metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[trimethyltin(IV)]-μ-2,4,6trichlorobenzoato]

Liyuan Wen, Handong Yin,* Wenkuan Li and Daqi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 15 November 2008; accepted 3 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.028; wR factor = 0.085; data-to-parameter ratio = 17.0.

In the title compound, $[Sn(CH_3)_3(C_7H_2Cl_3O_2)]_n$, the tin(IV) atom exhibits a slightly distorted trigonal-bipyramidal geometry with two O atoms of symmetry-related carboxylate groups in the axial positions and three methyl groups in the equatorial positions. In the crystal structure, the metal atoms are linked by carboxylate bridges into polymeric chains extending along the *b* axis.

Related literature

For related structures, see: Wang et al. (2007); Ma et al. (2006).

Experimental

Crystal data $[Sn(CH_3)_3(C_7H_2Cl_3O_2)]$ $M_r = 388.25$

Monoclinic, $P2_1/c$ a = 9.8457 (10) Å b = 9.6891 (9) Å c = 15.3028 (19) Å $\beta = 106.761 (1)^{\circ}$ $V = 1397.8 (3) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector	6983 measured reflections
diffractometer	2469 independent reflections
Absorption correction: multi-scan	1996 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.025$
$T_{\min} = 0.434, \ T_{\max} = 0.832$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 145 parameters $wR(F^2) = 0.085$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.68$ e Å $^{-3}$ 2469 reflections $\Delta \rho_{min} = -0.37$ e Å $^{-3}$

Mo *K* α radiation $\mu = 2.38 \text{ mm}^{-1}$

 $0.42 \times 0.18 \times 0.08 \text{ mm}$

T = 298 (2) K

Table 1 Selected bond lengths (Å).

Sn1-C9	2.107 (5)	Sn1-O1	2.212 (3)
Sn1-C10	2.116 (5)	Sn1-O2 ⁱ	2.467 (3)
Sn1-C8	2.123 (4)		

Symmetry code: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*

We acknowledge the National Natural Foundation of China (grant No. 20771053), and the Natural Science Foundation of Shandong Province (2005ZX09) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2273).

References

Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem., 691, 1713-1721.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wang, H., Yin, H. & Wang, D. (2007). Acta Cryst. E63, m2955.

supporting information

Acta Cryst. (2009). E65, m30 [doi:10.1107/S1600536808040798]

catena-Poly[[trimethyltin(IV)]-µ-2,4,6-trichlorobenzoato]

Liyuan Wen, Handong Yin, Wenkuan Li and Daqi Wang

S1. Comment

Organoantin(IV) derivatives have recently attracted considerable attention due to the significant antimicrobial properties (Wang *et al.*, 2007). As a part of our ongoing investigations in this field, we have synthesized the title compound and present its crystal structure here.

In the title compound (Fig. 1), the Sn—O bond distances (Table 1) are comparable to those found in related organotin carboxylates (Ma *et al.*, 2006). The Sn atom assumes a slightly distorted trigonal-bipyramidal coordination geometry, provided by two O atoms of symmetry related carboxylate groups at the axial positions and three methyl groups at the equatorial positions. In the crystal structure, the metal atoms are linked by carboxylate bridges into polymeric chains extending along the *b* axis (Fig. 2).

S2. Experimental

The reaction was carried out under nitrogen atmosphere. 2,4,6-Trichlorobenzoic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (1 mmol) was then added and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane/methanol (1:1 v/v) solution (yield 83%. m. p. 403K). Anal. Calcd (%) for $C_{10}H_{11}Cl_3O_2Sn$: C, 30.94; H, 2.86; O, 8.24; Sn, 30.58; Found (%): C, 30.89; H, 2.90; O, 8.31; Sn, 30.62.

S3. Refinement

H atoms were positioned geometrically, with methyl C—H distances of 0.96 Å and aromatic C—H distances of 0.93 Å, and refined as riding on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for the methyl groups.

Figure 1

The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms are omitted for clarity. Symmetry code: (A) = -x + 1, y + 1/2, -z + 1/2.

Figure 2

View of the one-dimensional chain structure extending along the b axis.

catena-Poly[[trimethyltin(IV)]-µ-2,4,6-trichlorobenzoato]

Crystal data	
$[Sn(CH_3)_3(C_7H_2Cl_3O_2)]$	<i>b</i> = 9.6891 (9) Å
$M_r = 388.25$	<i>c</i> = 15.3028 (19) Å
Monoclinic, $P2_1/c$	$\beta = 106.761 \ (1)^{\circ}$
Hall symbol: -P 2ybc	V = 1397.8 (3) Å ³
a = 9.8457 (10) Å	Z = 4

F(000) = 752 $D_x = 1.845 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3337 reflections $\theta = 2.5-27.6^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.434, T_{\max} = 0.832$

Refinement

$$\mu = 2.38 \text{ mm}^{-1}$$

T = 298 K
Block, colourless
 $0.42 \times 0.18 \times 0.08 \text{ mm}$

6983 measured reflections 2469 independent reflections 1996 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 2.2^\circ$ $h = -9 \rightarrow 11$ $k = -10 \rightarrow 11$ $l = -18 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 1.1107P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.68 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.37 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sn1	0.41662 (3)	0.26723 (3)	0.24850 (2)	0.03954 (13)
Cl1	0.13395 (13)	-0.14643 (14)	0.30795 (8)	0.0553 (3)
Cl2	-0.17245 (14)	-0.41671 (14)	0.00986 (9)	0.0685 (4)
C13	0.21742 (14)	-0.04603 (14)	-0.01909 (8)	0.0589 (3)
01	0.2441 (3)	0.1152 (3)	0.1981 (2)	0.0436 (7)
O2	0.4091 (3)	-0.0438 (3)	0.2076 (2)	0.0483 (8)
C1	0.2834 (4)	-0.0058 (4)	0.1860 (3)	0.0368 (9)
C2	0.1682 (4)	-0.1073 (4)	0.1414 (3)	0.0357 (9)
C3	0.0947 (4)	-0.1793 (4)	0.1922 (3)	0.0379 (9)
C4	-0.0092 (5)	-0.2761 (4)	0.1529 (3)	0.0416 (10)
H4	-0.0557	-0.3248	0.1881	0.050*
C5	-0.0410 (5)	-0.2974 (4)	0.0609 (3)	0.0429 (11)
C6	0.0256 (5)	-0.2269 (4)	0.0067 (3)	0.0449 (11)
H6	0.0004	-0.2414	-0.0560	0.054*
C7	0.1307 (4)	-0.1341 (4)	0.0483 (3)	0.0396 (10)
C8	0.2673 (5)	0.4245 (5)	0.2502 (4)	0.0582 (13)
H8A	0.3162	0.5044	0.2809	0.087*
H8B	0.2023	0.3917	0.2818	0.087*
H8C	0.2158	0.4484	0.1887	0.087*
C9	0.4924 (6)	0.2466 (5)	0.1337 (3)	0.0510 (12)
H9A	0.5867	0.2092	0.1523	0.077*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03773 (19)	0.0345 (2)	0.0475 (2)	-0.00090 (12)	0.01410 (14)	-0.00256 (13)
C11	0.0537 (7)	0.0745 (9)	0.0398 (7)	-0.0114 (6)	0.0167 (5)	-0.0052 (6)
Cl2	0.0641 (8)	0.0599 (8)	0.0692 (9)	-0.0214 (7)	-0.0003 (6)	-0.0076 (7)
C13	0.0717 (8)	0.0616 (8)	0.0511 (7)	-0.0064 (6)	0.0300 (6)	0.0062 (6)
01	0.0357 (15)	0.0308 (16)	0.066 (2)	-0.0010 (12)	0.0176 (14)	-0.0100 (14)
O2	0.0367 (17)	0.0375 (17)	0.068 (2)	0.0041 (13)	0.0106 (14)	0.0015 (15)
C1	0.038 (2)	0.034 (2)	0.040 (2)	-0.0021 (18)	0.0155 (19)	0.0017 (18)
C2	0.035 (2)	0.028 (2)	0.042 (2)	0.0022 (17)	0.0089 (18)	-0.0017 (18)
C3	0.040 (2)	0.037 (2)	0.038 (2)	-0.0023 (19)	0.0133 (19)	-0.0009 (19)
C4	0.038 (2)	0.036 (2)	0.051 (3)	-0.0047 (18)	0.012 (2)	0.003 (2)
C5	0.039 (2)	0.033 (2)	0.051 (3)	-0.0032 (19)	0.005 (2)	-0.007 (2)
C6	0.049 (3)	0.045 (3)	0.038 (3)	0.004 (2)	0.009 (2)	-0.005 (2)
C7	0.041 (2)	0.035 (2)	0.045 (3)	0.0037 (18)	0.0144 (19)	0.0031 (19)
C8	0.045 (3)	0.045 (3)	0.086 (4)	-0.004 (2)	0.022 (3)	-0.019 (3)
C9	0.055 (3)	0.052 (3)	0.051 (3)	-0.002 (2)	0.023 (2)	0.001 (2)
C10	0.078 (4)	0.056 (3)	0.047 (3)	-0.014 (3)	0.011 (3)	0.004 (2)

Geometric parameters (Å, °)

Sn1—C9	2.107 (5)	C4—C5	1.366 (6)	
Sn1—C10	2.116 (5)	C4—H4	0.9300	
Sn1—C8	2.123 (4)	C5—C6	1.377 (7)	
Sn1—O1	2.212 (3)	C6—C7	1.380 (6)	
$Sn1-O2^i$	2.467 (3)	С6—Н6	0.9300	
Cl1—C3	1.730 (4)	C8—H8A	0.9600	
Cl2—C5	1.744 (4)	C8—H8B	0.9600	
Cl3—C7	1.740 (4)	C8—H8C	0.9600	
01—C1	1.265 (5)	C9—H9A	0.9600	
O2—C1	1.241 (5)	C9—H9B	0.9600	
O2—Sn1 ⁱⁱ	2.467 (3)	С9—Н9С	0.9600	
C1—C2	1.508 (5)	C10—H10A	0.9600	
C2—C7	1.390 (6)	C10—H10B	0.9600	
С2—С3	1.392 (6)	C10—H10C	0.9600	
C3—C4	1.390 (6)			
C9—Sn1—C10	124.3 (2)	C6—C5—C12	118.7 (4)	
C9—Sn1—C8	119.4 (2)	C5—C6—C7	118.0 (4)	
C10—Sn1—C8	114.6 (2)	С5—С6—Н6	121.0	

C9—Sn1—O1	93.83 (16)	С7—С6—Н6	121.0
C10—Sn1—O1	97.96 (16)	C6—C7—C2	122.4 (4)
C8—Sn1—O1	91.00 (15)	C6—C7—Cl3	118.5 (4)
$C9$ — $Sn1$ — $O2^{i}$	84.92 (15)	C2—C7—C13	119.1 (3)
C10—Sn1—O2 ⁱ	88.16 (16)	Sn1—C8—H8A	109.5
$C8$ — $Sn1$ — $O2^{i}$	83.90 (15)	Sn1—C8—H8B	109.5
O1—Sn1—O2 ⁱ	173.28 (10)	H8A—C8—H8B	109.5
C1-O1-Sn1	115.6 (2)	Sn1—C8—H8C	109.5
C1—O2—Sn1 ⁱⁱ	148.7 (3)	H8A—C8—H8C	109.5
O2—C1—O1	124.0 (4)	H8B—C8—H8C	109.5
O2—C1—C2	119.3 (4)	Sn1—C9—H9A	109.5
O1—C1—C2	116.6 (3)	Sn1—C9—H9B	109.5
C7—C2—C3	116.9 (4)	H9A—C9—H9B	109.5
C7—C2—C1	121.9 (4)	Sn1—C9—H9C	109.5
C3—C2—C1	121.2 (4)	Н9А—С9—Н9С	109.5
C4—C3—C2	122.1 (4)	Н9В—С9—Н9С	109.5
C4—C3—Cl1	119.1 (3)	Sn1—C10—H10A	109.5
C2—C3—C11	118.7 (3)	Sn1—C10—H10B	109.5
C5—C4—C3	118.0 (4)	H10A—C10—H10B	109.5
C5—C4—H4	121.0	Sn1—C10—H10C	109.5
C3—C4—H4	121.0	H10A—C10—H10C	109.5
C4—C5—C6	122.6 (4)	H10B—C10—H10C	109.5
C4—C5—Cl2	118.8 (4)		
C0 Sp1 O1 C1	61 1 (3)	C1 $C2$ $C3$ $C11$	20(5)
$C_{10} = S_{11} = O_{1} = C_{1}$	-64 A (3)	$C_1 = C_2 = C_3 = C_4 = C_5$	2.0(3)
$C_{10}^{$	-170.2(3)	$C_2 - C_3 - C_4 - C_5$	1.3(7) 178 2 (3)
$S_{n1}^{ii} = O_{1}^{i} = O_{1}^{i}$	179.5(3) 154.5(4)	$C_{1} = C_{2} = C_{4} = C_{5}$	-0.1(7)
$Sn1^{ii} - 02 - C1 - C1$	-263(8)	$C_{3} - C_{4} - C_{5} - C_{12}^{12}$	-179.2(3)
$s_{n1} = 02 = 01 = 02$	61(5)	$C_{4} - C_{5} - C_{6} - C_{7}$	17.2(3)
$s_{n1} = 01 = 01 = 02$	-1730(3)	$C_{12}^{12} - C_{5}^{12} - C_{6}^{12} - C_{7}^{12}$	-1792(3)
$0^{2}-1^{2}-1^{2}$	-82.9(5)	$C_{12} = C_{3} = C_{0} = C_{1}$	-1.8(7)
01 - C1 - C2 - C7	963(5)	$C_{5} = C_{6} = C_{7} = C_{13}^{13}$	1.0(7) 179 1 (3)
$0^{2}-0^{1}-0^{2}-0^{3}$	96.8 (5)	C_{3} C_{2} C_{7} C_{6}	175.1(5)
02 - C1 - C2 - C3	-840(5)	$C_1 - C_2 - C_7 - C_6$	179.9(4)
$C_{7} = C_{2} = C_{3} = C_{4}$	15(6)	$C_{1} = C_{2} = C_{1} = C_{0}$	1793(3)
$C_1 - C_2 - C_3 - C_4$	-1782(4)	$C_1 - C_2 - C_7 - C_{13}$	-10(5)
C_{7} C_{2} C_{3} C_{11}	-1783(3)	01 02 07 015	1.0 (3)
0, 02 03 011	170.5 (5)		

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2.