organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 5-bromo-6-methylpicolinate

Ya-Ming Wu,^a* Chun-Ming Wu^b and Yong Wang^c

^aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, No. 625 Geguan Road, Dachang, Nanjing 210048, People's Republic of China, ^bSynergetica-Changzhou, Ltd., Chunjiang Town, Xinbei District, Changzhou City 213033, Jiangsu Province, People's Republic of China, and CSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China Correspondence e-mail: adsony05@163.com

Received 8 December 2008: accepted 10 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.061; wR factor = 0.066; data-to-parameter ratio = 14.6.

The title compound, C₈H₈BrNO₂, does not show any significant intermolecular π - π or C-H··· π interactions in the crystal packing except for one weak Br \cdots Br [3.715 (1) Å] interaction.

Related literature

The title compound is an important intermediate for the construction of novel supported PyOX ligands, see: Oila et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C₈H₈BrNO₂

 $M_r = 230.06$

Monoclinic, $P2_1/c$ a = 18.518 (4) Å b = 4.1040 (8) Å c = 12.442 (3) Å $\beta = 109.52 \ (3)^{\circ}$ V = 891.2 (4) Å³

Data collection

1602 independent reflections
975 reflections with $I > 2\sigma(I)$
3 standard reflections
every 200 reflections
intensity decay: 1%

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	110 parameters
$wR(F^2) = 0.066$	H-atom parameters constrained
S = 1.75	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
1602 reflections	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.20 \times 0.10 \times 0.10$ mm

 $\mu = 4.57 \text{ mm}^{-1}$

T = 293 (2) K

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995): program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2083).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Oila, M. J., Tois, J. E. & Koskinen, A. M. P. (2005). Tetrahedron, 61, 10748-10756

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o134 [doi:10.1107/S1600536808042104]

Methyl 5-bromo-6-methylpicolinate

Ya-Ming Wu, Chun-Ming Wu and Yong Wang

S1. Comment

The title compound is one of important intermediates for construction of novel supported PyOX-ligands (Oila *et al.*, 2005). Here we report the crystal structure of the title compound, methyl 5-bromo-6-methylpicolinate (Fig. 1).

In the title compound, the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The crystal structure is stabilized by a weak Br...Brⁱ interaction at 3.715 (1) Å (Fig. 2; symmetry code as in Fig. 2).

S2. Experimental

The title compound, (I) was prepared by a method reported in literature (Oila *et al.*, 2005) with some modification. The crystals were obtained by dissolving I (0.2 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.

S3. Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C/O)$, where x = 1.2 for aromatic H and x = 1.5 for other H.

Figure 1

A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

F(000) = 456

 $\theta = 10-14^{\circ}$

T = 293 K

 $\mu = 4.57 \text{ mm}^{-1}$

Block, colorless

 $0.20 \times 0.10 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.715 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Figure 2

Br...Br interaction in the title compound. [Symmetry code: (i) -x+1, y+1/2, -z+1/2.]

Methyl 5-bromo-6-methylpicolinate

Crystal data

C₈H₈BrNO₂ $M_r = 230.06$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 18.518 (4) Å b = 4.1040 (8) Å c = 12.442 (3) Å $\beta = 109.52$ (3)° V = 891.2 (4) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4	1602 independent reflections
diffractometer	975 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{ m int}=0.000$
Graphite monochromator	$\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$
$\omega/2\theta$ scans	$h = -22 \rightarrow 20$
Absorption correction: ψ scan	$k = 0 \rightarrow 4$
(North <i>et al.</i> , 1968)	$l = 0 \rightarrow 14$
$T_{\min} = 0.462, \ T_{\max} = 0.658$	3 standard reflections every 200 reflections
1602 measured reflections	intensity decay: 1%

Refinement

Refinement on F^2 Least-squares matrix: full	Primary atom site location: structure-invariant direct methods
$R[F^2 > 2\sigma(F^2)] = 0.061$ wR(F^2) = 0.066	Secondary atom site location: difference Fourier map
S = 1.75	Hydrogen site location: difference Fourier map
1602 reflections	H-atom parameters constrained
110 parameters	$w = 1/[\sigma^2(F_o^2)]$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.000$
	$\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br	0.41815 (4)	0.6507 (2)	0.25731 (6)	0.0546 (3)
O1	0.0882 (2)	-0.1451 (13)	0.2125 (3)	0.0691 (16)
O2	0.1349 (2)	-0.0435 (11)	0.3986 (4)	0.0533 (15)
Ν	0.2635 (3)	0.2009 (15)	0.3797 (4)	0.0450 (17)
C1	0.3893 (3)	0.4149 (17)	0.4811 (4)	0.067 (2)
H1A	0.3707	0.3787	0.5434	0.101*
H1B	0.4059	0.6370	0.4822	0.101*
H1C	0.4317	0.2717	0.4882	0.101*
C2	0.3260 (3)	0.3477 (18)	0.3698 (5)	0.0344 (16)
C3	0.3290 (3)	0.4444 (16)	0.2646 (5)	0.039 (2)
C4	0.2680 (3)	0.3789 (19)	0.1651 (5)	0.059 (2)
H4A	0.2702	0.4358	0.0939	0.071*
C5	0.2053 (3)	0.2298 (18)	0.1755 (5)	0.050 (2)
H5A	0.1632	0.1866	0.1109	0.060*
C6	0.2038 (3)	0.1425 (19)	0.2814 (5)	0.0426 (18)
C7	0.1372 (4)	-0.0335 (18)	0.2958 (6)	0.050 (2)
C8	0.0676 (3)	-0.1896 (19)	0.4127 (5)	0.070 (2)
H8A	0.0724	-0.1875	0.4920	0.104*
H8B	0.0627	-0.4104	0.3857	0.104*
H8C	0.0230	-0.0679	0.3698	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	U^{13}	<i>U</i> ²³
Br	0.0482 (4)	0.0590 (5)	0.0589 (5)	-0.0020 (6)	0.0211 (3)	0.0028 (6)

supporting information

01	0.048 (3)	0.092 (4)	0.055 (4)	-0.011 (4)	0.001 (3)	-0.013 (4)
O2	0.043 (3)	0.070 (4)	0.046 (3)	-0.007 (3)	0.013 (2)	-0.002 (3)
Ν	0.029 (3)	0.065 (5)	0.033 (3)	-0.006 (4)	0.000 (3)	0.004 (4)
C1	0.056 (4)	0.087 (7)	0.043 (4)	-0.027 (5)	-0.004 (4)	0.012 (5)
C2	0.026 (4)	0.031 (4)	0.035 (4)	-0.003 (4)	-0.004 (3)	-0.004 (5)
C3	0.034 (4)	0.045 (6)	0.040 (4)	0.002 (4)	0.014 (4)	0.009 (4)
C4	0.049 (4)	0.088 (7)	0.033 (4)	0.004 (6)	0.005 (4)	0.031 (5)
C5	0.038 (4)	0.076 (7)	0.029 (4)	0.001 (4)	0.002 (3)	0.002 (4)
C6	0.025 (4)	0.060 (5)	0.042 (4)	0.004 (5)	0.011 (3)	-0.001 (5)
C7	0.037 (5)	0.060 (6)	0.043 (5)	0.004 (4)	0.000 (4)	-0.010 (5)
C8	0.051 (4)	0.079 (7)	0.089 (5)	-0.011 (5)	0.037 (4)	0.010 (6)

Geometric parameters (Å, °)

Br—Br ⁱ	3.715 (1)	C2—C3	1.387 (6)
Br—C3	1.884 (5)	C3—C4	1.396 (6)
O1—C7	1.218 (6)	C4—C5	1.356 (7)
O2—C7	1.294 (6)	C4—H4A	0.9300
O2—C8	1.446 (6)	C5—C6	1.375 (7)
N—C2	1.347 (6)	C5—H5A	0.9300
N—C6	1.368 (6)	C6—C7	1.491 (8)
C1—C2	1.510 (6)	C8—H8A	0.9600
C1—H1A	0.9600	C8—H8B	0.9600
C1—H1B	0.9600	C8—H8C	0.9600
C1—H1C	0.9600		
C7	116.6 (5)	C3—C4—H4A	121.0
$C^2 - N - C^6$	117.3(5)	C4 - C5 - C6	120.0 (6)
$C_2 = C_1 = H_1 A$	109 5	C4 - C5 - H5A	120.0 (0)
$C_2 = C_1 = H_1 B$	109.5	C6-C5-H5A	120.0
HIA-CI-HIB	109.5	N - C6 - C5	122.9 (6)
$C^2 - C^1 - H^1C$	109.5	N = C6 = C7	115 5 (6)
HIA-CI-HIC	109.5	C_{5}	121.6 (6)
HIB-CI-HIC	109.5	01 - 07 - 02	124.6 (7)
$N = C^2 = C^3$	121 4 (5)	01 - 07 - 02	1194(7)
$N = C^2 = C^1$	1152(5)	$0^{2}-0^{7}-0^{6}$	115.9 (6)
$C_{3} - C_{2} - C_{1}$	123 3 (6)	$O^2 - C^8 - H^8 A$	109.5
C4-C3-C2	120.3(0) 120.4(5)	O2 - C8 - H8B	109.5
C4 - C3 - Br	120.1(5) 120.5(5)	H8A—C8—H8B	109.5
$C_2 - C_3 - Br$	119.1 (5)	Ω^2 —C8—H8C	109.5
$C_{5}-C_{4}-C_{3}$	117.9 (6)	H8A—C8—H8C	109.5
C5—C4—H4A	121.0	H8B—C8—H8C	109.5
C6—N—C2—C3	1.8 (10)	C2—N—C6—C7	177.4 (6)
C6—N—C2—C1	178.4 (6)	C4—C5—C6—N	0.4 (11)
N-C2-C3-C4	-2.7 (11)	C4—C5—C6—C7	-177.5 (7)
C1—C2—C3—C4	-179.0 (6)	C8—O2—C7—O1	-2.1 (11)
N—C2—C3—Br	179.6 (5)	C8—O2—C7—C6	175.0 (6)

C1—C2—C3—Br	3.3 (9)	NC6C7O1	-167.1 (7)	
C2—C3—C4—C5	2.3 (11)	C5—C6—C7—O1	11.0 (11)	
Br—C3—C4—C5	180.0 (5)	NC6C7O2	15.6 (9)	
C3—C4—C5—C6	-1.2 (11)	C5—C6—C7—O2	-166.3 (7)	
C2—N—C6—C5	-0.6 (10)			

Symmetry code: (i) -x+1, y+1/2, -z+1/2.