Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[diaqua- μ_{2}-isonicotinato- μ_{2}-oxalatoterbium(III)]

Zhan-Qiang Fang,* Rong-Hua Zeng, Yan-Ting Li, Shuo Yang and Zhao-Feng Song

School of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China
Correspondence e-mail: zhqfang77@yahoo.com.cn

Received 21 October 2008; accepted 15 December 2008
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.025 ; w R$ factor $=0.063$; data-to-parameter ratio $=11.7$.

In the crystal structure of the title complex, $\left[\mathrm{Tb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Tb}^{\text {III }}$ ion is coordinated by two O atoms from two isonicotinate (inic) anions, four O atoms of two oxalate anions, and two water molecules, displaying a distorted square-antiprismatic geometry. The $\mathrm{Tb}^{\mathrm{III}}$ ion, the inic anion and the water molecules occupy general positions. One of the two crystallographically independent oxalate anions is located on a center of inversion, whereas the second is located on the twofold rotation axis. The carboxylate groups of the inic and oxalate anions link the terbium metal centres into layers. These layers are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding into a three-dimensional network.

Related literature

For background, see: Eddaoudi et al. (2001); Rizk et al. (2005). An independent determination of this structure is reported in the preceeding paper, see: Song et al. (2009).

Experimental

Crystal data

$\left[\mathrm{Tb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=405.07$
Monoclinic, $C 2 / c$
$a=17.7919$ (18) \AA
$V=2117.0(4) \AA^{3}$
$Z=8$
$b=9.9259(10) \AA$
Mo $K \alpha$ radiation
$\mu=6.72 \mathrm{~mm}^{-1}$
$c=12.9670$ (13) A
$T=296$ (2) K
$\beta=112.4140(10)^{\circ}$

Data collection

Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (APEX2; Bruker, 2004)
$T_{\text {min }}=0.241, T_{\text {max }}=0.272$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 \quad 6$ restraints
$w R\left(F^{2}\right)=0.063$
H -atom parameters constrained
$S=1.01$
$\Delta \rho_{\text {max }}=1.40 \mathrm{e}_{\AA^{-3}}$
1907 reflections
163 parameters

5243 measured reflections 1907 independent reflections 1674 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O}^{\text {i }}$	0.84	2.22	2.992 (5)	153
$\mathrm{O} 2 W-\mathrm{H} 4 W \cdots \mathrm{O} 1 W^{\text {ii }}$	0.84	2.19	3.003 (5)	163
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{~N} 1^{\text {iii }}$	0.84	1.83	2.661 (5)	167
$\mathrm{O} 2 W-\mathrm{H} 3 W \cdots \mathrm{O}^{\text {iv }}$	0.84	2.01	2.836 (5)	172

Symmetry codes: (i) $x,-y, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$; (iii) $-x+1,-y,-z+1$;
(iv) $-x+2,-y,-z+1$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2118).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

Rizk, A. T., Kilner, C. A. \& Halcrow, M. A. (2005). CrystEngComm, 7, 359362.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Song, W.-D., Li, S.-J., Qin, P.-W. \& Hu, S.-W. (2009). Acta Cryst. E65, m117. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2009). E65, m118 [doi:10.1107/S1600536808042682]

Poly[diaqua- μ_{2}-isonicotinato- μ_{2}-oxalato-terbium(III)]

Zhan-Qiang Fang, Rong-Hua Zeng, Yan-Ting Li, Shuo Yang and Zhao-Feng Song

S1. Comment

The design, synthesis, characterization and properties of coordination networks formed by functionalized organic molecules or anionas as bridges between metal centers are of great interest(Rizk et al., 2005; Eddaoudi et al., 2001). As a building block, isonicotinic acid and oxalic acid are excellent candidates for the construction of such compounds. In our ongoing investigations in this field the title compound was prepared and structurally characterized.
In the crystal structure of the title compound each $\mathrm{Tb}^{\text {III }}$ centre is coordinated by six oxygen atoms from two symmetry related inic anions, two crystallographically independent oxalate anions and two crystallographically independent water molecules within a distorted bicapped trigonal prismatic geometry (Fig. 1). The $\mathrm{Tb}^{\text {III }}$ ions are linked by the inic and oxalate anions into layers, which are parallel to the b-c-plane (Fig. 2). $\mathrm{Tb} \cdots \mathrm{Tb}$ separations amount to 6.177 (4) and 5.047 (5) \AA, respectively. These layers are connected via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the water H atoms and the inic and one of the two crystallographically independent oxalate anions into three-dimensional network (Table 1).

S2. Experimental

A mixture of $\mathrm{Tb}_{4} \mathrm{O}_{7}(0.189 \mathrm{~g} ; 0.25 \mathrm{mmol})$, isonicotinic acid $(0.135 \mathrm{~g} ; 1.5 \mathrm{mmol})$, oxalic acid $(0.135 \mathrm{~g} ; 1.5 \mathrm{mmol})$, water $(10 \mathrm{~mL})$ and $\mathrm{HNO}_{3}(0.385 \mathrm{mmol} ; 0.92 \mathrm{~g} / \mathrm{ml})$ were stirred for 20 min and then sealed in a 20 mL Teflon-lined stainlesssteel autoclave. The autoclave was heated to 433 K for 3 days, and then cooled to room temperature at $5 \mathrm{~K} \mathrm{~h}^{-1}$. By this procedure colorless block-like crystals of the title compound were obtained.

S3. Refinement

The Water H atoms were located in difference Fourier maps, their bond lengths were set to ideal values of $\mathrm{O}-\mathrm{H}=0.84$ and finally they were refined isotropic using a riding model with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. C-H H atoms were placed at calculated positions and were treated as riding on the parent C atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probabbility level. Symmetry codes: (i) $1.5-\mathrm{x}, 0.5-\mathrm{y}, 1-\mathrm{z}$; (ii) $1.5-\mathrm{x},-0.5-\mathrm{y}, 1-\mathrm{z}$; (iii)2-x, y, $1.5-\mathrm{z}$;

Figure 2
Crystal structure of the title compound with view along the c-axis.

Poly[diaqua- μ_{2}-isonicotinato- μ_{2}-oxalato-terbium(III)]

Crystal data

```
\(\left[\mathrm{Tb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\)
\(M_{r}=405.07\)
Monoclinic, \(C 2 / c\)
\(a=17.7919\) (18) \(\AA\)
\(b=9.9259(10) \AA\)
\(c=12.9670(13) \AA\)
\(\beta=112.414(1)^{\circ}\)
\(V=2117.0\) (4) \(\AA^{3}\)
\(Z=8\)
```


Data collection

Bruker APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube
φ and ω scans
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
$T_{\text {min }}=0.241, T_{\text {max }}=0.272$

$$
\begin{aligned}
& F(000)=1536 \\
& D_{\mathrm{x}}=2.542 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2410 \text { reflections } \\
& \theta=2.4-27.7^{\circ} \\
& \mu=6.72 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.23 \times 0.22 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

1907 independent reflections
1674 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.2^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-21 \rightarrow 20$
$k=-5 \rightarrow 11$
$l=-15 \rightarrow 15$
5243 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.063$
$S=1.01$
1907 reflections
163 parameters
6 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0363 P)^{2}\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}=0.002$
> $\Delta \rho_{\text {max }}=1.40 \mathrm{e}_{\AA^{-3}}$
> $\Delta \rho_{\text {min }}=-1.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Tb1	$0.824056(12)$	$0.03238(2)$	$0.574780(18)$	$0.01553(10)$
O5	$0.9618(2)$	$-0.0185(4)$	$0.6050(3)$	$0.0289(9)$
O2	$0.6877(2)$	$0.0558(4)$	$0.4672(3)$	$0.0326(9)$
O3	$0.8029(2)$	$-0.1491(3)$	$0.4403(3)$	$0.0239(8)$
C8	$1.0149(3)$	$-0.0110(5)$	$0.7019(4)$	$0.0192(11)$

O6				
C1	$1.0905(2)$	$-0.0055(4)$	$0.7291(3)$	$0.0272(9)$
C2	$0.6278(3)$	$0.1294(5)$	$0.4198(4)$	$0.0215(11)$
C3	$0.5442(3)$	$0.0692(5)$	$0.3902(4)$	$0.0172(10)$
H3	$0.4756(3)$	$0.1501(6)$	$0.3627(4)$	$0.0264(12)$
C6	0.4800	0.2434	0.3618	0.032^{*}
H6	$0.5336(3)$	$-0.0690(5)$	$0.3874(4)$	$0.0241(11)$
C4	0.5781	-0.1263	0.4050	0.029^{*}
H4	$0.4010(3)$	$0.0890(6)$	$0.3366(4)$	$0.0315(13)$
C5	0.3556	0.1438	0.3206	0.038^{*}
H5	$0.4563(3)$	$-0.1211(5)$	$0.3584(5)$	$0.0314(13)$
N1	0.4500	-0.2142	0.3564	0.038^{*}
C7	$0.3903(3)$	$-0.0438(5)$	$0.3330(4)$	$0.0309(11)$
O4	$0.7582(3)$	$-0.2447(5)$	$0.4457(4)$	$0.0201(11)$
O1	$0.7261(2)$	$-0.3320(3)$	$0.3724(3)$	$0.0252(8)$
O1W	$0.6308(2)$	$0.2507(4)$	$0.3926(3)$	$0.0334(9)$
H1W	$0.75857(19)$	$0.1250(3)$	$0.6941(3)$	$0.0228(8)$
H2W	0.7146	0.0877	0.6885	0.034^{*}
O2W	0.7794	0.1546	0.7598	0.034^{*}
H3W	$0.8300(2)$	$0.1188(4)$	$0.4029(3)$	$0.0312(9)$
H4W	0.8554	0.0794	0.3691	0.047^{*}
	0.8051	0.1834	0.3631	0.047^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tb1	$0.01241(14)$	$0.01564(15)$	$0.01830(15)$	$-0.00225(9)$	$0.00558(10)$	$-0.00106(9)$
O5	$0.0153(18)$	$0.048(2)$	$0.023(2)$	$0.0038(17)$	$0.0067(16)$	$-0.0063(18)$
O2	$0.0144(18)$	$0.052(3)$	$0.028(2)$	$0.0001(18)$	$0.0045(16)$	$0.001(2)$
O3	$0.0271(19)$	$0.0201(18)$	$0.0287(19)$	$-0.0097(16)$	$0.0153(16)$	$-0.0047(16)$
C8	$0.017(3)$	$0.018(2)$	$0.019(3)$	$0.003(2)$	$0.003(2)$	$0.000(2)$
O6	$0.0132(18)$	$0.040(2)$	$0.027(2)$	$0.0019(16)$	$0.0068(16)$	$-0.0024(17)$
C1	$0.019(3)$	$0.031(3)$	$0.016(2)$	$-0.006(2)$	$0.009(2)$	$-0.007(2)$
C2	$0.017(2)$	$0.021(3)$	$0.014(2)$	$-0.005(2)$	$0.0058(19)$	$0.001(2)$
C3	$0.023(3)$	$0.028(3)$	$0.033(3)$	$0.004(2)$	$0.017(2)$	$0.008(2)$
C6	$0.019(3)$	$0.022(3)$	$0.031(3)$	$-0.003(2)$	$0.010(2)$	$0.001(2)$
C4	$0.019(3)$	$0.049(4)$	$0.030(3)$	$0.007(3)$	$0.014(2)$	$0.008(3)$
C5	$0.036(3)$	$0.022(3)$	$0.040(3)$	$-0.013(3)$	$0.018(3)$	$-0.004(3)$
N1	$0.023(2)$	$0.044(3)$	$0.026(2)$	$-0.009(2)$	$0.010(2)$	$-0.001(2)$
C7	$0.019(2)$	$0.017(3)$	$0.023(3)$	$0.004(2)$	$0.006(2)$	$0.002(2)$
O4	$0.033(2)$	$0.0225(18)$	$0.0218(18)$	$-0.0081(16)$	$0.0128(16)$	$-0.0050(16)$
O1	$0.038(2)$	$0.027(2)$	$0.041(2)$	$-0.0189(18)$	$0.0211(19)$	$-0.0120(19)$
O1W	$0.0180(17)$	$0.027(2)$	$0.0260(18)$	$-0.0064(15)$	$0.0116(15)$	$-0.0071(16)$
O2W	$0.049(2)$	$0.024(2)$	$0.029(2)$	$0.0045(18)$	$0.0241(18)$	$0.0045(17)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Tb} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.280(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.389(7)$
$\mathrm{Tb} 1-\mathrm{O} 2$	$2.303(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.379(7)$

Tb1-O5	2.383 (3)
$\mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.385 (3)
Tb1-O2W	2.427 (3)
$\mathrm{Tb} 1-\mathrm{O} 3$	2.435 (3)
$\mathrm{Tb} 1-\mathrm{O} 6^{\text {iii }}$	2.443 (4)
Tb1-O1W	2.443 (3)
O5-C8	1.254 (6)
$\mathrm{O} 2-\mathrm{C} 1$	1.244 (6)
O3-C7	1.259 (6)
C8-O6	1.256 (6)
C8-C8 ${ }^{\text {iii }}$	1.529 (10)
O6-Tb1 ${ }^{\text {iii }}$	2.443 (4)
C1-O1	1.261 (6)
C1-C2	1.511 (6)
C2-C6	1.383 (7)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Tb} 1-\mathrm{O} 2$	103.43 (14)
O1--Tb1-05	84.39 (13)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 5$	154.22 (14)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 4^{\text {ii }}$	151.43 (12)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O}^{4 i}$	80.50 (13)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {ii }}$	104.46 (13)
O1--Tb1-O2W	72.60 (12)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 2 \mathrm{~W}$	79.21 (13)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 2 \mathrm{~W}$	79.88 (13)
$\mathrm{O} 4 \mathrm{i}-\mathrm{Tb} 1-\mathrm{O} 2 \mathrm{~W}$	135.25 (12)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 3$	141.11 (12)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 3$	78.56 (13)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 3$	80.16 (12)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 3$	67.43 (11)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Tb} 1-\mathrm{O} 3$	69.67 (11)
$\mathrm{O} 1^{\text {i }}-\mathrm{Tb} 1-\mathrm{O}^{\text {iii }}$	85.24 (13)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O}^{\text {iii }}$	137.67 (13)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 6^{\text {iii }}$	66.65 (12)
$\mathrm{O} 4^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 6^{\text {iii }}$	74.06 (12)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Tb} 1-\mathrm{O} 6^{\text {iii }}$	141.48 (12)
$\mathrm{O} 3-\mathrm{Tb} 1-6^{\text {iii }}$	119.77 (12)
O1--Tb1-O1W	75.34 (12)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 1 \mathrm{~W}$	72.48 (13)
O5-Tb1-O1W	133.16 (12)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 1 \mathrm{~W}$	79.12 (11)
O2W-Tb1-O1W	130.27 (12)
O3-Tb1-O1W	138.71 (11)
O6 ${ }^{\text {iiii- }}$ Tb1-O1W	69.91 (12)
C8-O5-Tb1	119.1 (3)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Tb} 1$	149.9 (4)
C7-O3-Tb1	116.5 (3)

C3-H3	0.9300
C6-C5	1.380 (7)
C6-H6	0.9300
C4-N1	1.330 (8)
C4-H4	0.9300
C5-N1	1.335 (7)
C5-H5	0.9300
C7-O4	1.251 (6)
$\mathrm{C} 7-\mathrm{C} 7^{\mathrm{ii}}$	1.545 (10)
$\mathrm{O} 4-\mathrm{Tb} 1^{\text {ii }}$	2.385 (3)
$\mathrm{O} 1-\mathrm{Tb} 1^{\text {i }}$	2.280 (3)
O1W-H1W	0.8429
O1W-H2W	0.8420
O2W-H3W	0.8367
O2W-H4W	0.8365
O6-C8-C8 ${ }^{\text {iii }}$	116.0 (5)
$\mathrm{C} 8-\mathrm{O} 6-\mathrm{Tb} 1^{\text {iii }}$	118.3 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	125.4 (5)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.9 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.7 (5)
C6-C2-C3	118.0 (4)
C6-C2-C1	120.7 (4)
C3-C2-C1	121.3 (5)
C4-C3-C2	118.6 (5)
C4-C3-H3	120.7
C2-C3-H3	120.7
C5-C6-C2	119.4 (5)
C5-C6-H6	120.3
C2-C6-H6	120.3
N1-C4-C3	123.8 (5)
N1-C4-H4	118.1
C3-C4-H4	118.1
N1-C5-C6	122.9 (5)
N1-C5-H5	118.6
C6-C5-H5	118.6
C4-N1-C5	117.4 (4)
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{O} 3$	126.5 (5)
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 7^{\text {ii }}$	117.1 (5)
O3-C7-C7 ${ }^{\text {ii }}$	116.4 (5)
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{Tb} 1^{\text {ii }}$	118.1 (3)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Tb} 1^{\text {i }}$	154.0 (4)
Tb1-O1W-H1W	115.5
Tb1-O1W-H2W	129.8
H1W-O1W-H2W	106.0
Tb1-O2W-H3W	122.5
Tb1-O2W-H4W	129.8

supporting information

$\mathrm{O} 5-\mathrm{C} 8-\mathrm{O} 6$	$127.0(5)$	$\mathrm{H} 3 \mathrm{~W}-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 4 \mathrm{~W}$	107.4
$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 8$			

Symmetry codes: (i) $-x+3 / 2,-y+1 / 2,-z+1$; (ii) $-x+3 / 2,-y-1 / 2,-z+1$; (iii) $-x+2, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots 3^{\text {iv }}$	0.84	2.22	$2.992(5)$	153
$\mathrm{O} 2 W — \mathrm{H} 4 W \cdots \mathrm{O} 1 W^{\text {i }}$	0.84	2.19	$3.003(5)$	163
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{~N} 1^{\mathrm{v}}$	0.84	1.83	$2.661(5)$	167
$\mathrm{O} 2 W — \mathrm{H} 3 W \cdots 6^{\text {vi }}$	0.84	2.01	$2.836(5)$	172

Symmetry codes: (i) $-x+3 / 2,-y+1 / 2,-z+1$; (iv) $x,-y, z+1 / 2$; (v) $-x+1,-y,-z+1$; (vi) $-x+2,-y,-z+1$.

