

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea hemihydrate

M. Khawar Rauf,^a Michael Bolte^b and Amin Badshah^a*

^aDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320-Pakistan, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: aminbadshah@yahoo.com

Received 2 December 2008; accepted 6 December 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.125; data-to-parameter ratio = 16.8.

The asymmetric unit of the title compound, $C_{14}H_8Cl_4N_2OS$. 0.5H₂O, contains two independent molecules with different conformations with respect to the aromatic ring planes, and one water molecule. The bond lengths and angles are typical of thiourea compounds of this class. The molecule exists in the solid state in its thione form with typical thiourea C–S and C–O bonds lengths, as well as shortened C–N bonds. The dihedral angles between the two aromatic planes are 66.93 (8) and 60.44 (9)° in the two independent molecules. An intramolecular N–H···O hydrogen bond stabilizes the molecular conformation and the crystal packing is characterized by N– H···O, O–H···S and O–H···Cl hydrogen bonds.

Related literature

For background and related structures, see: Khawar Rauf *et al.* (2006a,b,c,d). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_8Cl_4N_2OS\cdot 0.5H_2O\\ M_r = 403.09\\ Monoclinic, P2_1/c\\ a = 16.1428 \ (9) \\ \text{Å}\\ b = 13.7340 \ (7) \\ \text{Å}\\ c = 16.2850 \ (9) \\ \text{Å}\\ \beta = 112.216 \ (4)^\circ \end{array}$

 $V = 3342.4 (3) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.84 \text{ mm}^{-1}$ T = 173 (2) K $0.38 \times 0.37 \times 0.35 \text{ mm}$ Data collection

```
STOE IPDS II two-circle-<br/>diffractometer233<br/>717Absorption correction: multi-scan<br/>(MULABS; Spek, 2003; Blessing,<br/>1995)<br/>T_{min} = 0.741, T_{max} = 0.758R_{int}
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.125$ S = 1.027172 reflections 428 parameters 7 restraints 23391 measured reflections 7172 independent reflections 5964 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.068$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.94\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.60\ e\ \mathring{A}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO1W N2-H2\cdotsO1 N2-H2\cdotsO1A^{i} N1A-H1A\cdotsO1W N2A-H2A\cdotsO1A N2A-H2A\cdotsO1^{ii} O1W-H1WA\cdotsS1A O1W-H1WA-C12^{iii} O1W-C12WA$	0.866 (10) 0.873 (10) 0.873 (10) 0.874 (10) 0.877 (10) 0.877 (10) 0.855 (10) 0.855 (10)	2.211 (17) 1.97 (2) 2.26 (2) 1.964 (13) 1.98 (3) 2.31 (2) 2.67 (3) 2.84 (2)	2.997 (3) 2.627 (2) 2.931 (3) 2.637 (3) 3.001 (3) 3.215 (2) 2.328 (2)	151 (3) 131 (3) 133 (2) 164 (3) 130 (3) 136 (3) 123 (3)
O1W = H1WA + Cls O1W = H1WB + S1	0.855(10) 0.855(10)	2.36 (2)	3.091 (2)	144 (3)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

MKR is grateful to the HEC-Pakistan for financial support for the PhD program under scholarship No. ILC-0363104.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2141).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o1859o1860.
- Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2221o2222.
- Khawar Rauf, M., Badshah, A. & Bolte, M. (2006d). Acta Cryst. E62, o2444o2445.
- Khawar Rauf, M., Badshah, A., Bolte, M. & Zaeem Akhtar, M. (2006a). Acta Cryst. E62, o1849–o1850.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2009). E65, o143 [doi:10.1107/S1600536808041251]

1-(4-Chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea hemihydrate

M. Khawar Rauf, Michael Bolte and Amin Badshah

S1. Comment

The background to this study has been set out in our previous work on the structural chemistry of *N*,*N'*-disubstituted thioureas (Khawar Rauf *et al.*, 2006*a*, 2006*b*, 2006*c*, 2006*d*). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the two independent molecules is given in Fig. 1. The water molecule links the molecules through O_W —H···S and N—H···O_W hydrogen bonds. Bond lengths and angles, can be regarded as typical for *N*,*N'*-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf *et al.*,2006*b*). The molecule exists in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar. An intramolecular N—H···O hydrogen bond is present, forming a six membered ring commonly observed in this class of compounds (Khawar Rauf *et al.*, 2006*a*). The the crystal packing is stabilized by intermolecular N—H···O, O—H···S and O—H···Cl hydrogen bonds (Table 1).

S2. Experimental

Freshly prepared 4-chlorobenzoyl isothiocyanate (2.0 g, 10 mmol) was stirred in acetone (40 ml) for 15 minutes. Neat 3,5-dichloroaniline (1.62 g, 10 mmol) was then added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ 1,1-dichloromethane (1:10 ν/ν) to give fine crystals of (I), with an overall yield of 85%. Full spectroscopic and physical characterization will be reported elsewhere.

S3. Refinement

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C— H = 0.95 Å $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms bonded to N were refined with the N—H distances restrained to 0.88 (1) Å. The water H atoms were refined with the O—H distances restrained to 0.83 (1)Å and the H…H distances restrained to 1.40 (5)Å and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

Molecular structure of (I) showing the atom numbering scheme. Intra- and intermolecular hydrogen bonds are shown as dash lines. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing diagram of (I).

1-(4-Chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea hemihydrate

Crystal data

 $C_{14}H_8Cl_4N_2OS \cdot 0.5H_2O$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.1428 (9) Å b = 13.7340 (7) Å c = 16.2850 (9) Å $\beta = 112.216$ (4)° V = 3342.4 (3) Å³ Z = 8

Data collection

STOE IPDS II two-circlediffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans F(000) = 1624 $D_x = 1.602 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 21741 reflections $\theta = 2.2-27.1^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.38 \times 0.37 \times 0.35 \text{ mm}$

Absorption correction: multi-scan (*MULABS*; Spek, 2003; Blessing, 1995) $T_{min} = 0.741$, $T_{max} = 0.758$ 23391 measured reflections 7172 independent reflections 5964 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.068$	$k = -17 \rightarrow 17$
$\theta_{\rm max} = 26.9^{\circ}, \theta_{\rm min} = 2.1^{\circ}$	$l = -20 \rightarrow 20$
$h = -17 \rightarrow 20$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.125$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
7172 reflections	and constrained refinement
428 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 1.5427P]$
7 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.94 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.37638 (14)	0.52532 (16)	0.57504 (15)	0.0302 (5)	
01	0.38255 (10)	0.53995 (13)	0.50312 (11)	0.0357 (4)	
N1	0.29511 (12)	0.50614 (15)	0.58141 (13)	0.0324 (4)	
H1	0.2955 (19)	0.497 (2)	0.6343 (10)	0.041 (8)*	
C2	0.21054 (14)	0.50210 (17)	0.51379 (15)	0.0325 (5)	
N2	0.20766 (12)	0.52155 (15)	0.43208 (13)	0.0332 (4)	
H2	0.2559 (13)	0.537 (2)	0.4227 (19)	0.045 (8)*	
S1	0.12057 (4)	0.47441 (6)	0.53583 (4)	0.04717 (18)	
Cl1	0.71014 (4)	0.55572 (5)	0.90337 (4)	0.04341 (16)	
Cl2	0.15939 (5)	0.34487 (6)	0.31698 (6)	0.0673 (2)	
C13	-0.13692 (5)	0.54231 (9)	0.12131 (5)	0.0773 (3)	
Cl4	0.11099 (5)	0.71115 (5)	0.40822 (5)	0.05120 (18)	
C11	0.45662 (14)	0.52864 (16)	0.65923 (15)	0.0295 (4)	
C12	0.45243 (15)	0.53432 (17)	0.74359 (15)	0.0333 (5)	
H12	0.3960	0.5332	0.7492	0.040*	
C13	0.53058 (16)	0.54156 (18)	0.81928 (15)	0.0355 (5)	
H13	0.5278	0.5454	0.8764	0.043*	
C14	0.61249 (15)	0.54311 (17)	0.80970 (15)	0.0337 (5)	
C15	0.61818 (15)	0.53658 (18)	0.72711 (16)	0.0359 (5)	
H15	0.6748	0.5374	0.7219	0.043*	
C16	0.54017 (15)	0.52882 (17)	0.65206 (15)	0.0332 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

TT 4 6				
H16	0.5436	0.5236	0.5953	0.040*
C21	0.12477 (14)	0.52657 (18)	0.35815 (15)	0.0335 (5)
C22	0.09467 (16)	0.44876 (19)	0.29937 (18)	0.0406 (6)
C23	0.01410 (17)	0.4524 (2)	0.22662 (18)	0.0473 (7)
H23	-0.0059	0.3986	0.1874	0.057*
C24	-0.03568 (16)	0.5362 (2)	0.21313 (18)	0.0492 (7)
C25	-0.00886 (16)	0.6165 (2)	0.26850 (18)	0.0461 (6)
H25	-0.0447	0.6735	0.2577	0.055*
C26	0.07260 (15)	0.61070 (19)	0.34072 (16)	0.0371 (5)
C1A	0.24641 (14)	0.78726 (17)	0.78708 (15)	0.0314 (5)
O1A	0.28145 (10)	0.86354 (12)	0.82401 (11)	0.0359 (4)
N1A	0.27773 (12)	0.69679 (15)	0.82106 (13)	0.0328 (4)
H1A	0.2541 (18)	0.6458 (14)	0.7884 (16)	0.044 (8)*
C2A	0.34638 (14)	0.67443 (17)	0.90195 (15)	0.0313 (5)
N2A	0.38814 (13)	0.75109 (15)	0.95146 (13)	0.0344 (4)
H2A	0.374 (2)	0.8114 (10)	0.934 (2)	0.052 (9)*
S1A	0.37231 (4)	0.55898 (5)	0.93165 (4)	0.03769 (15)
Cl1A	-0.07853 (4)	0.81919 (6)	0.45000 (5)	0.05347 (19)
Cl2A	0.57143 (5)	0.76385 (6)	0.94715 (5)	0.05124 (18)
Cl3A	0.68978 (5)	0.70470 (5)	1.29886 (5)	0.0547 (2)
Cl4A	0.33577 (4)	0.72377 (6)	1.10872 (5)	0.04826 (17)
C11A	0.16642 (14)	0.78908 (17)	0.70221 (15)	0.0313 (5)
C12A	0.10421 (16)	0.71386 (19)	0.67392 (17)	0.0386 (5)
H12A	0.1136	0.6557	0.7079	0.046*
C13A	0.02828 (16)	0.7229 (2)	0.59643 (17)	0.0419 (6)
H13A	-0.0144	0.6717	0.5778	0.050*
C14A	0.01600 (15)	0.8069 (2)	0.54725 (16)	0.0387 (5)
C15A	0.07758 (16)	0.8833 (2)	0.57343 (17)	0.0425 (6)
H15A	0.0686	0.9405	0.5384	0.051*
C16A	0.15197 (15)	0.87407 (18)	0.65141 (16)	0.0369 (5)
H16A	0.1937	0.9261	0.6706	0.044*
C21A	0.45990 (15)	0.73872 (17)	1.03485 (15)	0.0332 (5)
C22A	0.54822 (16)	0.74224 (18)	1.04103 (16)	0.0357 (5)
C23A	0.61967 (16)	0.72962 (18)	1.12165 (18)	0.0405 (6)
H23A	0.6796	0.7304	1.1248	0.049*
C24A	0.60090 (17)	0.71594 (18)	1.19714 (17)	0.0401 (6)
C25A	0.51466 (17)	0.71352 (18)	1.19431 (16)	0.0389 (5)
H25A	0.5032	0.7042	1.2469	0.047*
C26A	0.44472 (15)	0.72506 (17)	1.11274 (16)	0.0346 (5)
O1W	0.23342 (15)	0.51628 (16)	0.73321 (13)	0.0524 (5)
H1WA	0.250 (2)	0.487 (2)	0.7831 (12)	0.063*
H1WB	0.1870 (15)	0.495 (2)	0.6911 (16)	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0239 (10)	0.0309 (11)	0.0321 (11)	0.0011 (8)	0.0063 (8)	-0.0005 (9)
01	0.0247 (7)	0.0512 (10)	0.0287 (8)	0.0024 (7)	0.0073 (6)	0.0029 (7)

N1	0.0257 (9)	0.0420 (11)	0.0255 (9)	-0.0055 (8)	0.0054 (7)	0.0023 (8)
C2	0.0249 (10)	0.0349 (11)	0.0321 (11)	-0.0035 (9)	0.0045 (8)	-0.0004 (9)
N2	0.0203 (8)	0.0445 (11)	0.0294 (10)	-0.0007 (8)	0.0033 (7)	0.0021 (8)
S1	0.0294 (3)	0.0704 (5)	0.0407 (3)	-0.0145 (3)	0.0121 (3)	-0.0018 (3)
Cl1	0.0274 (3)	0.0557 (4)	0.0352 (3)	-0.0004(2)	-0.0016 (2)	-0.0011 (3)
C12	0.0476 (4)	0.0498 (4)	0.0882 (6)	0.0034 (3)	0.0070 (4)	-0.0203 (4)
C13	0.0285 (3)	0.1409 (9)	0.0451 (4)	-0.0121 (4)	-0.0059(3)	0.0145 (5)
Cl4	0.0482 (4)	0.0483 (4)	0.0538 (4)	0.0070 (3)	0.0156 (3)	-0.0073 (3)
C11	0.0243 (10)	0.0318 (11)	0.0283 (11)	-0.0001 (8)	0.0051 (8)	0.0008 (9)
C12	0.0244 (10)	0.0415 (12)	0.0309 (11)	-0.0046 (9)	0.0069 (8)	-0.0018 (10)
C13	0.0325 (11)	0.0442 (13)	0.0266 (11)	-0.0031 (10)	0.0074 (9)	-0.0009 (10)
C14	0.0266 (10)	0.0337 (11)	0.0328 (12)	0.0005 (9)	0.0022 (9)	0.0001 (9)
C15	0.0239 (10)	0.0450 (13)	0.0357 (12)	0.0045 (9)	0.0076 (9)	0.0004 (10)
C16	0.0266 (10)	0.0403 (12)	0.0310(11)	0.0042 (9)	0.0091 (9)	0.0000 (9)
C21	0.0193 (9)	0.0481 (13)	0.0278 (11)	-0.0036 (9)	0.0030 (8)	0.0015 (10)
C22	0.0274 (11)	0.0459 (14)	0.0442 (14)	-0.0050 (10)	0.0088 (10)	-0.0036 (11)
C23	0.0320 (12)	0.0644 (18)	0.0400 (14)	-0.0158 (12)	0.0072 (10)	-0.0089(13)
C24	0.0245 (11)	0.079 (2)	0.0371 (13)	-0.0095 (12)	0.0043 (10)	0.0078 (13)
C25	0.0254 (11)	0.0633 (17)	0.0447 (14)	0.0073 (11)	0.0078 (10)	0.0131 (13)
C26	0.0259 (10)	0.0467 (14)	0.0363 (12)	0.0020 (10)	0.0090 (9)	0.0027 (11)
C1A	0.0234 (10)	0.0387 (12)	0.0305 (11)	-0.0002 (9)	0.0084 (8)	0.0006 (9)
O1A	0.0302 (8)	0.0364 (9)	0.0341 (8)	-0.0032 (7)	0.0043 (6)	-0.0006 (7)
N1A	0.0277 (9)	0.0350 (10)	0.0300 (10)	-0.0005 (8)	0.0045 (7)	-0.0024 (8)
C2A	0.0239 (10)	0.0400 (12)	0.0288 (11)	-0.0017 (9)	0.0084 (8)	-0.0006 (9)
N2A	0.0297 (9)	0.0375 (11)	0.0272 (9)	-0.0005 (8)	0.0008 (8)	0.0005 (8)
S1A	0.0343 (3)	0.0375 (3)	0.0342 (3)	0.0004 (2)	0.0049 (2)	0.0024 (2)
Cl1A	0.0317 (3)	0.0725 (5)	0.0405 (3)	0.0089 (3)	-0.0041 (2)	0.0019 (3)
Cl2A	0.0459 (4)	0.0694 (5)	0.0421 (3)	-0.0076 (3)	0.0207 (3)	-0.0047 (3)
Cl3A	0.0466 (4)	0.0533 (4)	0.0410 (4)	0.0015 (3)	-0.0098 (3)	0.0064 (3)
Cl4A	0.0348 (3)	0.0623 (4)	0.0491 (4)	-0.0024 (3)	0.0173 (3)	0.0007 (3)
C11A	0.0233 (10)	0.0395 (12)	0.0289 (11)	0.0003 (9)	0.0073 (8)	-0.0008 (9)
C12A	0.0285 (11)	0.0437 (13)	0.0362 (12)	-0.0029 (10)	0.0037 (9)	0.0037 (10)
C13A	0.0290 (11)	0.0490 (14)	0.0396 (13)	-0.0052 (10)	0.0038 (10)	-0.0033 (11)
C14A	0.0254 (10)	0.0526 (15)	0.0326 (12)	0.0073 (10)	0.0049 (9)	-0.0016 (11)
C15A	0.0351 (12)	0.0481 (14)	0.0400 (13)	0.0070 (11)	0.0094 (10)	0.0071 (11)
C16A	0.0275 (10)	0.0403 (13)	0.0383 (12)	0.0005 (9)	0.0073 (9)	0.0012 (10)
C21A	0.0288 (11)	0.0338 (11)	0.0303 (11)	-0.0003 (9)	0.0035 (9)	-0.0011 (9)
C22A	0.0314 (11)	0.0377 (12)	0.0339 (12)	-0.0021 (9)	0.0077 (9)	-0.0026 (10)
C23A	0.0273 (11)	0.0412 (13)	0.0454 (14)	-0.0015 (9)	0.0052 (10)	-0.0031 (11)
C24A	0.0385 (13)	0.0328 (12)	0.0359 (12)	0.0004 (10)	-0.0009 (10)	0.0013 (10)
C25A	0.0428 (13)	0.0375 (13)	0.0311 (12)	-0.0013 (10)	0.0078 (10)	0.0023 (10)
C26A	0.0282 (11)	0.0373 (12)	0.0335 (12)	0.0003 (9)	0.0064 (9)	0.0008 (10)
O1W	0.0528 (12)	0.0601 (13)	0.0406 (11)	-0.0075 (10)	0.0133 (9)	-0.0067 (9)

Geometric parameters (Å, °)

C101	1.229 (3)	C1A—N1A	1.376 (3)
C1—N1	1.380 (3)	C1A—C11A	1.493 (3)

C1-C11	1.489 (3)	N1A—C2A	1.398 (3)
N1—C2	1.394 (3)	N1A—H1A	0.874 (10)
N1—H1	0.866 (10)	C2A—N2A	1.342 (3)
C2—N2	1.341 (3)	C2A—S1A	1.664 (2)
C2—S1	1.666 (2)	N2A—C21A	1.423 (3)
N2—C21	1.424 (3)	N2A—H2A	0.877 (10)
N2—H2	0.873 (10)	Cl1A—C14A	1.743 (2)
C11—C14	1.739 (2)	Cl2A—C22A	1.732 (3)
C12—C22	1.727 (3)	Cl3A—C24A	1.741 (2)
Cl3—C24	1.751 (3)	Cl4A—C26A	1.735 (2)
C14—C26	1.726 (3)	C11A—C12A	1.392 (3)
C11-C16	1 397 (3)	C11A—C16A	1.398(3)
C11-C12	1.397(3)	C12A— $C13A$	1 393 (3)
C_{12} C_{13}	1 395 (3)	C12A $H12A$	0.9500
C12H12	0.9500	$C_{13}A - C_{14}A$	1 376 (4)
C_{12} C_{14}	1 380 (3)	C_{13A} H_{13A}	0.9500
C_{13} H_{12}	1.389 (3)	C13A $C15A$	0.9500
C13—H15	0.9300	C14A - C15A	1.390(4)
	1.363(3)	CISA UISA	1.383 (3)
	1.388 (3)	CISA—HISA	0.9500
CIS—HIS	0.9500	CI6A—HI6A	0.9500
C16—H16	0.9500	C2IA—C26A	1.393 (3)
C21—C22	1.394 (4)	C2IA—C22A	1.392 (3)
C21—C26	1.394 (3)	C22A—C23A	1.392 (3)
C22—C23	1.390 (4)	C23A—C24A	1.386 (4)
C23—C24	1.372 (4)	C23A—H23A	0.9500
С23—Н23	0.9500	C24A—C25A	1.376 (4)
C24—C25	1.386 (4)	C25A—C26A	1.389 (3)
C25—C26	1.396 (3)	C25A—H25A	0.9500
C25—H25	0.9500	O1W—H1WA	0.855 (10)
C1A—O1A	1.234 (3)	O1W—H1WB	0.855 (10)
01—C1—N1	121.66 (19)	O1A—C1A—C11A	120.9 (2)
O1—C1—C11	121.1 (2)	N1A—C1A—C11A	116.4 (2)
N1-C1-C11	117.2 (2)	C1A—N1A—C2A	128.1 (2)
C1—N1—C2	128.6 (2)	C1A—N1A—H1A	118.0 (19)
C1—N1—H1	116.8 (19)	C2A—N1A—H1A	113.9 (19)
C2—N1—H1	114.6 (19)	N2A—C2A—N1A	115.6 (2)
N2-C2-N1	115.6 (2)	N2A—C2A—S1A	123.96 (17)
N2—C2—S1	123.59 (16)	N1A—C2A—S1A	120.39 (17)
N1—C2—S1	120.80 (18)	C2A—N2A—C21A	121.5 (2)
C2—N2—C21	121.19 (19)	C2A—N2A—H2A	122 (2)
C2—N2—H2	121 (2)	C21A—N2A—H2A	116 (2)
C21—N2—H2	117 (2)	C12A—C11A—C16A	119.0 (2)
C16—C11—C12	119.2 (2)	C12A—C11A—C1A	123.9 (2)
C16—C11—C1	117.0 (2)	C16A—C11A—C1A	117.0 (2)
C12—C11—C1	123.8 (2)	C11A - C12A - C13A	120.8(2)
C13—C12—C11	120.5 (2)	C11A—C12A—H12A	119.6
C13—C12—H12	119.8	C13A—C12A—H12A	119.6

C11—C12—H12	119.8	C14A—C13A—C12A	119.1 (2)
C14—C13—C12	118.9 (2)	C14A—C13A—H13A	120.5
C14—C13—H13	120.6	C12A—C13A—H13A	120.5
С12—С13—Н13	120.6	C13A—C14A—C15A	121.5 (2)
C15—C14—C13	121.6 (2)	C13A—C14A—Cl1A	119.6 (2)
C15—C14—C11	119.17 (18)	C15A—C14A—C11A	118.9 (2)
C13—C14—Cl1	119.25 (19)	C16A—C15A—C14A	118.8 (2)
C14—C15—C16	119.3 (2)	C16A—C15A—H15A	120.6
C14—C15—H15	120.4	C14A - C15A - H15A	120.6
C16—C15—H15	120.4	C15A - C16A - C11A	120.8(2)
C_{15} C_{16} C_{11}	120.6 (2)	C15A - C16A - H16A	119.6
C15—C16—H16	1197	C11A - C16A - H16A	119.6
C11—C16—H16	119.7	C_{26A} C_{21A} C_{22A}	117.8(2)
C^{22} C^{21} C^{26}	117.9 (2)	C_{26A} C_{21A} N_{2A}	121.7(2)
$C_{22} = C_{21} = C_{20}$	1211(2)	$C_{22}A = C_{21}A = N_{2}A$	121.7(2) 1205(2)
$C_{22} = C_{21} = N_2$	121.1(2) 121.0(2)	$C_{21} = C_{21} = C_{23}$	120.5(2) 121.6(2)
C_{23} C_{22} C_{21} C_{23}	121.0(2) 121.9(3)	$C_{21}A = C_{22}A = C_{12}A$	121.0(2) 119.99(18)
$C_{23} = C_{22} = C_{21}$	121.9(3) 118.9(2)	$C_{23}A = C_{22}A = C_{12}A$	119.99(10) 118.4(2)
$C_{23} = C_{22} = C_{12}$	110.9(2) 119.17(18)	C_{23} C_{23} C_{23} C_{23} C_{23}	118.7(2)
C_{24} C_{23} C_{22}	119.17(10) 118.0(3)	$C_{24A} = C_{23A} = C_{22A}$	120.9
$C_{24} = C_{23} = C_{22}$	121.0	$C_{24} = C_{23} = H_{23} = H$	120.9
$C_{24} = C_{23} = H_{23}$	121.0	$C_{22}A = C_{23}A = C_{23}A$	120.9 122.1(2)
$C_{22} = C_{23} = C_{23}$	121.0 122.9(2)	$C_{25A} = C_{24A} = C_{13A}$	122.1(2) 1193(2)
$C_{23} = C_{24} = C_{23}$	122.9(2) 118.6(2)	$C_{23}A - C_{24}A - C_{13}A$	119.5(2)
$C_{25} = C_{24} = C_{13}$	118.6(2)	$C_{23}A = C_{25}A = C_{26}A$	118.0(2)
$C_{24} = C_{25} = C_{26}$	117.8(3)	$C_{24A} = C_{25A} = H_{25A}$	120.8
$C_{24} = C_{25} = C_{20}$	121.1	$C_{24} = C_{25} = H_{25} = H_{25}$	120.8
$C_{24} = C_{25} = H_{25}$	121.1	$C_{25A} = C_{26A} = C_{21A}$	120.0 121.8(2)
$C_{20} = C_{20} = C_{20}$	121.1 121.5(2)	C_{25A} C_{26A} C_{14A}	121.0(2) 118.7(2)
$C_{21} = C_{26} = C_{14}$	121.3(2) 119.26(17)	$C_{21}A = C_{26}A = C_{14}A$	110.7(2)
C_{25} C_{26} C_{14}	119.20(17) 119.2(2)	H1WA = 01W = H1WB	119.40 (17)
O1A - C1A - N1A	119.2(2) 122.7(2)		110 (5)
	122.7 (2)		
01 - C1 - N1 - C2	-16(4)	OIA—CIA—NIA—C2A	51(4)
$C_{11} - C_{1} - N_{1} - C_{2}$	177 8 (2)	$C_{11A} - C_{1A} - N_{1A} - C_{2A}$	-1746(2)
C1-N1-C2-N2	-1.6(4)	C1A— $N1A$ — $C2A$ — $N2A$	-1.7(3)
C1 - N1 - C2 - S1	178 25 (19)	C1A— $N1A$ — $C2A$ — $S1A$	178 52 (19)
N1-C2-N2-C21	-1756(2)	N1A-C2A-N2A-C21A	-1793(2)
S1-C2-N2-C21	46(3)	S1A - C2A - N2A - C21A	04(3)
01-C1-C11-C16	-12.9(3)	01A— $C1A$ — $C11A$ — $C12A$	-155.0(2)
N1-C1-C11-C16	167 7 (2)	N1A—C1A—C11A—C12A	247(3)
01-C1-C11-C12	167.7(2)	01A— $C1A$ — $C11A$ — $C16A$	21.7(3)
N1-C1-C11-C12	-14.1(3)	NIA—CIA—CIIA—CI6A	-158.7(2)
C_{16} C_{11} C_{12} C_{13}	1.0 (4)	C16A— $C11A$ — $C12A$ — $C13A$	-0.3(4)
C1-C11-C12-C13	-1771(2)	C1A— $C11A$ — $C12A$ — $C13A$	1762(2)
$C_{11} - C_{12} - C_{13} - C_{14}$	00(4)	C11A - C12A - C13A - C14A	0.9(4)
C12 - C13 - C14 - C15	-0.7(4)	C12A— $C13A$ — $C14A$ — $C15A$	-0.3(4)
$C_{12} = C_{13} = C_{14} = C_{13}$	178 12 (19)	C12A $C13A$ $C14A$ $C11A$	179 9 (2)
012 - 013 - 017 - 011	1/0.12 (17)		1/).) (2)

C13—C14—C15—C16	0.3 (4)	C13A—C14A—C15A—C16A	-0.9 (4)
Cl1—C14—C15—C16	-178.50 (19)	Cl1A—C14A—C15A—C16A	179.0 (2)
C14—C15—C16—C11	0.7 (4)	C14A—C15A—C16A—C11A	1.4 (4)
C12-C11-C16-C15	-1.4 (4)	C12A—C11A—C16A—C15A	-0.8 (4)
C1-C11-C16-C15	176.9 (2)	C1A—C11A—C16A—C15A	-177.6 (2)
C2—N2—C21—C22	-100.5 (3)	C2A—N2A—C21A—C26A	-85.7 (3)
C2—N2—C21—C26	81.6 (3)	C2A—N2A—C21A—C22A	95.8 (3)
C26—C21—C22—C23	-1.8 (4)	C26A—C21A—C22A—C23A	2.0 (4)
N2-C21-C22-C23	-179.8 (2)	N2A—C21A—C22A—C23A	-179.5 (2)
C26—C21—C22—Cl2	177.95 (19)	C26A—C21A—C22A—Cl2A	-177.46 (18)
N2-C21-C22-Cl2	0.0 (3)	N2A—C21A—C22A—Cl2A	1.1 (3)
C21—C22—C23—C24	0.7 (4)	C21A—C22A—C23A—C24A	-1.8 (4)
Cl2—C22—C23—C24	-179.1 (2)	Cl2A—C22A—C23A—C24A	177.66 (19)
C22—C23—C24—C25	0.2 (4)	C22A—C23A—C24A—C25A	0.7 (4)
C22—C23—C24—Cl3	179.5 (2)	C22A—C23A—C24A—C13A	-177.60 (19)
C23—C24—C25—C26	0.1 (4)	C23A—C24A—C25A—C26A	0.1 (4)
Cl3—C24—C25—C26	-179.2 (2)	Cl3A—C24A—C25A—C26A	178.41 (19)
C22—C21—C26—C25	2.1 (4)	C24A—C25A—C26A—C21A	0.1 (4)
N2-C21-C26-C25	-179.9 (2)	C24A—C25A—C26A—Cl4A	-179.14 (19)
C22-C21-C26-Cl4	-176.13 (19)	C22A—C21A—C26A—C25A	-1.1 (4)
N2-C21-C26-Cl4	1.8 (3)	N2A-C21A-C26A-C25A	-179.6 (2)
C24—C25—C26—C21	-1.3 (4)	C22A—C21A—C26A—Cl4A	178.12 (18)
C24—C25—C26—Cl4	176.9 (2)	N2A—C21A—C26A—Cl4A	-0.4 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	D—H···A
N1—H1…O1W	0.87 (1)	2.21 (2)	2.997 (3)	151 (3)
N2—H2…O1	0.87(1)	1.97 (2)	2.627 (2)	131 (3)
N2—H2···O1A ⁱ	0.87(1)	2.26 (2)	2.931 (3)	133 (2)
N1A— $H1A$ ···O1 W	0.87(1)	1.96 (1)	2.816 (3)	164 (3)
N2A—H2A···O1A	0.88 (1)	1.98 (3)	2.637 (3)	130 (3)
N2A—H2A···O1 ⁱⁱ	0.88 (1)	2.31 (2)	3.001 (3)	136 (3)
O1W— $H1WA$ ···S1A	0.86 (1)	2.67 (3)	3.215 (2)	123 (3)
O1W—H1 WA ···Cl3 ⁱⁱⁱ	0.86(1)	2.84 (3)	3.388 (2)	123 (3)
O1 <i>W</i> —H1 <i>WB</i> ···S1	0.86(1)	2.36 (2)	3.091 (2)	144 (3)

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2; (iii) -x, -y+1, -z+1.