metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethyl 7a-carbonyl-2-methoxy-7a,7abis(triphenylphosphino)-7a-ruthena-1benzofuran-4,7-dicarboxylate

George R. Clark,* Warren R. Roper, Deborah M. Tonei and L. James Wright

Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: g.clark@auckland.ac.nz

Received 26 November 2008; accepted 4 December 2008

Key indicators: single-crystal X-ray study; T = 85 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.071; data-to-parameter ratio = 15.9.

The crystal structure of the title compound, $[Ru(C_{12}H_{12}O_6)-(C_{18}H_{15}P)_2(CO)]$, confirms its formulation as a ruthenabenzofuran, with a slightly distorted octahedral coordination environment at the Ru^{II} ion, and mutually *trans* triphenylphosphine ligands. The metallabicyclic ring system is essentially planar (maximum deviation 0.059 Å).

Related literature

For the synthesis and properties of metallabenzenes, see: Bleeke (2001); Landorf & Haley (2006); Wright (2006). For the synthesis and properties of metallabenzenoids, see: Paneque *et al.* (2003); Clark *et al.* (2006); Yamazaki & Aoki (1976); Bruce *et al.* (2000); Clark *et al.* (2008).

Experimental

Crystal data $[Ru(C_{12}H_{12}O_6)(C_{18}H_{15}P)_2(CO)]$ $M_r = 905.89$

Triclinic, $P\overline{1}$ a = 12.1102 (5) Å

b = 13.2229 (5) Å c = 13.4273 (5) Å $\alpha = 97.746 (1)^{\circ}$ $\beta = 102.616 (1)^{\circ}$ $\gamma = 93.333 (1)^{\circ}$ $V = 2070.54 (14) \text{ Å}^{3}$	Z = 2 Mo K α radiation $\mu = 0.51 \text{ mm}^{-1}$ T = 85 (2) K $0.28 \times 0.22 \times 0.20 \text{ mm}$
Data collection Siemens SMART CCD diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.806, T_{max} = 0.921$	20010 measured reflections 8434 independent reflections 6871 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$
Refinement $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.071$ S = 1.04	532 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}_{-3}$

Table 1 Selected bond lengths (Å).

8434 reflections

1.907 (2)	Ru-O6	2.2164 (16)
2.038 (2)	Ru-P1	2.3796 (6)
2.110 (2)	Ru-P2	2.3919 (6)
	1.907 (2) 2.038 (2) 2.110 (2)	1.907 (2) Ru-O6 2.038 (2) Ru-P1 2.110 (2) Ru-P2

 $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^-$

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2738).

References

- Bleeke, J. R. (2001). Chem. Rev. 101, 1205-1227.
- Bruce, M. I., Hall, B. C., Skelton, B. W., Tiekink, E. R. T., White, A. H. & Zaitseva, N. N. (2000). Aust. J. Chem. 53, 99–107.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Clark, G. R., Johns, P. M., Roper, W. R. & Wright, L. J. (2006). Organometallics, 25, 1771–1777.
- Clark, G. R., O'Neale, T. R., Roper, W. R., Tonei, D. M. & Wright, L. J. (2008). Organometallics. In the press.
- Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914–3936.
- Paneque, M., Posadas, C. M., Poveda, M. L., Rendón, N., Salazar, V., Onate, E. & Mereiter, K. J. (2003). J. Am. Chem. Soc. 125, 9898–9899.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wright, L. J. (2006). Dalton Trans. pp. 1821-1827.
- Yamazaki, H. & Aoki, K. (1976). J. Organomet. Chem. 122, C54-C58.

supporting information

Acta Cryst. (2009). E65, m52 [doi:10.1107/S1600536808040944]

Dimethyl 7a-carbonyl-2-methoxy-7a,7a-bis(triphenylphosphino)-7a-ruthena-1benzofuran-4,7-dicarboxylate

George R. Clark, Warren R. Roper, Deborah M. Tonei and L. James Wright

S1. Comment

Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity, aromatic character and decomposition pathways of these materials have been made (Bleeke, 2001, Landorf & Haley, 2006, Wright, 2006). In contrast, studies of fused ring metallabenzenoids such as metallanaphthalenes (Paneque et al., 2003) and metallabenzofurans (Clark et al., 2006) are much more rare. We recently reported that protonation of a carbon atom in the five-membered ruthenafuran ring of the known ruthenabenzofuran, Ru[C₃H₂(CO₂Me-2)(CO₂Me-4)(CHCO₂Me-5)](CO)(PPh₃)₂ (2) (see Fig. 2) (Yamazaki & Aoki, 1976, Bruce et al., 2000) provides a new route to ruthenabenzenes (Clark et al., 2009). While following the literature synthesis of this ruthenabenzofuran, (Yamazaki & Aoki, 1976), we were able to isolate through chromatography a small amount of a previously unreported, isomeric ruthenabenzofuran, $Ru[C_5H_2(CO_2Me-1)(CO_2Me-4)(CHCO_2Me-5)](CO)(PPh_3)_2$ (1) (see Fig. 2). We now report details of the structure of (1) (Fig. 1) which confirms its formulation as a ruthenabenzofuran, with essentially octahedral coordination at Ru, and mutually *trans* triphenylphosphine ligands. The metallabicyclic ring system is essentially planar. The C-C bond lengths within the six-membered ring show a small but significant alternation, similar to that reported in the isomeric ruthenabenzofuran (Bruce et al., 2000) in which one of the methyl ester substituents resides on C2 rather than C1. This change has no important impact on the structural parameters of the metallabicyclic ring system. The bond length alternations in these two ruthenabenzofuran isomers are more pronounced than in the tethered ruthenabenzene derived from the isomer reported by Bruce (Bruce et al., 2000) by protonation at C6 (Clark et al., 2009).

S2. Experimental

RuH₂(CO)(PPh₃)₃ (1.00 g, 1.09 mmol) and methyl propiolate (0.55 g, 0.58 ml, 6.54 mmol) were heated under reflux in benzene (50 ml) for one hour. The initially pale yellow-green solution changed to red-brown soon after the solution reached boiling point. The solvent was removed under vacuum and the residue purified by chromatography on silica gel using dichloromethane/ethanol (98:2) as eluent. Two coloured bands were eluted from the column. The first band, which was coloured blue, was collected and on evaporation of the solvent dark blue crystals of the title compound were obtained (0.0098 g, 1%). The second, much larger red-purple band contained the related ruthenabenzofuran, Ru[C₅H₂(CO₂Me-2)(CO₂Me-4)(CHCO₂Me-5)](CO)(PPh₃)₂ (**2**), previously reported in the literature (Yamazaki & Aoki, 1976). The crystal of Ru[C₅H₂(CO₂Me-1)(CO₂Me-4)(CHCO₂Me-4)(CHCO₂Me-5)](CO) (PPh₃)₂ (**1**) that was used for the single-crystal X-ray diffraction study was grown from dichloromethane/ethanol solution. The atom numbering used for NMR assignments is given in Fig. 2. ¹H NMR (CDCl₃, δ p.p.m., TMS = 0.00), 7.10 - 7.75 (*m*, 30H, PPh₃), 6.58 (*dt*, 1H, ⁴J_{HH} = 8.1 Hz, ⁴J_{HP} = 1.9 Hz, H2), 6.53 (*d*, 1H, ⁴J_{HH} = 8.1 Hz, H3), 6.02 (*t*, 1H, ⁴J_{HP} = 3.5 Hz, H6), 3.59 (*s*, 3H, CO₂CH₃, H10), 3.33 (*s*, 3H, CO₂CH₃, H12), 3.18 (*s*, 3H, CO₂CH₃, H13). ¹³C{¹H} NMR (CDCl₃, δ p.p.m., TMS = 0.00), 225.8 (²J_{CP} = 13.6

Hz, C5), 205.3 (${}^{2}J_{CP}$ = 13.1 Hz, CO, C8), 194.9 (*t*, ${}^{2}J_{CP}$ = 13.1, C1), 179.4 (*s*, CO₂Me, C7), 175.8 (*s*, CO₂Me, C11), 168.0 (*s*, CO₂Me, C9), 147.5 (*s*, CH, C3), 126–135 (*m*, PPh₃), 129.6 (*s*, CH, C2), 124.4 (*s*, C4), 121.0 (*t*, CH, ${}^{3}J_{CP}$ = 4.5, C6), 51.9 (*s*, CO₂CH₃, C13), 51.2 (*s*, CO₂CH₃, C12), 50.5 (*s*, CO₂CH₃, C10). ${}^{31}P{}^{1}H$ NMR (CDCl₃, δ p.p.m., 85% orthophosphoric acid external std. = 0.00), 39.27 (*s*).

S3. Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with U_{iso} (H) = 1.2 or 1.5 times U_{eq} (C).

Figure 1

The molecular structure showing 50% probability displacement ellipsoids for non-hydrogen atoms and selected hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996).

Figure 2

The reaction scheme.

Dimethyl 7a-carbonyl-2-methoxy-7a,7a-bis(triphenylphosphino)-7a-ruthena-1- benzofuran-4,7-dicarboxylate

Crystal data	
[Ru(C ₁₂ H ₁₂ O ₆)(C ₁₈ H ₁₅ P) ₂ (CO)] $M_r = 905.89$ Triclinic, PI Hall symbol: -p 1 a = 12.1102 (5) Å b = 13.2229 (5) Å c = 13.4273 (5) Å a = 97.746 (1)° $\beta = 102.616$ (1)° $\gamma = 93.333$ (1)° V = 2070.54 (14) Å ³	Z = 2 F(000) = 932 $D_x = 1.453 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5960 reflections $\theta = 1.6-26.4^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$ T = 85 K Block, purple $0.28 \times 0.22 \times 0.20 \text{ mm}$
Data collection	
Siemens SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Area detector ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.807, T_{max} = 0.921$ 20010 measured reflections 8434 independent reflections

6871 reflections with $I > 2\sigma(I)$	$h = -15 \rightarrow 14$
$R_{\rm int} = 0.028$	$k = -16 \rightarrow 16$
$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$	$l = 0 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.071$	neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
8434 reflections	$w = 1/[\sigma^2(F_o^2) + (0.022P)^2 + 1.4641P]$
532 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru	0.216450 (16)	0.201239 (14)	0.215449 (14)	0.01165 (6)
P1	0.15355 (5)	0.11361 (4)	0.33937 (4)	0.01214 (13)
P2	0.27620 (5)	0.30884 (4)	0.10386 (4)	0.01183 (13)
01	0.46834 (15)	0.07527 (12)	0.23988 (13)	0.0231 (4)
O2	0.56152 (14)	0.23144 (12)	0.26121 (13)	0.0197 (4)
O3	0.12784 (15)	0.53793 (13)	0.40538 (13)	0.0232 (4)
O4	0.26131 (15)	0.51234 (13)	0.54176 (12)	0.0210 (4)
05	-0.11237 (14)	0.29881 (13)	0.14179 (13)	0.0194 (4)
O6	0.03690 (13)	0.20657 (12)	0.13497 (11)	0.0143 (3)
O7	0.23080 (15)	-0.01145 (13)	0.10036 (13)	0.0244 (4)
C1	0.3802 (2)	0.22584 (17)	0.29898 (17)	0.0136 (5)
C2	0.4191 (2)	0.30178 (17)	0.38134 (17)	0.0148 (5)
H2	0.4956	0.3043	0.4136	0.018*
C3	0.3557 (2)	0.37805 (17)	0.42395 (17)	0.0151 (5)
H3	0.3942	0.4191	0.4849	0.018*
C4	0.2460 (2)	0.39826 (17)	0.38648 (17)	0.0133 (5)
C5	0.1714 (2)	0.33467 (17)	0.29668 (17)	0.0133 (5)
C6	0.0607 (2)	0.35233 (17)	0.26249 (17)	0.0150 (5)
H6	0.0290	0.4073	0.2931	0.018*
C7	-0.0038 (2)	0.28123 (18)	0.17665 (17)	0.0153 (5)
C8	0.4716 (2)	0.16743 (18)	0.26509 (17)	0.0164 (5)
C9	0.6523 (2)	0.1826 (2)	0.2262 (2)	0.0304 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.7119	0.2337	0.2260	0.046*
H9B	0.6241	0.1462	0.1576	0.046*
H9C	0.6815	0.1355	0.2718	0.046*
C10	0.2040 (2)	0.48872 (17)	0.44205 (18)	0.0151 (5)
C11	0.2193 (2)	0.5936 (2)	0.60212 (19)	0.0273 (6)
H11A	0.2649	0.6051	0.6714	0.041*
H11B	0.1419	0.5746	0.6031	0.041*
H11C	0.2232	0.6552	0.5720	0.041*
C12	-0.1756 (2)	0.2300 (2)	0.05143 (19)	0.0243 (6)
H12A	-0.2517	0.2492	0.0329	0.036*
H12B	-0.1775	0.1610	0.0665	0.036*
H12C	-0.1393	0.2341	-0.0049	0.036*
C13	0.2325 (2)	0.07083 (18)	0.14256 (18)	0.0152 (5)
C21	0.1726 (2)	0.18875 (17)	0.46847 (17)	0.0139 (5)
C22	0.2708 (2)	0.18608 (18)	0.54457 (18)	0.0170 (5)
H22	0.3264	0.1442	0.5307	0.020*
C23	0.2864 (2)	0.24553 (18)	0.64120 (18)	0.0203 (5)
H23	0.3522	0.2428	0.6913	0.024*
C24	0.2055 (2)	0.30838 (19)	0.66338 (19)	0.0233 (6)
H24	0.2157	0.3467	0.7286	0.028*
C25	0.1084 (2)	0.31427 (18)	0.58767 (19)	0.0203 (5)
H25	0.0543	0.3577	0.6018	0.024*
C26	0.0922 (2)	0.25548 (17)	0.49108 (18)	0.0160 (5)
H26	0.0273	0.2603	0.4407	0.019*
C31	0.2151 (2)	-0.00574 (17)	0.37078 (17)	0.0146 (5)
C32	0.3329 (2)	-0.00963 (19)	0.38983 (19)	0.0204 (5)
H32	0.3787	0.0449	0.3790	0.024*
C33	0.3820(2)	-0.09495 (19)	0.4250 (2)	0.0242 (6)
H33	0.4605	-0.0964	0.4387	0.029*
C34	0.3147 (2)	-0.17755 (18)	0.43951 (19)	0.0217 (6)
H34	0.3480	-0.2334	0.4646	0.026*
C35	0.1978 (2)	-0.17655 (18)	0.41653 (18)	0.0203 (5)
H35	0.1523	-0.2329	0.4239	0.024*
C36	0.1480 (2)	-0.09131 (18)	0.38229 (17)	0.0180 (5)
H36	0.0694	-0.0913	0.3669	0.022*
C41	0.0027 (2)	0.06660 (17)	0.30360 (17)	0.0141 (5)
C42	-0.0622(2)	0.05808 (18)	0.37681 (18)	0.0168 (5)
H42	-0.0323	0.0867	0.4453	0.020*
C43	-0.1705(2)	0.00757 (18)	0.34865 (19)	0.0212 (5)
H43	-0.2127	0.0024	0.3982	0.025*
C44	-0.2159(2)	-0.03522(19)	0.24688 (19)	0.0220 (6)
H44	-0.2884	-0.0693	0.2281	0.026*
C45	-0.1530(2)	-0.02715(18)	0.17315 (19)	0.0196 (5)
H45	-0.1838	-0.0555	0.1047	0.023*
C46	-0.0442(2)	0.02310 (17)	0.20093 (18)	0.0165 (5)
H46	-0.0024	0.0278	0.1511	0.020*
C51	0.38367 (19)	0.26988 (18)	0.03145 (17)	0.0149 (5)
C52	0.4375 (2)	0.34274 (19)	-0.01348 (18)	0.0195 (5)

H52	0.4234	0.4112	-0.0014	0.023*
C53	0.5115 (2)	0.3138 (2)	-0.07585 (19)	0.0231 (6)
H53	0.5484	0.3631	-0.1035	0.028*
C54	0.5305 (2)	0.2114 (2)	-0.09690 (18)	0.0223 (6)
H54	0.5781	0.1917	-0.1404	0.027*
C55	0.4783 (2)	0.13849 (19)	-0.05308 (19)	0.0215 (6)
H55	0.4915	0.0699	-0.0666	0.026*
C56	0.4061 (2)	0.16786 (18)	0.01122 (18)	0.0172 (5)
Н56	0.3724	0.1186	0.0412	0.021*
C61	0.3378 (2)	0.43490 (17)	0.17463 (17)	0.0132 (5)
C62	0.4539 (2)	0.44975 (18)	0.22122 (17)	0.0155 (5)
H62	0.5009	0.3988	0.2081	0.019*
C63	0.4998 (2)	0.53969 (18)	0.28686 (18)	0.0172 (5)
H63	0.5768	0.5482	0.3185	0.021*
C64	0.4307 (2)	0.61687 (18)	0.30531 (18)	0.0185 (5)
H64	0.4615	0.6774	0.3488	0.022*
C65	0.3157 (2)	0.60363 (17)	0.25872 (18)	0.0171 (5)
H65	0.2696	0.6557	0.2705	0.021*
C66	0.2690 (2)	0.51291 (17)	0.19447 (17)	0.0159 (5)
H66	0.1915	0.5041	0.1645	0.019*
C71	0.1656 (2)	0.33729 (17)	-0.00414 (17)	0.0144 (5)
C72	0.1657 (2)	0.43049 (19)	-0.04171 (18)	0.0201 (5)
H72	0.2205	0.4837	-0.0086	0.024*
C73	0.0844 (2)	0.4447 (2)	-0.12838 (19)	0.0230 (6)
H73	0.0841	0.5077	-0.1521	0.028*
C74	0.0037 (2)	0.3651 (2)	-0.17950 (19)	0.0235 (6)
H74	-0.0506	0.3745	-0.2374	0.028*
C75	0.0044 (2)	0.2714 (2)	-0.14401 (18)	0.0214 (6)
H75	-0.0489	0.2176	-0.1787	0.026*
C76	0.0843 (2)	0.25779 (18)	-0.05686 (17)	0.0161 (5)
H76	0.0838	0.1949	-0.0332	0.019*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru	0.01137 (10)	0.01228 (9)	0.01083 (9)	0.00130 (7)	0.00208 (7)	0.00070 (7)
P1	0.0119 (3)	0.0124 (3)	0.0115 (3)	0.0009 (2)	0.0017 (2)	0.0017 (2)
P2	0.0116 (3)	0.0131 (3)	0.0105 (3)	0.0014 (2)	0.0019 (2)	0.0014 (2)
01	0.0226 (10)	0.0171 (9)	0.0299 (10)	0.0043 (7)	0.0076 (8)	0.0006 (8)
O2	0.0134 (9)	0.0197 (9)	0.0259 (9)	0.0021 (7)	0.0073 (7)	-0.0017 (7)
O3	0.0259 (10)	0.0210 (9)	0.0206 (9)	0.0107 (8)	0.0012 (8)	-0.0010 (7)
O4	0.0249 (10)	0.0211 (9)	0.0137 (8)	0.0077 (7)	0.0003 (7)	-0.0053 (7)
O5	0.0104 (9)	0.0228 (9)	0.0218 (9)	0.0017 (7)	-0.0012 (7)	-0.0004 (7)
O6	0.0133 (9)	0.0172 (8)	0.0114 (8)	0.0010 (7)	0.0013 (7)	0.0010 (7)
07	0.0305 (11)	0.0170 (9)	0.0240 (10)	-0.0009 (8)	0.0078 (8)	-0.0037 (8)
C1	0.0142 (12)	0.0151 (11)	0.0124 (11)	0.0021 (9)	0.0032 (9)	0.0044 (9)
C2	0.0105 (12)	0.0202 (12)	0.0134 (11)	0.0021 (9)	0.0002 (9)	0.0052 (10)
C3	0.0198 (13)	0.0153 (11)	0.0092 (11)	-0.0014 (10)	0.0021 (10)	0.0016 (9)

C4	0.0151 (12)	0.0125 (11)	0.0129 (11)	0.0007 (9)	0.0037 (9)	0.0036 (9)
C5	0.0161 (12)	0.0145 (11)	0.0101 (11)	-0.0003 (9)	0.0030 (9)	0.0049 (9)
C6	0.0151 (13)	0.0154 (11)	0.0146 (12)	0.0015 (9)	0.0046 (10)	0.0009 (9)
C7	0.0124 (12)	0.0209 (12)	0.0141 (11)	0.0012 (10)	0.0032 (10)	0.0080 (10)
C8	0.0132 (12)	0.0208 (13)	0.0131 (12)	0.0021 (10)	-0.0011 (10)	0.0016 (10)
C9	0.0175 (14)	0.0331 (16)	0.0389 (17)	0.0047 (12)	0.0111 (12)	-0.0093 (13)
C10	0.0153 (13)	0.0137 (11)	0.0154 (12)	-0.0027 (9)	0.0038 (10)	0.0004 (9)
C11	0.0376 (17)	0.0237 (14)	0.0183 (13)	0.0090 (12)	0.0056 (12)	-0.0061 (11)
C12	0.0133 (13)	0.0323 (15)	0.0220 (13)	-0.0004 (11)	-0.0031 (10)	-0.0014 (11)
C13	0.0125 (12)	0.0191 (13)	0.0149 (12)	0.0017 (9)	0.0035 (10)	0.0054 (10)
C21	0.0181 (13)	0.0125 (11)	0.0119 (11)	-0.0016 (9)	0.0054 (10)	0.0029 (9)
C22	0.0160 (13)	0.0168 (12)	0.0185 (12)	-0.0005 (10)	0.0055 (10)	0.0022 (10)
C23	0.0206 (14)	0.0226 (13)	0.0142 (12)	-0.0068 (10)	-0.0008 (10)	0.0029 (10)
C24	0.0290 (15)	0.0236 (13)	0.0159 (12)	-0.0053 (11)	0.0080 (11)	-0.0039 (10)
C25	0.0236 (14)	0.0169 (12)	0.0220 (13)	-0.0009 (10)	0.0116 (11)	-0.0006 (10)
C26	0.0185 (13)	0.0148 (11)	0.0154 (12)	-0.0007 (10)	0.0051 (10)	0.0037 (9)
C31	0.0171 (13)	0.0146 (11)	0.0117 (11)	0.0020 (10)	0.0031 (10)	0.0003 (9)
C32	0.0194 (14)	0.0181 (12)	0.0241 (13)	0.0016 (10)	0.0057 (11)	0.0039 (10)
C33	0.0198 (14)	0.0255 (14)	0.0275 (14)	0.0077 (11)	0.0039 (11)	0.0048 (11)
C34	0.0292 (15)	0.0147 (12)	0.0218 (13)	0.0082 (11)	0.0059 (11)	0.0021 (10)
C35	0.0266 (15)	0.0144 (12)	0.0191 (13)	0.0009 (10)	0.0051 (11)	0.0004 (10)
C36	0.0209 (13)	0.0174 (12)	0.0145 (12)	0.0030 (10)	0.0026 (10)	0.0003 (10)
C41	0.0136 (12)	0.0134 (11)	0.0150 (12)	0.0007 (9)	0.0014 (9)	0.0039 (9)
C42	0.0182 (13)	0.0166 (12)	0.0153 (12)	0.0014 (10)	0.0031 (10)	0.0029 (10)
C43	0.0195 (14)	0.0215 (13)	0.0237 (13)	-0.0014 (10)	0.0067 (11)	0.0059 (11)
C44	0.0154 (13)	0.0214 (13)	0.0268 (14)	-0.0044 (10)	0.0007 (11)	0.0044 (11)
C45	0.0191 (13)	0.0181 (12)	0.0176 (12)	-0.0015 (10)	-0.0015 (10)	-0.0001 (10)
C46	0.0180 (13)	0.0153 (12)	0.0173 (12)	0.0008 (10)	0.0051 (10)	0.0047 (10)
C51	0.0105 (12)	0.0217 (12)	0.0110 (11)	0.0019 (10)	0.0003 (9)	0.0007 (10)
C52	0.0216 (14)	0.0207 (13)	0.0164 (12)	0.0030 (10)	0.0043 (10)	0.0027 (10)
C53	0.0222 (14)	0.0321 (15)	0.0175 (13)	0.0020 (11)	0.0077 (11)	0.0076 (11)
C54	0.0147 (13)	0.0370 (15)	0.0148 (12)	0.0045 (11)	0.0039 (10)	0.0004 (11)
C55	0.0192 (14)	0.0225 (13)	0.0202 (13)	0.0048 (11)	0.0022 (11)	-0.0029 (11)
C56	0.0151 (13)	0.0191 (12)	0.0159 (12)	0.0005 (10)	0.0023 (10)	0.0001 (10)
C61	0.0138 (12)	0.0144 (11)	0.0114 (11)	-0.0015 (9)	0.0029 (9)	0.0029 (9)
C62	0.0174 (13)	0.0177 (12)	0.0121 (11)	0.0005 (10)	0.0031 (10)	0.0059 (9)
C63	0.0171 (13)	0.0190 (12)	0.0149 (12)	-0.0034 (10)	0.0027 (10)	0.0036 (10)
C64	0.0232 (14)	0.0154 (12)	0.0162 (12)	-0.0051 (10)	0.0068 (10)	-0.0011 (10)
C65	0.0197 (13)	0.0141 (11)	0.0187 (12)	0.0010 (10)	0.0077 (10)	0.0012 (10)
C66	0.0162 (13)	0.0184 (12)	0.0143 (12)	0.0002 (10)	0.0055 (10)	0.0035 (10)
C71	0.0156 (12)	0.0170 (12)	0.0103 (11)	0.0029 (9)	0.0030 (9)	0.0006 (9)
C72	0.0227 (14)	0.0190 (12)	0.0180 (12)	0.0042 (10)	0.0033 (11)	0.0018 (10)
C73	0.0275 (15)	0.0219 (13)	0.0201 (13)	0.0106 (11)	0.0024 (11)	0.0064 (11)
C74	0.0172 (14)	0.0406 (16)	0.0126 (12)	0.0115 (12)	0.0012 (10)	0.0029 (11)
C75	0.0166 (13)	0.0313 (14)	0.0141 (12)	-0.0006 (11)	0.0032 (10)	-0.0027 (11)
C76	0.0169 (13)	0.0202 (12)	0.0106 (11)	0.0010 (10)	0.0027 (10)	0.0014 (9)

Geometric parameters (Å, °)

Ru—C13	1.907 (2)	C31—C36	1.400 (3)
Ru—C1	2.038 (2)	C32—C33	1.396 (3)
Ru—C5	2.110 (2)	С32—Н32	0.9300
Ru—O6	2.2164 (16)	C33—C34	1.385 (4)
Ru—P1	2.3796 (6)	С33—Н33	0.9300
Ru—P2	2.3919 (6)	C34—C35	1.383 (4)
P1—C41	1.833 (2)	C34—H34	0.9300
P1—C21	1.838 (2)	C35—C36	1.394 (3)
P1—C31	1.845 (2)	С35—Н35	0.9300
P2—C61	1.832 (2)	C36—H36	0.9300
P2—C71	1.842 (2)	C41—C42	1.397 (3)
P2—C51	1.844 (2)	C41—C46	1.400 (3)
O1—C8	1.216 (3)	C42—C43	1.387 (3)
O2—C8	1.354 (3)	C42—H42	0.9300
O2—C9	1.440 (3)	C43—C44	1.385 (3)
O3—C10	1.214 (3)	C43—H43	0.9300
O4—C10	1.352 (3)	C44—C45	1.385 (4)
O4—C11	1.442 (3)	C44—H44	0.9300
O5—C7	1.341 (3)	C45—C46	1.391 (3)
O5—C12	1.450 (3)	C45—H45	0.9300
O6—C7	1.248 (3)	C46—H46	0.9300
O7—C13	1.154 (3)	C51—C56	1.394 (3)
C1—C2	1.368 (3)	C51—C52	1.404 (3)
C1—C8	1.501 (3)	C52—C53	1.391 (3)
C2—C3	1.435 (3)	С52—Н52	0.9300
С2—Н2	0.9300	C53—C54	1.389 (4)
C3—C4	1.370 (3)	С53—Н53	0.9300
С3—Н3	0.9300	C54—C55	1.385 (4)
C4—C5	1.463 (3)	C54—H54	0.9300
C4—C10	1.497 (3)	C55—C56	1.392 (3)
С5—С6	1.363 (3)	С55—Н55	0.9300
С6—С7	1.432 (3)	С56—Н56	0.9300
С6—Н6	0.9300	C61—C66	1.397 (3)
С9—Н9А	0.9600	C61—C62	1.399 (3)
С9—Н9В	0.9600	C62—C63	1.388 (3)
С9—Н9С	0.9600	С62—Н62	0.9300
C11—H11A	0.9600	C63—C64	1.387 (3)
C11—H11B	0.9600	С63—Н63	0.9300
C11—H11C	0.9600	C64—C65	1.388 (3)
C12—H12A	0.9600	C64—H64	0.9300
C12—H12B	0.9600	C65—C66	1.390 (3)
C12—H12C	0.9600	С65—Н65	0.9300
C21—C22	1.394 (3)	С66—Н66	0.9300
C21—C26	1.406 (3)	C71—C72	1.393 (3)
C22—C23	1.392 (3)	C71—C76	1.397 (3)
С22—Н22	0.9300	C72—C73	1.392 (3)

C23—C24	1.377 (4)	С72—Н72	0.9300
С23—Н23	0.9300	C73—C74	1.389 (4)
C24—C25	1.390 (4)	С73—Н73	0.9300
C24—H24	0.9300	C74—C75	1.386 (4)
C25—C26	1.387 (3)	С74—Н74	0.9300
C25—H25	0.9300	C75—C76	1.386 (3)
C26—H26	0.9300	С75—Н75	0.9300
$C_{31} - C_{32}$	1.398 (3)	С76—Н76	0.9300
001 002			0.7000
C13— Bu — $C1$	95 87 (9)	C25—C26—H26	119.6
C_{13} R_{u} C_{5}	170 35 (9)	C_{21} C_{26} H_{26}	119.6
C1 Ru $C5$	91 76 (9)	$C_{21} = C_{20} = 1120$	119.0 118.5(2)
$C_1 = R_1 = C_2$	91.70(9)	$C_{32} = C_{31} = C_{30}$	110.5(2)
C_{13} K_{4} C_{6}	94.98(8) 168.84(7)	$C_{32} = C_{31} = 11$	119.30(18) 121.04(18)
C_1 — R_0 — O_0	100.04(7)	$C_{30} = C_{31} = C_{11}$	121.94(10) 120.3(2)
C_3 — R_4 — O_6	//./3 (/)	$C_{33} = C_{32} = C_{31}$	120.3 (2)
CI D DI	88.00 (7)	C33—C32—H32	119.9
CI—Ru—PI	93.61 (6)	C31—C32—H32	119.9
C5—Ru—PI	85.63 (6)	$C_{34} = C_{33} = C_{32}$	120.5 (2)
O6—Ru—PI	89.36 (4)	С34—С33—Н33	119.7
C13—Ru—P2	99.24 (7)	С32—С33—Н33	119.7
C1—Ru—P2	85.74 (6)	C35—C34—C33	119.7 (2)
C5—Ru—P2	87.18 (6)	С35—С34—Н34	120.1
O6—Ru—P2	89.96 (4)	С33—С34—Н34	120.1
P1—Ru—P2	172.76 (2)	C34—C35—C36	120.2 (2)
C41—P1—C21	104.31 (11)	С34—С35—Н35	119.9
C41—P1—C31	99.28 (10)	С36—С35—Н35	119.9
C21—P1—C31	101.54 (10)	C35—C36—C31	120.8 (2)
C41—P1—Ru	114.53 (8)	С35—С36—Н36	119.6
C21—P1—Ru	115.29 (7)	С31—С36—Н36	119.6
C31—P1—Ru	119.49 (8)	C42—C41—C46	118.5 (2)
C61—P2—C71	104.49 (10)	C42—C41—P1	122.52 (17)
C61—P2—C51	102.69 (11)	C46—C41—P1	118.21 (18)
C71—P2—C51	98.77 (10)	C43—C42—C41	120.9 (2)
C61—P2—Ru	111.47 (7)	C43—C42—H42	119.6
C71—P2—Ru	116.69 (8)	C41—C42—H42	119.6
C51 - P2 - Ru	120.55 (8)	C44 - C43 - C42	120.1 (2)
$C_8 = C_2 = C_9$	115 36 (19)	C44-C43-H43	120.0
$C_{10} - 0_{4} - C_{11}$	115.26 (19)	C42 - C43 - H43	120.0
$C7_{-05}_{-012}$	116.16(18)	C_{43} C_{44} C_{45}	120.0 119.9(2)
C7 - 06 - Bu	110.10(10) 110.09(14)	C_{43} C_{44} H_{44}	119.9 (2)
$C_{1}^{2} = C_{1}^{1} = C_{2}^{2}$	110.09(14) 114.3(2)	$C_{45} = C_{44} = H_{44}$	120.1
$C_2 = C_1 = C_0$	114.3(2) 124.54(17)	$C_{43} = C_{44} = 1144$	120.1 120.2(2)
$C_2 = C_1 = R_0$	124.34(17) 120.77(16)	$C_{44} = C_{45} = C_{40}$	120.3 (2)
C_{0}	120.77(10)	C44 - C45 - H45	119.8
C1 = C2 = U2	127.7 (2)	C40 - C43 - H43	119.8
C1 - C2 - H2	110.1	$\begin{array}{c} \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{C} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 5 - \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 0 - \mathbf{U} 4 1 \\ \mathbf{C} 4 0 - \mathbf{U} 1 0 \\ \mathbf{C} 4 0 - \mathbf{U} 1 0 \\ \mathbf{C} 1 0 - \mathbf{U} 1 0 \\ \mathbf{C} 1 0 - \mathbf{U} 1 0 \\ \mathbf{C} 1 0 - \mathbf{U} 1 0 \\ 0 0 - \mathbf{U} 1 0 \\ 0 0 \\ 0 0 - \mathbf{U} 1 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 0 \\ 0 \\ 0 0 \\ 0$	120.3 (2)
C3-C2-H2	110.1	C45—C46—H46	119.8
C4—C3—C2	128.4 (2)	C41—C46—H46	119.8
С4—С3—Н3	115.8	C56-C51-C52	118.1 (2)

C2 C2 U2	115 9	C56 C51 D2	122 01 (18)
$C_2 = C_3 = H_3$	113.0	$C_{50} = C_{51} = F_2$	122.01(18)
$C_3 = C_4 = C_5$	122.2(2)	C_{52} C_{51} C_{52} C_{51}	119.59 (18)
C3—C4—C10	117.1(2)	053-052-051	120.8 (2)
C5—C4—C10	120.7 (2)	С53—С52—Н52	119.6
C6—C5—C4	122.0 (2)	C51—C52—H52	119.6
C6—C5—Ru	113.07 (16)	C54—C53—C52	120.0 (2)
C4—C5—Ru	124.71 (16)	С54—С53—Н53	120.0
C5—C6—C7	116.0 (2)	С52—С53—Н53	120.0
С5—С6—Н6	122.0	C55—C54—C53	119.9 (2)
С7—С6—Н6	122.0	С55—С54—Н54	120.0
O6—C7—O5	120.6 (2)	С53—С54—Н54	120.0
O6—C7—C6	123.1 (2)	C54—C55—C56	120.0 (2)
O5—C7—C6	116.3 (2)	С54—С55—Н55	120.0
O1—C8—O2	121.8 (2)	С56—С55—Н55	120.0
O1—C8—C1	126.9 (2)	C55—C56—C51	121.1 (2)
O2—C8—C1	111.25 (19)	С55—С56—Н56	119.4
02—C9—H9A	109.5	С51—С56—Н56	119.4
02—C9—H9B	109.5	C66-C61-C62	1187(2)
H9A_C9_H9B	109.5	C66-C61-P2	121.15(18)
$\Omega^2 - C9 - H9C$	109.5	C62 - C61 - P2	119 62 (18)
$H_{0}A = C_{0} = H_{0}C$	109.5	$C_{62} = C_{61} = C_{61}$	120.7(2)
HOR CO HOC	109.5	$C_{03} = C_{02} = C_{01}$	120.7 (2)
0^3 C10 O4	107.5 121.5(2)	C61 C62 H62	110.6
03 - 010 - 04	121.3(2) 126.2(2)	C64 C62 C62	119.0
03 - 010 - 04	120.2(2)	C64 - C63 - C62	120.0(2)
04 - 010 - 04	112.3 (2)	$C_{04} = C_{03} = H_{03}$	120.0
04—CII—HIIA	109.5	C62—C63—H63	120.0
04—CII—HIIB	109.5	C63—C64—C65	119.9 (2)
HIIA—CII—HIIB	109.5	С63—С64—Н64	120.1
O4—C11—H11C	109.5	С65—С64—Н64	120.1
H11A—C11—H11C	109.5	C64—C65—C66	120.3 (2)
H11B—C11—H11C	109.5	С64—С65—Н65	119.8
O5—C12—H12A	109.5	С66—С65—Н65	119.8
O5—C12—H12B	109.5	C65—C66—C61	120.4 (2)
H12A—C12—H12B	109.5	С65—С66—Н66	119.8
O5—C12—H12C	109.5	С61—С66—Н66	119.8
H12A—C12—H12C	109.5	C72—C71—C76	118.6 (2)
H12B—C12—H12C	109.5	C72—C71—P2	123.32 (18)
O7—C13—Ru	172.5 (2)	C76—C71—P2	117.82 (17)
C22—C21—C26	118.1 (2)	C73—C72—C71	120.6 (2)
C22—C21—P1	120.81 (18)	С73—С72—Н72	119.7
C26—C21—P1	120.95 (17)	С71—С72—Н72	119.7
$C_{23} - C_{22} - C_{21}$	120.6 (2)	C74—C73—C72	120.1 (2)
C23—C22—H22	119.7	С74—С73—Н73	120.0
C21—C22—H22	119.7	C72—C73—H73	120.0
C_{24} C_{23} C_{22}	120.7(2)	C75 - C74 - C73	119.8 (2)
C24—C23—H23	119.6	C75—C74—H74	120.1
С22 С23 Н23	119.6	C73 - C74 - H74	120.1
$C_{22} = C_{23} = 1123$	110.6 (2)	C74 $C75$ $C76$	120.1
$U_2 J = U_2 J = U_2 J$	117.0 (2)	C/=C/J=C/U	120.0 (2)

C23—C24—H24	120.2	С74—С75—Н75	120.0
C25—C24—H24	120.2	С76—С75—Н75	120.0
C26—C25—C24	120.1 (2)	C75—C76—C71	120.9 (2)
С26—С25—Н25	119.9	С75—С76—Н76	119.5
С24—С25—Н25	119.9	С71—С76—Н76	119.5
C25—C26—C21	120.8 (2)		