C—H···O interactions (Nangia *et al.* 2002), further consolidate the crystal packing. Details of hydrogen bonds are given in Table 1.

S2. Experimental

4-chlorobenzaldehyde (71 mm g, 0.5 mmol) and cyclopentanone (0.5 ml) was added to a solution of L-tryptophan (30.6 mg, 0.15 mmol) and pure water (0.5 ml) at room temperature. The mixture was stirred, monitored by TLC. The mixture was quenched with a saturated aqueous NaHCO₃ solution and extracted by ethyl acetate ($3 \times$ ml). The resulting solvent was removed *in vacuo* to yield the crude product. Purification by silica gel chromatography using 100 ~200 mesh ZCX II eluted by hexane-ethyl acetate (3:1, v/v) gave the yellow solid (70 mg, yield 63%). The crystalline compound was obtained through the slow volatilization of ethyl acetate containing the title compound.

S3. Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.95 Å (aromatic CH), 0.99 Å (methylene CH₂), or 0.92 Å (hydroxy), and with Uiso~(H) = 1.2Ueq(C) or 1.5Ueq(methylene C). Moreover, the Flack parameter was refined as 0.09 (3) and indicates a possible racemic twin of about 10%. This may be because the number of measured Friedel pairs is relatively low. 572 Friedel pairs were measured, which is a fraction of measured Friedel pairs of 0.419, as indicated in the check.cif of *PLATON* (Spek, 2003).

Figure 1

View of the title molecular structure with atom numbering scheme and 30% probability displacement ellipsoids for nonhydrogen atoms.

Figure 2

View of the one-dimension chain along the *a* axis by intermolecular O—H…O hydrogen bonds.

(2R,3R)-2-[(4-Chlorophenyl)hydroxymethyl]cyclopentanone

Crystal data	
C ₁₂ H ₁₃ ClO ₂	b = 10.4549 (2) Å
$M_r = 224.67$ c	c = 18.2135 (3) Å
Orthorhombic, $P2_12_12_1$	$V = 1093.03 (3) Å^3$
Hall symbol: P 2ac 2ab	Z = 4
a = 5.7401 (1) Å	F(000) = 472

 $D_x = 1.365 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 2189 reflections $\theta = 4.9-76.7^{\circ}$

Data collection

Bruker APEXII CCD	
diffractometer	
Radiation source: fine-focus sealed tube	
Graphite monochromator	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.336, T_{\max} = 0.484$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of independent
$wR(F^2) = 0.168$	and constrained refinement
<i>S</i> = 1.14	$w = 1/[\sigma^2(F_o^2) + (0.0962P)^2 + 1.0311P]$
1936 reflections	where $P = (F_o^2 + 2F_c^2)/3$
146 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$
direct methods	Absolute structure: Flack (1983), 572 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.09 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

 $\mu = 2.90 \text{ mm}^{-1}$ T = 150 K

Block, colorless

 $R_{\rm int} = 0.040$

 $h = -7 \rightarrow 5$ $k = -9 \rightarrow 12$ $l = -22 \rightarrow 17$

 $0.43 \times 0.31 \times 0.25 \text{ mm}$

3762 measured reflections 1936 independent reflections 1865 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 76.7^{\circ}, \ \theta_{\rm min} = 4.9^{\circ}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.0477 (5)	0.4383 (3)	0.06246 (17)	0.0418 (7)	
O2	0.5454 (4)	0.3133 (2)	-0.01098 (14)	0.0355 (6)	
C3	-0.0344 (7)	0.7839 (4)	0.1635 (2)	0.0361 (8)	
H3A	-0.1615	0.7951	0.1962	0.043*	
C11	0.5311 (6)	0.3306 (3)	0.0549 (2)	0.0303 (7)	
C2	0.0105 (6)	0.6644 (3)	0.1340 (2)	0.0324 (7)	
H2A	-0.0858	0.5940	0.1469	0.039*	
C6	0.2476 (6)	0.5168 (3)	0.05323 (19)	0.0291 (7)	
H6A	0.283 (8)	0.528 (4)	-0.005 (2)	0.035*	
C10	0.5749 (7)	0.2346 (3)	0.1141 (2)	0.0388 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10A	0.7174	0.1845	0.1036	0.047*	
H10B	0.4415	0.1751	0.1188	0.047*	
C12	0.2900 (8)	0.8713 (4)	0.0969 (2)	0.0423 (9)	
H12A	0.3851	0.9420	0.0837	0.051*	
C5	0.3327 (7)	0.7509 (3)	0.0683 (2)	0.0373 (8)	
H5A	0.4601	0.7397	0.0356	0.045*	
C1	0.1955 (6)	0.6465 (3)	0.08574 (18)	0.0288 (7)	
C7	0.4634 (6)	0.4583 (4)	0.08953 (19)	0.0322 (7)	
H7A	0.595 (8)	0.518 (5)	0.075 (2)	0.039*	
C4	0.1048 (6)	0.8865 (3)	0.1455 (2)	0.0330 (7)	
C9	0.6046 (7)	0.3132 (4)	0.1835 (2)	0.0443 (9)	
H9A	0.7683	0.3411	0.1894	0.053*	
H9B	0.5573	0.2637	0.2273	0.053*	
C8	0.4435 (8)	0.4280 (4)	0.1717 (2)	0.0415 (9)	
H8A	0.4946	0.5019	0.2017	0.050*	
H8B	0.2810	0.4063	0.1850	0.050*	
Cl1	0.05251 (19)	1.03468 (8)	0.18560 (5)	0.0445 (3)	
H1	0.075 (14)	0.358 (6)	0.044 (4)	0.08 (2)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0210 (11)	0.0328 (14)	0.0716 (18)	-0.0039 (11)	0.0011 (12)	-0.0157 (13)
O2	0.0268 (11)	0.0352 (13)	0.0444 (13)	0.0035 (11)	0.0001 (11)	-0.0124 (10)
C3	0.0272 (15)	0.042 (2)	0.0396 (17)	0.0004 (16)	0.0043 (14)	-0.0058 (15)
C11	0.0170 (13)	0.0257 (16)	0.0481 (18)	-0.0006 (13)	-0.0004 (13)	-0.0017 (13)
C2	0.0253 (15)	0.0308 (17)	0.0410 (17)	-0.0021 (13)	0.0015 (13)	-0.0030 (14)
C6	0.0192 (13)	0.0277 (17)	0.0403 (17)	-0.0022 (13)	-0.0007 (12)	-0.0057 (14)
C10	0.0382 (19)	0.0217 (16)	0.056 (2)	0.0033 (15)	0.0023 (17)	0.0028 (15)
C12	0.042 (2)	0.035 (2)	0.050(2)	-0.0024 (17)	0.0116 (18)	0.0000 (17)
C5	0.0322 (17)	0.0246 (17)	0.055 (2)	-0.0013 (14)	0.0142 (17)	-0.0003 (16)
C1	0.0244 (14)	0.0285 (17)	0.0334 (16)	0.0043 (13)	-0.0034 (13)	-0.0020 (13)
C7	0.0235 (14)	0.0342 (18)	0.0388 (16)	0.0018 (16)	-0.0015 (13)	-0.0035 (14)
C4	0.0350 (17)	0.0255 (16)	0.0384 (16)	0.0065 (14)	0.0005 (14)	0.0027 (13)
C9	0.0403 (19)	0.046 (2)	0.047 (2)	0.0113 (18)	-0.0042 (17)	0.0053 (18)
C8	0.0411 (19)	0.044 (2)	0.0390 (17)	0.0109 (18)	-0.0030 (16)	-0.0057 (15)
C11	0.0542 (6)	0.0270 (4)	0.0522 (5)	0.0076 (4)	0.0046 (4)	-0.0052 (3)

Geometric parameters (Å, °)

01—C6	1.420 (4)	C10—H10B	0.9900
01—H1	0.92 (7)	C12—C5	1.384 (6)
O2—C11	1.216 (4)	C12—C4	1.392 (5)
С3—С4	1.378 (5)	C12—H12A	0.9500
С3—С2	1.384 (5)	C5—C1	1.383 (5)
С3—НЗА	0.9500	C5—H5A	0.9500
C11—C10	1.494 (5)	C7—C8	1.534 (5)
C11—C7	1.528 (5)	С7—Н7А	1.01 (5)

supporting information

C2—C1	1.392 (5)	C4—Cl1	1.739 (4)
C2—H2A	0.9500	С9—С8	1.530 (5)
C6—C1	1.510 (5)	С9—Н9А	0.9900
C6—C7	1.531 (5)	С9—Н9В	0.9900
С6—Н6А	1.08 (4)	C8—H8A	0.9900
С10—С9	1.517 (6)	C8—H8B	0.9900
C10—H10A	0.9900		
C6—O1—H1	111 (5)	C1—C5—H5A	119.0
C4—C3—C2	120.2 (3)	С12—С5—Н5А	119.0
С4—С3—НЗА	119.9	C5—C1—C2	118.3 (3)
С2—С3—НЗА	119.9	C5—C1—C6	120.4 (3)
O2—C11—C10	126.9 (3)	C2—C1—C6	121.3 (3)
O2—C11—C7	123.7 (3)	C11—C7—C6	112.1 (3)
C10—C11—C7	109.3 (3)	C11—C7—C8	104.0 (3)
C3—C2—C1	120.5 (3)	C6—C7—C8	116.3 (3)
C3—C2—H2A	119.7	С11—С7—Н7А	104 (3)
C1—C2—H2A	119.7	С6—С7—Н7А	104 (3)
O1—C6—C1	108.2 (3)	С8—С7—Н7А	115 (2)
O1—C6—C7	111.8 (3)	C3—C4—C12	120.3 (3)
C1—C6—C7	110.4 (3)	C3—C4—Cl1	119.6 (3)
O1—C6—H6A	109 (2)	C12—C4—Cl1	120.1 (3)
C1—C6—H6A	109 (2)	С10—С9—С8	103.9 (3)
С7—С6—Н6А	108 (2)	С10—С9—Н9А	111.0
C11—C10—C9	104.9 (3)	С8—С9—Н9А	111.0
C11—C10—H10A	110.8	С10—С9—Н9В	111.0
C9—C10—H10A	110.8	C8—C9—H9B	111.0
C11—C10—H10B	110.8	H9A—C9—H9B	109.0
C9—C10—H10B	110.8	C9—C8—C7	104.7 (3)
H10A—C10—H10B	108.8	С9—С8—Н8А	110.8
C5—C12—C4	118.6 (4)	С7—С8—Н8А	110.8
C5—C12—H12A	120.7	С9—С8—Н8В	110.8
C4—C12—H12A	120.7	С7—С8—Н8В	110.8
C1—C5—C12	122.0 (3)	H8A—C8—H8B	108.9
C4-C3-C2-C1	-0.3(5)	02-011-07-08	173 9 (4)
02-C11-C10-C9	163 5 (4)	C10-C11-C7-C8	-61(4)
C7-C11-C10-C9	-165(4)	01 - C6 - C7 - C11	63.0(4)
C4-C12-C5-C1	0.8(7)	C1-C6-C7-C11	-176.4(3)
C12—C5—C1—C2	-0.4(6)	O1—C6—C7—C8	-56.5 (4)
C12—C5—C1—C6	179.9 (4)	C1—C6—C7—C8	64.1 (4)
C3—C2—C1—C5	0.1 (5)	C2—C3—C4—C12	0.7 (6)
C3—C2—C1—C6	179.8 (3)	C2—C3—C4—Cl1	-177.7 (3)
O1—C6—C1—C5	-163.3 (3)	C5—C12—C4—C3	-1.0 (6)
C7—C6—C1—C5	74.0 (4)	C5—C12—C4—Cl1	177.4 (3)
O1—C6—C1—C2	17.0 (4)	C11—C10—C9—C8	32.5 (4)
C7—C6—C1—C2	-105.7 (4)	C10—C9—C8—C7	-36.6 (4)
O2—C11—C7—C6	47.5 (4)	C11—C7—C8—C9	26.1 (4)

C10—C11—C7—C6	-132.5 (3)	C6—C7—C8—C9	1	49.8 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
01—H1…O2 ⁱ	0.92 (7)	1.89 (7)	2.793 (4)	165 (7)
С10—Н10А…О2іі	0.99	2.53	3.328 (5)	138
C5—H5 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.95	2.96	3.818 (4)	150

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) x+1/2, -y+1/2, -z; (iii) -x, y+3/2, -z+1/2.