## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Poly[diaqua- $\mu_{2}$-isonicotinato- $\mu_{2}$-oxalatoterbium(III)]

Wen-Dong Song,* Shi-Jie Li, Pei-Wen Qin and Shi-Wei Hu<br>College of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China<br>Correspondence e-mail: songwd60@126.com

Received 6 November 2008; accepted 2 December 2008

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; $R$ factor $=0.023 ; w R$ factor $=0.053 ;$ data-to-parameter ratio $=13.1$.

In the crystal structure of the title complex, $\left[\mathrm{Tb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Tb}^{\text {III }}$ cation is coordinated by four O atoms from two oxalate ligands, two O atoms from two isonicotinate ligands and two O atoms from water molecules within a distorted square-antiprismatic coordination. The $\mathrm{Tb}^{\mathrm{III}}$ cation, the isonicotinate anion and the two crystallographically independent water molecules occupy general positions, whereas one of the two crystallographically independent oxalate anions is located on a center of inversion, and the second oxalate anion is located on a twofold rotation axis. The $\mathrm{Tb}^{\text {III }}$ cations are linked by the oxalate and isonicotinate anions into layers, which are connected via intermolecular hydrogen-bonding and $\pi-\pi$ stacking [with centroid-to-centroid distances of 3.509 (2) and 3.343 (3) A] interactions into a three-dimensional network.

## Related literature

For general background on coordination polymers and openframework materials, see: Yaghi et al. $(1998,2003)$; Serre et al. (2004); James (2003). For related structures, see: Xia et al. (2004); Feng et al. (2003). An independent determination of this structure is reported in the following paper, see: Fang et al. (2009).


## Experimental

Crystal data
$\left[\mathrm{Tb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=405.07$
Monoclinic, C2/c
$V=2116.95(14) \AA^{3}$
$Z=8$
$a=17.7957$ (6) A
$b=9.9229$ (4) A
$c=12.9673$ (5) $\AA$
$\beta=112.407$ (2) ${ }^{\circ}$
Mo $K \alpha$ radiation
$\mu=6.72 \mathrm{~mm}^{-1}$
$T=273$ (2) K
$0.36 \times 0.30 \times 0.24 \mathrm{~mm}$

## Data collection

Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.113, T_{\max }=0.207$
7256 measured reflections 1906 independent reflections 1618 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 6$ restraints
$w R\left(F^{2}\right)=0.053 \quad \mathrm{H}$-atom parameters constrained
$S=0.91$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.88$ e $\AA^{-3}$

145 parameters

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | H $\cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{~N}{ }^{1}{ }^{\text {i }}$ | 0.84 | 1.83 | 2.665 | 177 |
| $\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 2^{\text {ii }}$ | 0.84 | 2.19 | 2.992 (3) | 159 |
| $\mathrm{O} 2 W-\mathrm{H} 3 W \cdots 3^{\text {iii }}$ | 0.84 | 2.00 | 2.835 (3) | 177 |
| $\mathrm{O} 2 W-\mathrm{H} 4 W \cdots \mathrm{O} 1 W^{\text {iv }}$ | 0.84 | 2.21 | 2.998 (3) | 156 |

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2122).

## References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Fang, Z.-Q., Zeng, R.-H., Li, Y.-T., Yang, S. \& Song, Z.-F. (2009). Acta Cryst. E65, m118.
Feng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. \& Wang, E. B. (2003). J. Mol. Struct. 650, 115-122.
James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.
Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. \& Ferey, G. (2004). J. Mater. Chem. 14, 1540-1543.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. \& Du, W. X. (2004). Polyhedron, 23, 1003-1009.

Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. \& Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.

## supporting information

Acta Cryst. (2009). E65, m117 [doi:10.1107/S1600536808040518]

# Poly[diaqua- $\mu_{2}$-isonicotinato- $\mu_{2}$-oxalato-terbium(III)] 

Wen-Dong Song, Shi-Jie Li, Pei-Wen Qin and Shi-Wei Hu

## S1. Comment

The use of multifunctional organic linker molecules in the preparation of coordination polymers and open-framework materials has led to the development of a rich field of chemistry (Yaghi et al., 1998, 2003; Serre et al., 2004; James, 2003) owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition. In our own investigatins we used isonictinate and oxalate ligands for the preparation of new coordination polymers, because it has been found that both anions can act as multidentate ligands [Xia et al. (2004); Feng et al. (2003)] with versatile binding and coordination modes. During these investigations, single crystals of the title compound were obtained.
The $\mathrm{Tb}^{\text {III }}$ centre in the title compound exhibits a distorted square-antiprismatic coordination geometry, defined by eight O atoms from two oxalate ligands, two O atom from two isonictinate ligands and two water molecules (Fig. 1). The oxalate and isonictinate ligands link the $\mathrm{Tb}^{\text {III }}$ cations with $\mathrm{Tb} — \mathrm{~Tb}$ distances of 6.179 (2) $\AA, 6.183$ (3) $\AA$ and 5.045 (2) $\AA$, respectively, thus forming Tb -oxalate-isonictinate layers with the attached water that is pointing up and down (Fig. 2). The layers are connected into a three-dimensional network via inter/intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding interactions (Table 1) involving the coordinated water molecules, the N atoms of isonictinate and the oxalate O atoms. They are also stabilized by $\pi-\pi$ stacking interactions with centroid to centroid distances of 3.509 (2) $\AA$ and 3.343 (3) Å, respectively, among parellel pyridinium rings of neighboring complexes.

## S2. Experimental

A mixture of $\mathrm{Tb}_{2} \mathrm{O}_{3}(0.5 \mathrm{mmol}, 0.175 \mathrm{~g})$, sodium oxalate ( $1 \mathrm{mmol}, 0.134 \mathrm{~g}$ ), isonicotinic acid ( $1 \mathrm{mmol}, 0.123 \mathrm{~g}$ ) and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{ml})$ was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. The crystals obtained were washed with water and dryed in air.

## S3. Refinement

C-H H atoms were placed in calculated positions and were treated as riding on the parent C atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The O-H H atoms were located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.84 \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.39 \AA$, each within a standard deviation of $0.01 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.


Figure 1
The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the $30 \%$ probability level. [Symmetry codes: (i) $1-x, y, 0.5-z$; (ii) $0.5-x$, $2.5-y,-z$; (iii) $0.5-x, 1.5-y,-z$ ]


Figure 2
Crystal structure of the title compound with view onto the layers. The H atoms are not shown for clarity.

## Poly[diaqua- $\mu_{2}$-isonicotinato- $\mu_{2}$-oxalato-terbium(III)]

## Crystal data

$\left[\mathrm{Tb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

$$
M_{r}=405.07
$$

$$
\begin{aligned}
& c=12.9673(5) \AA \\
& \beta=112.407(2)^{\circ} \\
& V=2116.95(14) \AA^{3} \\
& Z=8 \\
& F(000)=1536 \\
& D_{\mathrm{x}}=2.542 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=17.7957$ (6) $\AA$
$b=9.9229$ (4) $\AA$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8000 reflections
$\theta=1.7-26.0^{\circ}$
$\mu=6.72 \mathrm{~mm}^{-1}$

## Data collection

Bruker APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.113, T_{\text {max }}=0.207$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.053$
$S=0.91$
1906 reflections
145 parameters
6 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& T=273 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.36 \times 0.30 \times 0.24 \mathrm{~mm} \\
& \\
& 7256 \text { measured reflections } \\
& 1906 \text { independent reflections } \\
& 1618 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.034 \\
& \theta_{\max }=25.2^{\circ}, \theta_{\min }=2.4^{\circ} \\
& h=-21 \rightarrow 20 \\
& k=-11 \rightarrow 11 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0299 P)^{2}+5.163 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.88$ e $\AA^{-3}$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{is} *} * U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| Tb1 | $0.323989(12)$ | $0.96756(2)$ | $0.074846(17)$ | $0.01399(9)$ |
| O1 | $0.46185(19)$ | $1.0185(4)$ | $0.1051(3)$ | $0.0274(9)$ |
| O2 | $0.3030(2)$ | $1.1497(3)$ | $-0.0596(3)$ | $0.0229(8)$ |
| O5 | $0.3693(2)$ | $0.7501(4)$ | $0.1067(3)$ | $0.0331(9)$ |
| C1 | $0.2585(3)$ | $1.2447(5)$ | $-0.0542(4)$ | $0.0172(11)$ |
| C2 | $0.5146(3)$ | $1.0111(5)$ | $0.2013(4)$ | $0.0172(11)$ |
| C7 | $0.5237(3)$ | $0.6498(6)$ | $0.1361(4)$ | $0.0231(12)$ |
| H7 | 0.5190 | 0.7432 | 0.1348 | $0.028^{*}$ |
| C8 | $0.3727(3)$ | $0.6297(6)$ | $0.0808(4)$ | $0.0196(11)$ |
| C3 | $0.4558(3)$ | $0.5688(5)$ | $0.1108(3)$ | $0.0163(11)$ |
| C6 | $0.5989(3)$ | $0.5889(7)$ | $0.1636(4)$ | $0.0281(13)$ |
| H6 | 0.6444 | 0.6439 | 0.1807 | $0.034^{*}$ |


| C4 | $0.4671(3)$ | $0.4306(5)$ |
| :--- | :--- | :--- |
| H4 | 0.4228 | 0.3731 |
| C5 | $0.54429(8)$ | $0.37835(15)$ |
| H5 | 0.5508 | 0.2853 |
| N1 | $0.60972(8)$ | $0.45622(15)$ |
| O3 | $0.59033(8)$ | $1.00505(15)$ |
| O4 | $0.22609(8)$ | $1.33232(15)$ |
| O6 | $0.31250(8)$ | $0.55572(15)$ |
| O1W | $0.25866(8)$ | $0.87408(15)$ |
| H1W | 0.2122 | 0.9030 |
| H2W | 0.2833 | 0.8622 |
| O2W | $0.33025(8)$ | $0.88114(15)$ |
| H3W | 0.3550 | 0.9157 |
| H4W | 0.2966 | 0.8264 |


| $0.1135(4)$ | $0.0220(12)$ |
| :--- | :--- |
| 0.0961 | $0.026^{*}$ |
| $0.14206(11)$ | $0.0281(13)$ |
| 0.1440 | $0.034^{*}$ |
| $0.16691(11)$ | $0.0279(11)$ |
| $0.22872(11)$ | $0.0229(8)$ |
| $-0.12763(11)$ | $0.0232(8)$ |
| $0.03267(11)$ | $0.0301(9)$ |
| $0.19413(11)$ | $0.0208(8)$ |
| 0.1852 | $0.031^{*}$ |
| 0.2630 | $0.031^{*}$ |
| $-0.09693(11)$ | $0.0286(9)$ |
| -0.1341 | $0.043^{*}$ |
| -0.1394 | $0.043^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Tb1 | $0.01048(13)$ | $0.01587(15)$ | $0.01480(12)$ | $0.00208(11)$ | $0.00389(9)$ | $0.00099(11)$ |
| O1 | $0.0140(17)$ | $0.047(3)$ | $0.0180(17)$ | $-0.0045(17)$ | $0.0027(14)$ | $0.0043(17)$ |
| O2 | $0.0294(19)$ | $0.023(2)$ | $0.0202(17)$ | $0.0082(17)$ | $0.0143(15)$ | $0.0022(16)$ |
| O5 | $0.039(2)$ | $0.028(2)$ | $0.039(2)$ | $0.017(2)$ | $0.0227(19)$ | $0.0083(19)$ |
| C1 | $0.013(2)$ | $0.019(3)$ | $0.021(3)$ | $0.001(2)$ | $0.007(2)$ | $0.001(2)$ |
| C2 | $0.009(2)$ | $0.017(3)$ | $0.021(2)$ | $-0.002(2)$ | $0.002(2)$ | $0.000(2)$ |
| C7 | $0.019(3)$ | $0.026(3)$ | $0.022(3)$ | $-0.004(2)$ | $0.005(2)$ | $-0.009(2)$ |
| C8 | $0.020(3)$ | $0.030(3)$ | $0.012(2)$ | $0.008(2)$ | $0.008(2)$ | $0.010(2)$ |
| C3 | $0.017(2)$ | $0.024(3)$ | $0.007(2)$ | $0.005(2)$ | $0.0035(18)$ | $-0.002(2)$ |
| C6 | $0.016(3)$ | $0.047(4)$ | $0.022(3)$ | $-0.004(3)$ | $0.008(2)$ | $-0.006(3)$ |
| C4 | $0.020(3)$ | $0.022(3)$ | $0.023(3)$ | $-0.002(2)$ | $0.007(2)$ | $-0.004(2)$ |
| C5 | $0.028(3)$ | $0.026(3)$ | $0.034(3)$ | $0.013(3)$ | $0.016(2)$ | $0.007(3)$ |
| N1 | $0.015(2)$ | $0.046(4)$ | $0.024(2)$ | $0.007(2)$ | $0.0081(18)$ | $0.003(2)$ |
| O3 | $0.0175(18)$ | $0.033(2)$ | $0.0197(17)$ | $-0.0024(16)$ | $0.0089(14)$ | $0.0018(15)$ |
| O4 | $0.032(2)$ | $0.020(2)$ | $0.0195(17)$ | $0.0121(17)$ | $0.0116(15)$ | $0.0052(16)$ |
| O6 | $0.0095(17)$ | $0.050(3)$ | $0.0259(18)$ | $0.0005(18)$ | $0.0013(14)$ | $0.0006(18)$ |
| O1W | $0.0149(16)$ | $0.028(2)$ | $0.0201(16)$ | $0.0064(16)$ | $0.0076(14)$ | $0.0074(16)$ |
| O2W | $0.040(2)$ | $0.028(2)$ | $0.0232(18)$ | $-0.0068(19)$ | $0.0179(17)$ | $-0.0074(17)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Tb} 1-\mathrm{O} 5$ | $2.285(4)$ | $\mathrm{C} 7-\mathrm{H} 7$ | 0.9300 |
| :--- | :--- | :--- | :--- |
| $\mathrm{~Tb} 1-\mathrm{O} 6^{\mathrm{i}}$ | $2.3055(14)$ | $\mathrm{C} 8-\mathrm{O} 6$ | $1.251(5)$ |
| $\mathrm{Tb} 1-\mathrm{O} 44^{\mathrm{ii}}$ | $2.3814(14)$ | $\mathrm{C} 8-\mathrm{C} 3$ | $1.505(6)$ |
| $\mathrm{Tb} 1-\mathrm{O} 1$ | $2.386(3)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.385(7)$ |
| $\mathrm{Tb} 1-\mathrm{O} 2 \mathrm{~W}$ | $2.4286(13)$ | $\mathrm{C} 6-\mathrm{N} 1$ | $1.329(7)$ |
| $\mathrm{Tb} 1-\mathrm{O} 2$ | $2.439(3)$ | $\mathrm{C} 6-\mathrm{H} 6$ | 0.9300 |
| $\mathrm{~Tb} 1-\mathrm{O} 1 \mathrm{~W}$ | $2.4444(13)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.380(5)$ |
| $\mathrm{Tb} 1-\mathrm{O} 3 \mathrm{iii}$ | $2.4476(13)$ | $\mathrm{C} 4-\mathrm{H} 4$ | 0.9300 |
| $\mathrm{O} 1-\mathrm{C} 2$ | $1.245(6)$ | $\mathrm{C} 5-\mathrm{N} 1$ | 1.3306 |


| O2-C1 | 1.251 (5) | C5-H5 | 0.9300 |
| :---: | :---: | :---: | :---: |
| O5-C8 | 1.249 (6) | $\mathrm{O} 3-\mathrm{Tb} 1^{\text {iii }}$ | 2.4476 (13) |
| C1-O4 | 1.255 (5) | O4-Tbl $1^{\text {ii }}$ | 2.3814 (14) |
| C1-C1 ${ }^{\text {ii }}$ | 1.549 (9) | O6-Tbl ${ }^{\text {i }}$ | 2.3055 (14) |
| C2-O3 | 1.257 (5) | O1W-H1W | 0.8400 |
| C2-C2 $2^{\text {iii }}$ | 1.537 (9) | O1W-H2W | 0.8400 |
| C7-C3 | 1.382 (7) | O2W-H3W | 0.8400 |
| C7-C6 | 1.387 (7) | O2W-H4W | 0.8400 |
| O5-Tbl-O6 ${ }^{\text {i }}$ | 103.43 (11) | O4-C1-C1 ${ }^{\text {ii }}$ | 116.8 (5) |
| $\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 44^{\text {ii }}$ | 151.65 (9) | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3$ | 127.1 (4) |
| $\mathrm{O} 6^{\text {i }}-\mathrm{Tb} 1-\mathrm{O} 4^{\text {ii }}$ | 80.4 | O1-C2-C2 $2^{\text {iii }}$ | 117.5 (5) |
| O5-Tbl-O1 | 84.30 (13) | O3-C2-C2 $2^{\text {iii }}$ | 115.4 (5) |
| O6--Tbl-O1 | 154.26 (9) | C3-C7-C6 | 118.6 (5) |
| $\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 1$ | 104.49 (10) | C3-C7-H7 | 120.7 |
| O5-Tb1-O2W | 72.32 (10) | C6-C7-H7 | 120.7 |
| O6-Tb1-O2W | 79.4 | O5-C8-O6 | 125.1 (4) |
| O4i-Tbl-02W | 135.3 | O5-C8-C3 | 117.3 (5) |
| $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 2 \mathrm{~W}$ | 79.74 (9) | O6-C8-C3 | 117.6 (4) |
| O5-Tb1-O2 | 140.94 (11) | C7-C3-C4 | 117.7 (4) |
| $\mathrm{O} 6{ }^{\text {i }}$ - $\mathrm{Tb} 1-\mathrm{O} 2$ | 78.63 (9) | C7-C3-C8 | 120.8 (5) |
| $\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 2$ | 67.37 (8) | C4-C3-C8 | 121.5 (4) |
| $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 2$ | 80.13 (11) | N1-C6-C7 | 123.6 (5) |
| O2W-Tbl-O2 | 69.77 (8) | N1-C6-H6 | 118.2 |
| O5-Tb1-O1W | 75.35 (9) | C7-C6-H6 | 118.2 |
| O6-Tbl-O1W | 72.49 (5) | C5-C4-C3 | 120.0 (4) |
| O4i-Tbl-O1W | 79.29 (5) | C5-C4-H4 | 120.0 |
| O1-Tb1-O1W | 133.11 (8) | C3-C4-H4 | 120.0 |
| O2W-Tb1-O1W | 130.20 (6) | N1-C5-C4 | 122.4 (2) |
| O2-Tbl-O1W | 138.86 (8) | N1-C5-H5 | 118.8 |
| $\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O}^{\text {iii }}$ | 85.32 (10) | C4-C5-H5 | 118.8 |
| $\mathrm{O} 6^{\text {i- }} \mathrm{Tb} 1-\mathrm{O}^{\text {iii }}$ | 137.68 (6) | C6-N1-C5 | 117.7 (2) |
| $\mathrm{O} 4{ }^{\text {iii-Tb }}$ - $1-\mathrm{O}^{\text {iii }}$ | 74.2 | $\mathrm{C} 2-\mathrm{O} 3-\mathrm{Tb} 1^{\text {iii }}$ | 118.5 (2) |
| $\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O}^{\text {iii }}$ | 66.61 (8) | $\mathrm{C} 1-\mathrm{O} 4-\mathrm{Tb} 1^{\text {ii }}$ | 118.2 (2) |
| $\mathrm{O} 2 \mathrm{~W}-\mathrm{Tb} 1-\mathrm{O} 3{ }^{\text {iii }}$ | 141.3 | C8-O6-Tb1 ${ }^{\text {i }}$ | 149.8 (3) |
| $\mathrm{O} 2-\mathrm{Tb} 1-3^{\text {iii }}$ | 119.75 (9) | Tb1-O1W-H1W | 117.6 |
| $\mathrm{O} 1 \mathrm{~W}-\mathrm{Tb} 1-\mathrm{O} 3{ }^{\text {iii }}$ | 69.9 | Tb1-O1W-H2W | 123.0 |
| C2-O1-Tb1 | 119.2 (3) | H1W-O1W-H2W | 106.4 |
| $\mathrm{C} 1-\mathrm{O} 2-\mathrm{Tb} 1$ | 116.5 (3) | Tb1-O2W-H3W | 126.8 |
| C8-O5-Tb1 | 154.8 (3) | Tb1-O2W-H4W | 124.0 |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 4$ | 126.6 (4) | H3W-O2W-H4W | 106.6 |
| $\mathrm{O} 2-\mathrm{Cl}-\mathrm{Cl}^{\text {ii }}$ | 116.6 (5) |  |  |

[^0]Hydrogen-bond geometry (A, ${ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{~N} 1^{\text {iv }}$ | 0.84 | 1.83 | 2.665 | 177 |

## supporting information

| $\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 2^{\mathrm{v}}$ | 0.84 | 2.19 | $2.992(3)$ | 159 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 2 W-\mathrm{H} 3 W \cdots \mathrm{O} 3^{\text {vi }}$ | 0.84 | 2.00 | $2.835(3)$ | 177 |
| $\mathrm{O} 2 W-\mathrm{H} 4 W \cdots \mathrm{O} 1 W^{\mathrm{i}}$ | 0.84 | 2.21 | $2.998(3)$ | 156 |

Symmetry codes: (i) $-x+1 / 2,-y+3 / 2,-z$; (iv) $x-1 / 2, y+1 / 2, z$; (v) $x,-y+2, z+1 / 2$; (vi) $-x+1,-y+2,-z$.


[^0]:    Symmetry codes: (i) $-x+1 / 2,-y+3 / 2,-z$; (ii) $-x+1 / 2,-y+5 / 2,-z$; (iii) $-x+1, y,-z+1 / 2$.

