

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[4′,5′-bis(methylsulfanyl)-4,5-ethylenedithiotetrathiofulvalene] [[dichloridomercurate(II)]-µ-dichlorido]]

Wei Yang,^a Zhi-Gang Ren^{b*} and Jie Dai^b

^aDepartment of Basic Course, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, People's Republic of China, and ^bCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China

Correspondence e-mail: renzhigang@suda.edu.cn

Received 28 October 2008; accepted 16 December 2008

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.018 Å; disorder in main residue; R factor = 0.097; wR factor = 0.158; data-to-parameter ratio = 17.1.

The title compound, $\{(C_{10}H_{10}S_8)[HgCl_3]\}_n$, is a sulfur-rich charge-transfer compound in which $C_{10}H_{10}S_8^+$ cations and $HgCl_3$ anions are assembled by S···S [3.371 (5)–3.588 (5) Å] and S···Cl [2.833 (4)–3.488 (4) Å] contacts, and by weak intermolecular C–H···Cl hydrogen bonds, forming a two-dimensional wave-like structure. The two C atoms of the $-CH_2-CH_2-$ group in one of the cations are disordered over two sites with relative occupancies of 0.83 (2) and 0.17 (2).

Related literature

For background information, see: Banks *et al.* (1978); Enomoto *et al.* (2001); Kistenmacher *et al.* (1980); Zhilyaeva *et al.* (1999). For realted structures, see: Zhang *et al.* (1996); Hudhomme *et al.* (2001); Wu *et al.* (1998); Aakeröy *et al.* (1999).

Experimental

Crystal data

$(C_{10}H_{10}S_8)[HgCl_3]$	b = 25.541 (5) Å
$M_r = 693.6$	c = 19.626 (4) Å
Monoclinic, $P2_1/c$	$\beta = 97.96 \ (3)^{\circ}$
a = 7.7216 (15) Å	$V = 3833.3 (13) \text{ Å}^3$

Z = 8Mo $K\alpha$ radiation $\mu = 9.31 \text{ mm}^{-1}$

Data collection

Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\min} = 0.167, T_{\max} = 0.653$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.097$ $wR(F^2) = 0.158$ S = 1.706730 reflections 393 parameters

Table 1

Selected bond lengths (Å).

Hg1-Cl1	2.384 (4)	Hg2-Cl4	2.409 (4)
Hg1-Cl2	2.411 (4)	Hg2-Cl5	2.403 (4)
Hg1-Cl3	2.516 (4)	Hg2-Cl6	2.483 (4)
Hg2-Cl3	2.833 (4)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2A \cdots Cl4^{i}$ $C2 - H2B \cdots Cl3^{ii}$	0.99 0.99	2.76 2.68	3.619 (19) 3.645 (19)	146 164

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

This work was supported by the NSF of the Education Committee of Jiangsu Province, P. R. China (grant 06 KJB150102) and the Research Fund for the Youth of SuZhou University (No. Q3109605).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2724).

References

- Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145–152.
- Banks, R. H., Edlstein, N. M., Rietz, R. R., Templeton, D. H. & Zalkin, A. (1978). J. Am. Chem. Soc. 100, 1958–1959.
- Enomoto, M., Miyazaki, A. & Enoki, T. (2001). Bull. Chem. Soc. Jpn, 74, 459–470.
- Hudhomme, P., Moustarder, S. L., Durand, C., Gallego-Planas, N., Mercier, N., Blanchard, P., Levillain, E., Allain, M., Gorgues, A. & Riou, A. (2001). *Chem. Eur. J.* 7, 5070–5083.
- Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.

T = 193 (2) K $0.30 \times 0.06 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.081$

7 restraints

 $\Delta \rho_{\text{max}} = 1.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.37 \text{ e } \text{\AA}^{-3}$

34949 measured reflections 6730 independent reflections

6416 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kistenmacher, T. J., Rossi, M., Chiang, C. C., Van Duyne, R. P. & Siedle, A. R. (1980). Inorg. Chem. 19, 3604–3608.
 Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wu, L. P., Dai, J., Munakata, M., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Ohno, Y. (1998). J. Chem. Soc. Dalton Trans. pp. 3255-3261.
- Zhang, B., Li, Y.-L., Han, H.-X., Yang, J.-K., Zhu, D.-B. & Maruyama, Y.-S. (1996). Acta Cryst. C52, 400-403.
- Zhilyaeva, E. I., Torunova, S. A., Lyubovskaya, R. N., Konovalikhin, S. V., Shilov, G. V., Kaplunov, M. G., Golubev, E. V., Lyubovskii, R. B. & Yudanova, E. I. (1999). Synth. Met. 107, 123–127.

supporting information

Acta Cryst. (2009). E65, m115-m116 [doi:10.1107/S1600536808042785]

catena-Poly[[4',5'-bis(methylsulfanyl)-4,5-ethylenedithiotetrathiofulvalene] [[dichloridomercurate(II)]-µ-dichlorido]]

Wei Yang, Zhi-Gang Ren and Jie Dai

S1. Comment

Although tetrathiafulvalene (TTF) and its radical salts have been investigated for several decades, they are still attracting much attention from chemists. The TTF unit can exist in three stable redox-states (TTF / TTF⁺/ TTF²⁺) and for this reason their derivatives have been used as functional building blocks in supramolecular chemistry and materials chemistry. There are two synthetic routes to prepare the oxidized TTF derivatives: chemical oxidization and electrochemical oxidization. It is known that HgCl₂ can oxidize the TTF derivatives readily, forming a set of charge-transfer (CT) salts (Banks *et al.* 1978; Enomoto *et al.* 2001; Kistenmacher *et al.* 1980; Zhilyaeva *et al.* 1999). The chloromercurate anions are found to have monomeric, dimeric or polymeric structures. In this paper, we report the synthesis and crystal structure of a new charge-transfer salt (I).

Compound (I) consists of two DMTEDT-TTF⁺ cations and two HgCl₃⁻ anions (Fig. 1). Unlike the precursor DMTEDT-TTF (Zhang et al., 1996), each DMTEDT-TTF⁺ cation is nearly co-planar through the conjugated TTF moiety (bis(dithio)tetrathiofulvalene, C₆S₈) with the maximum deviation of 0.152 (4) Å (S1) and 0.179 (4) Å (S10). Compared with those of the molecule DMTEDT-TTF, the bond lengths of the conjugated systems in (I) are averaged which are close to those of DMTEDT-TTF⁺ perchlorate (Hudhomme *et al.*, 2001). The central C=C bond distance of the TTF unit is the charge-sensitive parameter for the electronic states of the TTF derivatives. The distances were reported to be 1.33–1.35 Å for TTCn-TTF⁰, 1.38–1.40 Å for TTCn-TTF⁺ and 1.42–1.43 Å for TTCn-TTF²⁺, respectively (Wu et al., 1998). The C=C distances in (I) are 1.403 (18) Å (C5=C6) and 1.390 (17) Å (C15=C16), which correspond to the monovalent cation. The two cations are almost parallel but oriented in opposite direction. The dihedral angle between the least-squires planes of TTF moieties is 1.77 (7)°. Four strong intramolecular S. S contacts (S3. S14 3.508 (5) Å; S4. S13 3.382 (5) Å; S5. S12 3.513 (5) Å; S6…S11 3.371 (5) Å) and an intermolecular S…S interaction (S13…S6ⁱ 3.532 (5) Å) connect the cations into a one-dimensional chain extending along the a axis (Fig. 2). The HgCl₃ anions are linked via the intramolecular Hg2…Cl3 (2.833 (4) Å) and intermolecular Hg1···Cl6ⁱ (2.901 (4) Å) secondary bonding interactions, thereby forming a onedimensional [HgCl₃-]_n chain extending along the a axis. The DMTEDT-TTF moiety interacts with the one-dimensional chain by three intramolecular S···Cl interactions (S4···Cl3 3.440 (5) Å; S6···Cl6 3.435 (5) Å; S13···Cl3 3.488 (5) Å, Fig. 2). It seems like that the [HgCl₃-]_n chain is stalibized by two rings: a 8-member Hg2—Cl6—S6—C6—C5—S4—Cl3 ring and a 5-member Hg1-Cl3-S13-S6ⁱ-Cl6ⁱ ring, which are linked alternatively by the S…S contacts mentioned above. Between the stacking and the chain there are several side-to-side intermolecular interactions (S15…Cl4^{iv} 3.425 (5) Å; S1...S7^v 3.438 (5) Å; S3...S10^{vi} 3.588 (5) Å) and two intermolecular C—H...Cl hydrogen bonding interactions (Aakeröy et al. 1999) which result in the formation of a wave-like two-dimensional structure as shown in Fig. 3 [symmetry codes: (i)x - 1, y, z; (iv) - x + 1, -y + 1, -z + 1; (v)x - 1, -y + 3/2, z - 1/2; (vi)x, -y + 3/2, z - 1/2].

S2. Experimental

A solution of HgCl₂ (5.7 mg, 0.02 mmol) in MeCN (2 ml) was added into the solution of DMTEDT-TTF (bis(methyl-thio)ethylenedithiotetrathiafulvalene, $C_{10}H_{10}H_8$, (4.0 mg, 0.01 mmol) in CH_2Cl_2 (2 ml). Slow evaporation of solevnts from the resulting orange solution for 3 days afforded dark blue prisms of (I). Yield: 4.9 mg (71%). CH&N elemental analysis. Found: C, 17.02; H, 1.64. Calculated for $C_{20}H_{20}Cl_6Hg_2S_{16}$: C, 17.31; H, 1.45%.

S3. Refinement

Two carbon atoms of one DMTEDT-TTF group are disordered over two orientations with occupancy factors of 0.83/0.17 for C1/C1A and C2/C2A. These two disordered C atoms are refined isotropically, while all other non-hydrogen atoms are refined anisotropically. The H atoms are placed in geometrically idealized positions (C—H = 0.98 Å for methyl groups and C—H = 0.99 Å for methylene groups) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The disordered C and H atoms are omitted.

Figure 2

Part of the crystal structure showing the face-to-face stacking of DMTEDT-TTF⁺ cations (connected by S···S interactions) and the one-dimensional chain of the HgCl₃⁻ anions (connected by Hg···Cl interactions) along *a* axis. The stacking and the chain are linked by intramolecular S···Cl interactions. All H atoms have been omitted and the disorder is not shown. [symmetry codes: (i)*x* - 1,*y*,*z*; (ii)*x* + 1,*y*,*z*]

Figure 3

Part of the crystal structure of (I). The intermolecular S···S, S···Cl interactions (dashed lines) and H-bonds connect the DMTEDT-TTF⁺ stacks and the $HgCl_3^-$ chains into a two-dimensional 'wave-like' structure. All non-hydrogen bonding H atoms have been omitted. The disorder is not showm.

catena-Poly[[4',5'-bis(methylsulfanyl)-4,5- ethylenedithiotetrathiofulvalene] [[dichloridomercury(II)]- μ -dichlorido]]

Crystal data	
$(C_{10}H_{10}S_8)[HgCl_3]$	F(000) = 2632
$M_r = 693.6$	$D_{\rm x} = 2.404 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5236 reflections
a = 7.7216 (15) Å	$\theta = 3.1 - 25.0^{\circ}$
b = 25.541 (5) Å	$\mu = 9.31 \text{ mm}^{-1}$
c = 19.626 (4) Å	T = 193 K
$\beta = 97.96 \ (3)^{\circ}$	Prism, blue
$V = 3833.3 (13) \text{ Å}^3$	$0.30 \times 0.06 \times 0.05 \text{ mm}$
Z = 8	
Data collection	
Rigaku Mercury CCD	34949 measured reflections
diffractometer	6730 independent reflections
Radiation source: fine-focus sealed tube	6416 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.081$
ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(Jacobson, 1998)	$k = -30 \rightarrow 30$
$T_{\min} = 0.167, \ T_{\max} = 0.653$	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.097$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
S = 1.70	H-atom parameters constrained
6730 reflections	$w = 1/[\sigma^2(F_o^2) + (0.041P)^2 + 19.9P]$
393 parameters	where $P = (F_0^2 + 2F_c^2)/3$
7 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.24 \ m e \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Hg1	0.45533 (8)	0.41687 (2)	0.78044 (3)	0.02899 (18)	
Hg2	0.91933 (8)	0.42035 (2)	0.70386 (3)	0.02898 (18)	
Cl1	0.2922 (5)	0.34433 (16)	0.7290 (2)	0.0399 (10)	
C12	0.5596 (5)	0.43869 (17)	0.89856 (19)	0.0373 (10)	
C13	0.6117 (4)	0.47942 (13)	0.71089 (19)	0.0267 (8)	
Cl4	0.9288 (5)	0.43697 (15)	0.58359 (19)	0.0344 (9)	
C15	0.7983 (5)	0.34659 (16)	0.7568 (2)	0.0384 (10)	
Cl6	1.1374 (5)	0.47851 (14)	0.77105 (19)	0.0289 (8)	
S1	0.6081 (5)	0.68944 (14)	0.48929 (18)	0.0254 (8)	
S2	0.6520 (5)	0.55351 (14)	0.52101 (19)	0.0281 (9)	
S3	0.7971 (4)	0.69856 (13)	0.63019 (16)	0.0177 (7)	
S4	0.8238 (4)	0.58695 (13)	0.65687 (17)	0.0181 (7)	
S5	1.0073 (4)	0.72162 (13)	0.78194 (17)	0.0195 (7)	
S6	1.0639 (4)	0.60862 (13)	0.80084 (16)	0.0158 (7)	
S7	1.2347 (5)	0.74770 (15)	0.91583 (19)	0.0291 (9)	
S 8	1.2877 (5)	0.62303 (13)	0.93929 (17)	0.0208 (8)	
S9	0.8532 (5)	0.55476 (15)	0.99144 (19)	0.0302 (9)	
S10	0.8668 (5)	0.69012 (15)	1.02585 (18)	0.0272 (8)	
S11	0.6767 (4)	0.58628 (13)	0.85657 (17)	0.0194 (7)	
S12	0.6762 (4)	0.69875 (13)	0.88435 (16)	0.0184 (7)	
S13	0.4332 (4)	0.60475 (12)	0.71297 (16)	0.0155 (7)	
S14	0.4648 (4)	0.71822 (13)	0.73263 (17)	0.0191 (7)	
S15	0.2034 (4)	0.61569 (13)	0.57563 (17)	0.0200 (7)	
S16	0.2282 (5)	0.74147 (14)	0.60020 (18)	0.0247 (8)	
C3	0.7079 (17)	0.6574 (5)	0.5647 (7)	0.018 (3)	

C4	0.7214 (17)	0.6054 (5)	0.5764 (7)	0.019 (3)	
C5	0.8706 (16)	0.6496 (5)	0.6860 (7)	0.016 (3)	
C6	0.9700 (16)	0.6589 (5)	0.7503 (7)	0.017 (3)	
C7	1.1340 (16)	0.7023 (5)	0.8570 (6)	0.013 (3)	
C8	1.1591 (15)	0.6493 (5)	0.8665 (6)	0.014 (3)	
C9	1.067 (2)	0.7954 (6)	0.9159 (8)	0.034 (4)	
H9A	1.1078	0.8237	0.9478	0.051*	
H9B	0.9630	0.7790	0.9305	0.051*	
H9C	1.0366	0.8097	0.8695	0.051*	
C10	1.281 (2)	0.5544 (6)	0.9207 (7)	0.028 (3)	
H10A	1.3497	0.5353	0.9585	0.042*	
H10B	1.3296	0.5480	0.8779	0.042*	
H10C	1.1593	0.5422	0.9154	0.042*	
C11	0.957 (2)	0.5888 (6)	1.0678 (8)	0.036 (4)	
H11A	0.9676	0.5643	1.1073	0.043*	
H11B	1.0765	0.5992	1.0606	0.043*	
C12	0.859(2)	0.6364 (7)	1.0853 (7)	0.036 (4)	
H12A	0.9084	0.6484	1.1320	0.043*	
H12B	0.7355	0.6268	1.0864	0.043*	
C13	0.7717 (16)	0.6061 (5)	0.9379 (6)	0.015 (3)	
C14	0.7783 (16)	0.6589 (5)	0.9497 (7)	0.017 (3)	
C15	0.6144 (17)	0.6478 (5)	0.8274 (6)	0.016 (3)	
C16	0.5164 (16)	0.6568 (5)	0.7635 (6)	0.014(3)	
C17	0.3223(16)	0.6200(5) 0.6446(5)	0.6483(6)	0.015(3)	
C18	0.3376 (16)	0.6969(5)	0.6581 (6)	0.013(3)	
C19	0.228(2)	0.5303(5)	0.5954(7)	0.027(3)	
H19A	0.1648	0.5264	0.5576	0.027 (3)	
H19R	0.1795	0.5395	0.6380	0.041*	
H19C	0.3520	0.5376	0.6013	0.041*	
C20	0.3320 0.3862 (19)	0.3370	0.5094(7)	0.071	
H20A	0.3375	0.8208	0.5679	0.025 (5)	
H20R	0.4923	0.7790	0.5839	0.037	
H20C	0.4151	0.8074	0.6458	0.037*	
C1	0.4191 0.508(2)	0.6359 (6)	0.4384 (9)	0.037	0.83(2)
	0.308(2)	0.6265	0.4556	0.030 (3)	0.83(2)
H1R	0.4781	0.6205	0.4550	0.036*	0.83(2)
C^2	0.4701	0.0479 0.5870(7)	0.4389 (8)	0.030	0.83(2)
U2 H2A	0.7364	0.5060	0.4267	0.036*	0.83(2)
112A 112D	0.7304	0.5909	0.4207	0.030*	0.83(2)
	0.5055	0.5025	0.4032	0.030°	0.83(2)
	0.012(12)	0.0349 (19)	0.431(3)	$0.030(3)^{\circ}$	0.17(2)
	0.3369	0.0438	0.3840	0.030	0.17(2)
	0./300	0.0233	0.428/	0.020 (2)*	0.17(2)
U2A U2D	0.310 (8)	0.387(3)	0.433 (3)	$0.030(3)^{*}$	0.17(2)
	0.4882	0.5052	0.412/	0.030*	0.17(2)
п2U	0.4052	0.3978	0.4082	0.030*	0.17(2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.0336 (3)	0.0270 (3)	0.0250 (3)	-0.0062 (3)	-0.0007 (2)	-0.0006 (3)
Hg2	0.0341 (4)	0.0281 (3)	0.0241 (3)	-0.0064 (3)	0.0021 (2)	0.0027 (3)
Cl1	0.029 (2)	0.031 (2)	0.056 (3)	-0.0062 (17)	-0.0026 (18)	-0.0127 (19)
C12	0.036 (2)	0.047 (3)	0.025 (2)	0.0104 (19)	-0.0085 (16)	-0.0051 (17)
C13	0.0252 (18)	0.0184 (18)	0.037 (2)	0.0013 (14)	0.0049 (15)	0.0038 (15)
Cl4	0.048 (2)	0.031 (2)	0.0234 (19)	-0.0109 (18)	0.0014 (17)	0.0027 (16)
C15	0.036 (2)	0.029 (2)	0.052 (3)	-0.0013 (17)	0.0115 (19)	0.0120 (19)
Cl6	0.0265 (19)	0.0238 (19)	0.033 (2)	0.0029 (15)	-0.0086 (15)	-0.0099 (15)
S1	0.033 (2)	0.021 (2)	0.0196 (18)	0.0012 (16)	-0.0071 (15)	0.0011 (15)
S2	0.037 (2)	0.018 (2)	0.025 (2)	-0.0005 (16)	-0.0087 (16)	-0.0092 (15)
S3	0.0232 (18)	0.0132 (17)	0.0151 (16)	-0.0030 (14)	-0.0029 (13)	0.0003 (13)
S4	0.0211 (17)	0.0111 (17)	0.0208 (17)	0.0000 (14)	-0.0022 (13)	0.0019 (13)
S5	0.0237 (18)	0.0144 (17)	0.0184 (17)	-0.0015 (14)	-0.0036 (14)	0.0002 (13)
S6	0.0192 (17)	0.0118 (16)	0.0153 (16)	0.0015 (13)	-0.0011 (13)	0.0003 (13)
S 7	0.030 (2)	0.024 (2)	0.029 (2)	0.0002 (16)	-0.0115 (16)	-0.0100 (16)
S 8	0.0262 (19)	0.0195 (19)	0.0144 (17)	0.0020 (15)	-0.0055 (14)	-0.0003 (14)
S9	0.039 (2)	0.022 (2)	0.027 (2)	0.0066 (17)	-0.0032 (17)	0.0106 (16)
S10	0.032 (2)	0.027 (2)	0.0189 (18)	-0.0011 (16)	-0.0076 (15)	-0.0023 (15)
S11	0.0235 (18)	0.0139 (17)	0.0195 (17)	-0.0004 (14)	-0.0016 (14)	0.0016 (14)
S12	0.0226 (18)	0.0158 (18)	0.0148 (17)	-0.0006 (14)	-0.0046 (14)	-0.0013 (13)
S13	0.0158 (16)	0.0126 (16)	0.0171 (17)	-0.0002 (13)	-0.0013 (13)	0.0006 (13)
S14	0.0260 (19)	0.0138 (17)	0.0148 (17)	0.0010 (14)	-0.0063 (14)	-0.0001 (13)
S15	0.0243 (18)	0.0177 (18)	0.0164 (17)	-0.0046 (14)	-0.0032 (14)	0.0005 (13)
S16	0.0281 (19)	0.0177 (19)	0.0250 (19)	-0.0005 (15)	-0.0077 (15)	0.0049 (15)
C3	0.019 (7)	0.018 (7)	0.016 (7)	0.000 (6)	0.004 (5)	-0.006 (6)
C4	0.020 (7)	0.018 (7)	0.015 (7)	0.004 (6)	-0.009(5)	-0.004 (6)
C5	0.015 (7)	0.013 (7)	0.021 (7)	-0.002 (5)	0.004 (5)	0.007 (5)
C6	0.019 (7)	0.012 (7)	0.022 (7)	0.007 (5)	0.006 (6)	0.000 (6)
C7	0.013 (6)	0.020(7)	0.008 (6)	0.002 (5)	0.001 (5)	-0.004 (5)
C8	0.009 (6)	0.026 (8)	0.007 (6)	0.003 (5)	-0.001 (5)	0.000 (5)
C9	0.045 (10)	0.013 (8)	0.039 (9)	-0.006 (7)	-0.008 (7)	0.001 (7)
C10	0.041 (9)	0.022 (8)	0.020 (8)	0.003 (7)	-0.004 (7)	0.003 (6)
C11	0.034 (9)	0.035 (10)	0.034 (9)	0.005 (7)	-0.015 (7)	0.010 (7)
C12	0.041 (10)	0.051 (11)	0.014 (8)	0.000 (8)	-0.004 (7)	0.008 (7)
C13	0.016 (7)	0.020 (7)	0.010 (6)	0.000 (6)	0.004 (5)	0.005 (5)
C14	0.012 (7)	0.020 (7)	0.018 (7)	0.005 (5)	-0.002(5)	0.002 (6)
C15	0.022 (7)	0.010(7)	0.016 (7)	0.005 (5)	-0.003(5)	-0.005 (5)
C16	0.015 (7)	0.012 (7)	0.017 (7)	0.002 (5)	0.007 (5)	0.002 (5)
C17	0.013 (6)	0.021 (7)	0.010 (6)	0.003 (5)	-0.001 (5)	-0.004 (5)
C18	0.013 (6)	0.014 (7)	0.014 (7)	-0.001 (5)	-0.001 (5)	-0.004 (5)
C19	0.038 (9)	0.017 (8)	0.025 (8)	-0.001 (6)	0.001 (7)	0.005 (6)
C20	0.037 (9)	0.013 (7)	0.023 (8)	-0.010 (6)	0.000 (6)	0.005 (6)

Geometric parameters (Å, °)

Hg1—Cl1	2.384 (4)	S14—C18	1.733 (12)
Hg1—Cl2	2.411 (4)	S15—C17	1.749 (12)
Hg1—Cl3	2.516 (4)	S15—C19	1.801 (14)
Hg1—Cl6 ⁱ	2.901 (4)	S16—C18	1.743 (13)
Hg2—Cl3	2.833 (4)	S16—C20	1.797 (14)
Hg2—Cl4	2.409 (4)	C3—C4	1.348 (19)
Hg2—Cl5	2.403 (4)	C5—C6	1.403 (18)
Hg2—Cl6	2.483 (4)	C7—C8	1.375 (18)
Cl6—Hg1 ⁱⁱ	2.901 (4)	С9—Н9А	0.9800
S1—C3	1.772 (14)	С9—Н9В	0.9800
S1—C1A	1.80 (2)	С9—Н9С	0.9800
S1—C1	1.804 (15)	C10—H10A	0.9800
S2—C4	1.750 (13)	C10—H10B	0.9800
S2—C2A	1.80 (2)	C10—H10C	0.9800
S2—C2	1.810 (14)	C11—C12	1.50 (2)
S3—C5	1.707 (13)	C11—H11A	0.9900
S3—C3	1.728 (13)	C11—H11B	0.9900
S4—C4	1.731 (13)	C12—H12A	0.9900
S4—C5	1.720 (13)	C12—H12B	0.9900
S5—C6	1.728 (13)	C13—C14	1.367 (18)
S5—C7	1.724 (12)	C15—C16	1.390 (17)
S6—C6	1.720 (13)	C17—C18	1.353 (18)
S6—C8	1.738 (13)	C19—H19A	0.9800
S7—C7	1.741 (13)	C19—H19B	0.9800
S7—C9	1.780 (16)	С19—Н19С	0.9800
S8—C8	1.757 (12)	C20—H20A	0.9800
S8—C10	1.791 (15)	C20—H20B	0.9800
S9—C13	1.744 (13)	C20—H20C	0.9800
S9—C11	1.820 (16)	C1—C2	1.52 (2)
S10—C14	1.747 (13)	C1—H1A	0.9900
S10—C12	1.806 (16)	C1—H1B	0.9900
S11—C13	1.737 (13)	C2—H2A	0.9900
S11—C15	1.717 (13)	C2—H2B	0.9900
S12—C14	1.739 (13)	C1A—C2A	1.52 (3)
S12—C15	1.739 (13)	C1A—H1C	0.9900
S13—C16	1.728 (13)	C1A—H1D	0.9900
S13—C17	1.755 (13)	C2A—H2D	0.9900
S14—C16	1.709 (13)	C2A—H2C	0.9900
Cl1—Hg1—Cl2	132.27 (16)	C12—C11—H11A	108.9
Cl1—Hg1—Cl3	121.93 (14)	S9—C11—H11A	108.9
Cl2—Hg1—Cl3	104.68 (14)	C12—C11—H11B	108.9
Cl1—Hg1—Cl6 ⁱ	90.12 (12)	S9—C11—H11B	108.9
Cl2—Hg1—Cl6 ⁱ	95.88 (12)	H11A—C11—H11B	107.7
Cl3—Hg1—Cl6 ⁱ	94.96 (11)	C11—C12—S10	114.0 (11)
Cl5—Hg2—Cl4	128.94 (14)	C11—C12—H12A	108.7

C15 Hg2 - C16	121.00(14)	S10_C12_H12A	108 7
C14 Hg2 $C16$	121.00(14) 107.73(13)	$C_{11} C_{12} H_{12R}$	108.7
C_{14} $-H_{g2}$ C_{13}	107.73(13) 01.01.(12)	S10 C12 H12B	108.7
C_{13} $-H_{22}$ C_{13}	91.01(12) 05.25(12)	$H_{12} = C_{12} = H_{12} D$	103.7
C_{14} $-ng_2$ $-C_{13}$	95.55 (15)	$\Pi I Z A - C I Z - \Pi I Z B$	107.0
	99.01 (11)		110.4 (10)
Hg1—Cl3—Hg2	99.03 (11)	C14—C13—S9	129.6 (10)
Hg2—Cl6—Hg1"	102.40 (12)	S11—C13—S9	113.9 (8)
C3—S1—C1A	97 (3)	C13—C14—S12	116.7 (10)
C3—S1—C1	102.4 (8)	C13—C14—S10	126.6 (10)
C1A—S1—C1	27 (3)	S12—C14—S10	116.6 (8)
C4—S2—C2A	102 (3)	C16—C15—S11	123.0 (10)
C4—S2—C2	100.7 (8)	C16—C15—S12	121.5 (10)
C2A—S2—C2	28 (2)	S11—C15—S12	115.5 (7)
C5—S3—C3	95.4 (7)	C15—C16—S14	122.9 (10)
C5—S4—C4	95.7 (6)	C15—C16—S13	120.2 (10)
C7—S5—C6	95.1 (6)	S14—C16—S13	116.9 (7)
C6—S6—C8	94.7 (6)	C18—C17—S15	124.0 (10)
C7—S7—C9	101.4 (7)	C18—C17—S13	116.4 (9)
C8—S8—C10	102.2 (6)	S15—C17—S13	119.6 (8)
C13—S9—C11	102.6 (7)	C17—C18—S14	117.3 (10)
C14—S10—C12	99.3 (7)	C17—C18—S16	121.8 (10)
C15 = S11 = C13	95.9 (6)	S14-C18-S16	120.8(7)
C14 = S12 = C15	95.3 (6)	S15-C19-H19A	109.5
C16 - S12 - C17	94.3 (6)	S15_C19_H19B	109.5
C16 - S13 - C17	95.0 (6)	H19A - C19 - H19B	109.5
$C_{10} = S_{14} = C_{18}$	95.0(0)	S15 C10 H10C	109.5
C17 - S15 - C19	102.0(7)		109.5
$C_{10} = S_{10} = C_{20}$	102.3(0)	HI9A-C19-HI9C	109.5
C4 - C3 - S3	117.3(10)	H19B-C19-H19C	109.5
	127.7(10)	S10-C20-H20A	109.5
S3-C3-S1	115.0 (8)	S16—C20—H20B	109.5
C3—C4—S4	116.0 (10)	H20A—C20—H20B	109.5
C3—C4—S2	129.1 (10)	S16—C20—H20C	109.5
S4—C4—S2	115.0 (8)	H20A—C20—H20C	109.5
C6—C5—S3	123.0 (10)	H20B—C20—H20C	109.5
C6—C5—S4	121.3 (10)	C2—C1—S1	114.7 (12)
S3—C5—S4	115.6 (8)	C2—C1—H1A	108.6
C5—C6—S6	121.8 (10)	S1—C1—H1A	108.6
C5—C6—S5	121.6 (10)	C2—C1—H1B	108.6
S6—C6—S5	116.7 (8)	S1—C1—H1B	108.6
C8—C7—S5	116.7 (9)	H1A—C1—H1B	107.6
C8—C7—S7	121.6 (9)	C1—C2—S2	113.6 (12)
S5—C7—S7	121.6 (8)	C1—C2—H2A	108.8
C7—C8—S6	116.8 (9)	S2—C2—H2A	108.8
C7—C8—S8	122.6 (9)	C1—C2—H2B	108.8
S6—C8—S8	120.5 (8)	S2—C2—H2B	108.8
87—С9—Н9А	109.5	H2A—C2—H2B	107.7
S7—C9—H9B	109.5	C2A-C1A-S1	113 (5)
Н9А—С9—Н9В	109.5	C2A—C1A—H1C	108.9

S7—C9—H9C	109.5	S1—C1A—H1C	108.9
Н9А—С9—Н9С	109.5	C2A—C1A—H1D	108.9
Н9В—С9—Н9С	109.5	S1—C1A—H1D	108.9
S8—C10—H10A	109.5	H1C—C1A—H1D	107.7
S8—C10—H10B	109.5	C1A—C2A—S2	109 (5)
H10A-C10-H10B	109.5	C1A—C2A—H2D	109.8
S8—C10—H10C	109.5	S2—C2A—H2D	109.8
H10A-C10-H10C	109.5	C1A—C2A—H2C	109.8
H10B-C10-H10C	109.5	S2—C2A—H2C	109.8
C12—C11—S9	113.5 (10)	H2D—C2A—H2C	108.2

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C2—H2A···Cl4 ⁱⁱⁱ	0.99	2.76	3.619 (19)	146
C2—H2 B ···Cl3 ^{iv}	0.99	2.68	3.645 (19)	164

Symmetry codes: (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.