organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Bis(3-phenylpropyl)-1*H*benzimidazol-3-ium-2-carbodithioate

Mehmet Akkurt,^a* Ülkü Yılmaz,^b Hasan Küçükbay,^b Mustafa Gençaslan^a and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 6 November 2008; accepted 15 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.080; data-to-parameter ratio = 18.4.

The title compound, $C_{26}H_{26}N_2S_2$, was synthesized from bis[1,3-bis(3-phenylpropyl)benzimidazolidine-2-ylidene] and CS₂ in toluene. The molecular structure is composed of a benzimidazole ring system with two phenylpropyl substituents and a dithiocarboxylate group in the 2-position. The benzimidazole unit is essentially planar, with a maximum atomic deviation of 0.008 (2) Å, and makes dihedral angles of 72.72 (10) and 27.62 (12)°, with the two phenyl rings. The dihedral angle between the two phenyl rings is 55.98 (15)°. The molecular packing is stabilized by a C-H···S intermolecular hydrogen-bonding interaction and a C-H··· π interaction between a benzene H atom and the phenyl ring of a neighbouring molecule.

Related literature

For applications of benzimidazole derivatives, see: Hahn & Jahnke (2008); Lappert (2005); Winberg & Coffman (1965); Küçükbay *et al.* (1996, 1997); Çetinkaya *et al.* (1994, 1998). For details of the synthesis, see: Yılmaz (2008). For related structures, see: Akkurt *et al.* (2004, 2005); Öztürk *et al.* (2003, 2004).

V = 2346.77 (17) Å³

 $0.76 \times 0.65 \times 0.38 \text{ mm}$

19766 measured reflections

4983 independent reflections

3842 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Absolute structure: Flack (1983),

Mo $K\alpha$ radiation

 $\mu = 0.24 \text{ mm}^-$

T = 293 (2) K

 $R_{\rm int} = 0.029$

 $\Delta \rho_{\rm max} = 0.10 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

2317 Friedel pairs Flack parameter: -0.03 (5)

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{26}H_{26}N_{2}S_{2}\\ M_{r}=430.63\\ Orthorhombic, Pna2_{1}\\ a=27.2391\ (11)\ \text{\AA}\\ b=8.3483\ (4)\ \text{\AA}\\ c=10.3200\ (4)\ \text{\AA} \end{array}$

Data collection

Stoe IPDS-2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.838, T_{max} = 0.914$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.080$ S = 0.974983 reflections 271 parameters 1 restraint

Table 1

Selected bond lengths (Å).

C8-S1	1.6670 (18)	C1-N1	1.393 (2)
C8-S2	1.6532 (18)	C7-N2	1.341 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C19-H19B\cdots S2^{i}$ $C5-H5\cdots Cg1^{ii}$	0.97 0.93	2.87 2.70	3.680 (2) 3.523 (2)	142 148

Symmetry codes: (i) -x + 1, -y + 1, $z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $z - \frac{1}{2}$. Cg1 is the centroid of the C12–C17 phenyl ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund). HK and ÜY thank the İnönü University Research Fund (Directed project BAPB-2008/59) for financial support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2110).

References

- Akkurt, M., Karaca, S., Küçükbay, H., Yılmaz, U. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2875–o2877.
- Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o219–o221.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Çetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047–2054.

- Çetinkaya, E., Hitchcock, P. B., Küçükbay, H. & Lappert, M. F. (1994). J. Organomet. Chem. 481, 89–95.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hahn, F. E. & Jahnke, M. (2008). Angew. Chem. Int. Ed. 47, 3122-3172.
- Küçükbay, H., Çetinkaya, E., Çetinkaya, B. & Lappert, M. F. (1997). Synth. Commun. 27, 4059–4066.
- Küçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434–2439.
- Lappert, M. F. (2005). J. Organomet. Chem. 690, 5467-5473.
- Öztürk, S., Akkurt, M., Küçükbay, H., Okuyucu, N. & Fun, H.-K. (2003). Acta Cryst. E59, o1014–o1016.
- Öztürk, S., Akkurt, M., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, 0936–0938.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Winberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 87, 2776–2777.
- Yılmaz, Ü. (2008). PhD thesis, İnönü University, Graduate School of Natural and Applied Sciences, Malatya, Turkey.

supporting information

Acta Cryst. (2009). E65, o174-o175 [doi:10.1107/S1600536808042761]

1,3-Bis(3-phenylpropyl)-1*H*-benzimidazol-3-ium-2-carbodithioate

Mehmet Akkurt, Ülkü Yılmaz, Hasan Küçükbay, Mustafa Gençaslan and Orhan Büyükgüngör

S1. Comment

Benzimidazole derivatives consistute an important class of heterocyclic compounds for their biological activities. They also are an important source for electron-rich olefin synthesis. Electron rich olefins are an important research subject for their versatile reactions. Since electron rich olefins are powerful nucleophilic compounds, they have been used as reducing agents, and are a source of carbine transation metal complexes and formylating agents for the proton active compounds (Hahn & Jahnke, 2008; Lappert, 2005). They are readily converted by carbon disulfide to red coloured stable dithioquaternary salts. (Winberg & Coffman,1965). Electron rich olefins have also been used as catalysts for cyloin type C—C coupling reactions. In a number of previous papers (Çetinkaya *et al.*, 1994; Küçükbay *et al.*, 1996; Küçükbay *et al.*, 1997; Çetinkaya, *et al.*, 1998) we reported the synthesis of some benzimidazole derived electron rich olefins.

The objective of this study was to elucidate the crystal structure of the title compound and to compare it with those of related benzimidazole derivatives reported previously (Akkurt *et al.*, 2004; Öztürk *et al.*, 2004; Akkurt *et al.*, 2005).

The *ORTEP* diagram of the title molecule with numbering scheme is shown in Fig. 1. The molecular structure of the title compound is composed of a benzimidazole ring with two phenylpropyl substituents and a dithiocarboxylate group in the 2-position. In the title molecule the C–S bonds are nearly equal in length. The N1–C7 and N2–C7 bond lengths in the benzimidazole ring agree well with several related benzimidazole derivatives (Öztürk *et al.*, 2003; Akkurt *et al.*, 2004). The benzimidazole unit (N1/N2/C1–C7) is essentially, with a maximum deviation from the least-squares plane of 0.008 (2) Å for C6. The benzimidazole ring makes dihedral angles of 72.72 (10) and 27.62 (12)°, with the two phenyl rings (C12–C17) and (C21–C26), respectively. The dihedral angle between the two phenyl rings is 55.98 (15)°.

The the molecular packing in the solid state is stabilized by a C–H···S type intermolecular hydrogen bonding interactions and a C—H··· π interaction between a benzene H atom and the phenyl ring of neighbouring molecules, with a C5—H5···*Cg*1ⁱⁱ separation of 2.70 Å [Table 2; *Cg*1 is the C12—C17 phenyl ring, symmetry code: (ii) -*x* + 1/2, *y* - 1/2, *z* - 1/2].

S2. Experimental

All experiments were performed under argon using freshly distilled dry solvents. CS_2 (0.1 ml, 1.60 mmol) was added to a solution of bis[1,3-di(3-phenylpropyl)benzimidazolidine-2-ylidene] (0.55 g, 0.78 mmol) (Y1lmaz, 2008) in toluene (5 ml). A red precipitate formed instantly. The red compound was washed twice with Et₂O and crystallized from EtOH. [Yield: 0.60 g, 90%; m.p: 383–384 ° K]. Analysis calculated for $C_{26}H_{26}N_2S_2$: C 72.56, H 6.05, N 6.05, S 14.88%; found: C 71.99, H 5.93, N 6.30, S 14.18%.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and C—H = 0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the title molecule, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

1,3-Bis(3-phenylpropyl)-1H-benzimidazol-3-ium-2-carbodithioate

Crystal data	
$C_{26}H_{26}N_2S_2$	F(000) = 912
$M_r = 430.63$	$D_{\rm x} = 1.219 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 22533 reflections
a = 27.2391 (11) Å	$\theta = 1.5 - 27.3^{\circ}$
b = 8.3483 (4) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 10.3200 (4) Å	T = 293 K
$V = 2346.77 (17) Å^3$	Prism, red
Z = 4	$0.76 \times 0.65 \times 0.38 \text{ mm}$

Data collection

Stoe IPDS-2 diffractometer	$T_{\min} = 0.838, T_{\max} = 0.914$ 19766 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	4983 independent reflections 3842 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.029$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
ωscans	$h = -32 \rightarrow 34$
Absorption correction: integration	$k = -10 \rightarrow 10$
(X-RED32; Stoe & Cie, 2002)	$l = -13 \rightarrow 12$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$
S = 0.97	where $P = (F_0^2 + 2F_c^2)/3$
4983 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
271 parameters	$\Delta \rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2317 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: $-0.03(5)$
man	

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

xyz U_{iso}^*/U_{eq} S10.40082 (2)0.05062 (6)0.70350 (5)0.0832 (2)S20.41878 (3)0.40688 (8)0.69551 (5)0.0985 (2)N10.45770 (5)0.20086 (16)0.42158 (13)0.0518 (4)N20.37896 (5)0.24163 (16)0.40602 (13)0.0523 (4)C10.44694 (6)0.2097 (2)0.28979 (15)0.0503 (5)C20.47649 (7)0.1962 (2)0.18080 (17)0.0611 (6)C30.45312 (8)0.2108 (2)0.06250 (18)0.0666 (7)C40.40275 (7)0.2357 (2)0.0538 (2)0.0677 (7)C50.37380 (7)0.2486 (2)0.16044 (17)0.0612 (6)C60.39687 (6)0.2360 (2)0.27995 (16)0.0499 (5)C70.41636 (6)0.22176 (19)0.48903 (16)0.0513 (5)C80.41218 (7)0.2261 (2)0.63249 (17)0.0623 (6)C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)					
S1 $0.40082 (2)$ $0.05062 (6)$ $0.70350 (5)$ $0.0832 (2)$ S2 $0.41878 (3)$ $0.40688 (8)$ $0.69551 (5)$ $0.0985 (2)$ N1 $0.45770 (5)$ $0.20086 (16)$ $0.42158 (13)$ $0.0518 (4)$ N2 $0.37896 (5)$ $0.24163 (16)$ $0.40602 (13)$ $0.0523 (4)$ C1 $0.44694 (6)$ $0.2097 (2)$ $0.28979 (15)$ $0.0503 (5)$ C2 $0.47649 (7)$ $0.1962 (2)$ $0.18080 (17)$ $0.0611 (6)$ C3 $0.45312 (8)$ $0.2108 (2)$ $0.06250 (18)$ $0.0666 (7)$ C4 $0.40275 (7)$ $0.2357 (2)$ $0.0538 (2)$ $0.0677 (7)$ C5 $0.37380 (7)$ $0.2486 (2)$ $0.16044 (17)$ $0.0612 (6)$ C6 $0.39687 (6)$ $0.22176 (19)$ $0.48903 (16)$ $0.0513 (5)$ C8 $0.41218 (7)$ $0.2261 (2)$ $0.4397 (2)$ $0.0645 (6)$ C10 $0.31416 (6)$ $0.4459 (2)$ $0.4397 (2)$ $0.0645 (6)$		x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S2 0.41878 (3) 0.40688 (8) 0.69551 (5) 0.0985 (2) N1 0.45770 (5) 0.20086 (16) 0.42158 (13) 0.0518 (4) N2 0.37896 (5) 0.24163 (16) 0.40602 (13) 0.0523 (4) C1 0.44694 (6) 0.2097 (2) 0.28979 (15) 0.0503 (5) C2 0.47649 (7) 0.1962 (2) 0.18080 (17) 0.0611 (6) C3 0.45312 (8) 0.2108 (2) 0.06250 (18) 0.0666 (7) C4 0.40275 (7) 0.2357 (2) 0.0538 (2) 0.0677 (7) C5 0.37380 (7) 0.2486 (2) 0.16044 (17) 0.0612 (6) C6 0.39687 (6) 0.22176 (19) 0.48903 (16) 0.0513 (5) C7 0.41636 (6) 0.22176 (19) 0.44304 (19) 0.0623 (6) C8 0.41218 (7) 0.2261 (2) 0.44304 (19) 0.0591 (6) C9 0.32764 (6) 0.2696 (2) 0.44304 (19) 0.0591 (6) C10 0.31416 (6) 0.4459 (2) 0.4397 (2) 0.0645 (6)	S1	0.40082 (2)	0.05062 (6)	0.70350 (5)	0.0832 (2)
N10.45770 (5)0.20086 (16)0.42158 (13)0.0518 (4)N20.37896 (5)0.24163 (16)0.40602 (13)0.0523 (4)C10.44694 (6)0.2097 (2)0.28979 (15)0.0503 (5)C20.47649 (7)0.1962 (2)0.18080 (17)0.0611 (6)C30.45312 (8)0.2108 (2)0.06250 (18)0.0666 (7)C40.40275 (7)0.2357 (2)0.0538 (2)0.0677 (7)C50.37380 (7)0.2486 (2)0.16044 (17)0.0612 (6)C60.39687 (6)0.2360 (2)0.27995 (16)0.0499 (5)C70.41636 (6)0.22176 (19)0.48903 (16)0.0513 (5)C80.41218 (7)0.2261 (2)0.63249 (17)0.0623 (6)C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)	S2	0.41878 (3)	0.40688 (8)	0.69551 (5)	0.0985 (2)
N2 $0.37896(5)$ $0.24163(16)$ $0.40602(13)$ $0.0523(4)$ C1 $0.44694(6)$ $0.2097(2)$ $0.28979(15)$ $0.0503(5)$ C2 $0.47649(7)$ $0.1962(2)$ $0.18080(17)$ $0.0611(6)$ C3 $0.45312(8)$ $0.2108(2)$ $0.06250(18)$ $0.0666(7)$ C4 $0.40275(7)$ $0.2357(2)$ $0.0538(2)$ $0.0677(7)$ C5 $0.37380(7)$ $0.2486(2)$ $0.16044(17)$ $0.0612(6)$ C6 $0.39687(6)$ $0.2360(2)$ $0.27995(16)$ $0.0499(5)$ C7 $0.41636(6)$ $0.22176(19)$ $0.48903(16)$ $0.0513(5)$ C8 $0.41218(7)$ $0.2261(2)$ $0.63249(17)$ $0.0623(6)$ C9 $0.32764(6)$ $0.2696(2)$ $0.44304(19)$ $0.0591(6)$ C10 $0.31416(6)$ $0.4459(2)$ $0.4397(2)$ $0.0645(6)$	N1	0.45770 (5)	0.20086 (16)	0.42158 (13)	0.0518 (4)
C1 $0.44694 (6)$ $0.2097 (2)$ $0.28979 (15)$ $0.0503 (5)$ C2 $0.47649 (7)$ $0.1962 (2)$ $0.18080 (17)$ $0.0611 (6)$ C3 $0.45312 (8)$ $0.2108 (2)$ $0.06250 (18)$ $0.0666 (7)$ C4 $0.40275 (7)$ $0.2357 (2)$ $0.0538 (2)$ $0.0677 (7)$ C5 $0.37380 (7)$ $0.2486 (2)$ $0.16044 (17)$ $0.0612 (6)$ C6 $0.39687 (6)$ $0.2360 (2)$ $0.27995 (16)$ $0.0499 (5)$ C7 $0.41636 (6)$ $0.22176 (19)$ $0.48903 (16)$ $0.0513 (5)$ C8 $0.41218 (7)$ $0.2261 (2)$ $0.63249 (17)$ $0.0623 (6)$ C9 $0.32764 (6)$ $0.2696 (2)$ $0.44304 (19)$ $0.0591 (6)$ C10 $0.31416 (6)$ $0.4459 (2)$ $0.4397 (2)$ $0.0645 (6)$	N2	0.37896 (5)	0.24163 (16)	0.40602 (13)	0.0523 (4)
C2 $0.47649(7)$ $0.1962(2)$ $0.18080(17)$ $0.0611(6)$ C3 $0.45312(8)$ $0.2108(2)$ $0.06250(18)$ $0.0666(7)$ C4 $0.40275(7)$ $0.2357(2)$ $0.0538(2)$ $0.0677(7)$ C5 $0.37380(7)$ $0.2486(2)$ $0.16044(17)$ $0.0612(6)$ C6 $0.39687(6)$ $0.2360(2)$ $0.27995(16)$ $0.0499(5)$ C7 $0.41636(6)$ $0.22176(19)$ $0.48903(16)$ $0.0513(5)$ C8 $0.41218(7)$ $0.2261(2)$ $0.63249(17)$ $0.0623(6)$ C9 $0.32764(6)$ $0.2696(2)$ $0.44304(19)$ $0.0591(6)$ C10 $0.31416(6)$ $0.4459(2)$ $0.4397(2)$ $0.0645(6)$	C1	0.44694 (6)	0.2097 (2)	0.28979 (15)	0.0503 (5)
C30.45312 (8)0.2108 (2)0.06250 (18)0.0666 (7)C40.40275 (7)0.2357 (2)0.0538 (2)0.0677 (7)C50.37380 (7)0.2486 (2)0.16044 (17)0.0612 (6)C60.39687 (6)0.2360 (2)0.27995 (16)0.0499 (5)C70.41636 (6)0.22176 (19)0.48903 (16)0.0513 (5)C80.41218 (7)0.2261 (2)0.63249 (17)0.0623 (6)C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)	C2	0.47649 (7)	0.1962 (2)	0.18080 (17)	0.0611 (6)
C40.40275 (7)0.2357 (2)0.0538 (2)0.0677 (7)C50.37380 (7)0.2486 (2)0.16044 (17)0.0612 (6)C60.39687 (6)0.2360 (2)0.27995 (16)0.0499 (5)C70.41636 (6)0.22176 (19)0.48903 (16)0.0513 (5)C80.41218 (7)0.2261 (2)0.63249 (17)0.0623 (6)C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)	C3	0.45312 (8)	0.2108 (2)	0.06250 (18)	0.0666 (7)
C50.37380 (7)0.2486 (2)0.16044 (17)0.0612 (6)C60.39687 (6)0.2360 (2)0.27995 (16)0.0499 (5)C70.41636 (6)0.22176 (19)0.48903 (16)0.0513 (5)C80.41218 (7)0.2261 (2)0.63249 (17)0.0623 (6)C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)	C4	0.40275 (7)	0.2357 (2)	0.0538 (2)	0.0677 (7)
C60.39687 (6)0.2360 (2)0.27995 (16)0.0499 (5)C70.41636 (6)0.22176 (19)0.48903 (16)0.0513 (5)C80.41218 (7)0.2261 (2)0.63249 (17)0.0623 (6)C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)	C5	0.37380 (7)	0.2486 (2)	0.16044 (17)	0.0612 (6)
C70.41636 (6)0.22176 (19)0.48903 (16)0.0513 (5)C80.41218 (7)0.2261 (2)0.63249 (17)0.0623 (6)C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)	C6	0.39687 (6)	0.2360 (2)	0.27995 (16)	0.0499 (5)
C8 0.41218 (7) 0.2261 (2) 0.63249 (17) 0.0623 (6) C9 0.32764 (6) 0.2696 (2) 0.44304 (19) 0.0591 (6) C10 0.31416 (6) 0.4459 (2) 0.4397 (2) 0.0645 (6)	C7	0.41636 (6)	0.22176 (19)	0.48903 (16)	0.0513 (5)
C90.32764 (6)0.2696 (2)0.44304 (19)0.0591 (6)C100.31416 (6)0.4459 (2)0.4397 (2)0.0645 (6)	C8	0.41218 (7)	0.2261 (2)	0.63249 (17)	0.0623 (6)
C10 0.31416 (6) 0.4459 (2) 0.4397 (2) 0.0645 (6)	C9	0.32764 (6)	0.2696 (2)	0.44304 (19)	0.0591 (6)
	C10	0.31416 (6)	0.4459 (2)	0.4397 (2)	0.0645 (6)

C11	0.26262 (7)	0.4742 (2)	0.4912 (2)	0.0763 (8)
C12	0.24982 (6)	0.6493 (2)	0.4969 (2)	0.0661 (6)
C13	0.21865 (8)	0.7177 (3)	0.4061 (2)	0.0804 (8)
C14	0.20761 (9)	0.8780 (4)	0.4092 (3)	0.1013 (11)
C15	0.22701 (12)	0.9732 (3)	0.5006 (4)	0.1107 (13)
C16	0.25833 (11)	0.9111 (4)	0.5923 (3)	0.1060 (11)
C17	0.26948 (8)	0.7491 (3)	0.5899 (2)	0.0858 (9)
C18	0.50755 (6)	0.1851 (2)	0.47476 (18)	0.0579 (6)
C19	0.53581 (7)	0.3405 (2)	0.4620 (2)	0.0730 (7)
C20	0.58916 (7)	0.3220 (3)	0.5025 (2)	0.0796 (8)
C21	0.59723 (7)	0.2812 (2)	0.6424 (2)	0.0680 (7)
C22	0.56779 (9)	0.3408 (3)	0.7394 (2)	0.0944 (10)
C23	0.57637 (14)	0.3030 (5)	0.8670 (3)	0.1282 (14)
C24	0.6143 (2)	0.2054 (6)	0.9002 (4)	0.1497 (19)
C25	0.64464 (17)	0.1496 (3)	0.8060 (5)	0.1379 (18)
C26	0.63577 (9)	0.1846 (3)	0.6778 (3)	0.0989 (10)
H2	0.51010	0.17840	0.18700	0.0730*
H3	0.47150	0.20370	-0.01320	0.0800*
H4	0.38840	0.24380	-0.02770	0.0810*
Н5	0.34010	0.26510	0.15370	0.0740*
H9A	0.32220	0.22840	0.52980	0.0710*
H9B	0.30630	0.21130	0.38440	0.0710*
H10A	0.31620	0.48470	0.35130	0.0770*
H10B	0.33750	0.50590	0.49160	0.0770*
H11A	0.23920	0.41940	0.43590	0.0920*
H11B	0.26000	0.42870	0.57750	0.0920*
H13	0.20500	0.65360	0.34180	0.0970*
H14	0.18650	0.92100	0.34740	0.1210*
H15	0.21930	1.08170	0.50190	0.1330*
H16	0.27190	0.97710	0.65540	0.1270*
H17	0.29060	0.70700	0.65200	0.1030*
H18A	0.52490	0.10080	0.42900	0.0690*
H18B	0.50560	0.15530	0.56540	0.0690*
H19A	0.52040	0.42170	0.51550	0.0880*
H19B	0.53450	0.37660	0.37270	0.0880*
H20A	0.60400	0.23880	0.44980	0.0960*
H20B	0.60620	0.42130	0.48370	0.0960*
H22	0.54170	0.40770	0.71830	0.1130*
H23	0.55610	0.34460	0.93120	0.1540*
H24	0.61940	0.17720	0.98630	0.1800*
H25	0.67160	0.08720	0.82830	0.1660*
H26	0.65620	0.14220	0.61420	0.1190*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.1109 (4)	0.0873 (3)	0.0513 (2)	0.0024 (3)	0.0091 (3)	0.0103 (3)
S2	0.1433 (5)	0.0944 (4)	0.0579 (3)	-0.0250 (4)	0.0058 (4)	-0.0251 (3)

N1	0.0519 (8)	0.0605 (8)	0.0429 (7)	0.0010 (6)	-0.0031 (6)	0.0001 (6)
N2	0.0503 (8)	0.0625 (8)	0.0441 (7)	0.0012 (6)	-0.0022 (6)	-0.0033 (6)
C1	0.0572 (10)	0.0544 (9)	0.0394 (8)	0.0040 (7)	-0.0024 (7)	-0.0024 (7)
C2	0.0618 (10)	0.0694 (10)	0.0520 (10)	0.0080 (8)	0.0083 (8)	0.0004 (8)
C3	0.0858 (14)	0.0719 (12)	0.0420 (9)	0.0060 (10)	0.0095 (9)	-0.0037 (8)
C4	0.0844 (14)	0.0778 (13)	0.0410 (9)	0.0022 (10)	-0.0081 (9)	-0.0028 (8)
C5	0.0624 (10)	0.0742 (11)	0.0471 (9)	-0.0003 (8)	-0.0106 (8)	-0.0002 (8)
C6	0.0559 (9)	0.0570 (9)	0.0369 (8)	-0.0006 (7)	-0.0020 (7)	-0.0018 (6)
C7	0.0575 (9)	0.0518 (8)	0.0446 (8)	-0.0019 (7)	-0.0018 (8)	-0.0034 (7)
C8	0.0633 (11)	0.0818 (12)	0.0418 (10)	-0.0001 (9)	-0.0001 (8)	-0.0062 (8)
C9	0.0479 (9)	0.0686 (11)	0.0608 (11)	-0.0019 (7)	0.0050 (8)	0.0002 (8)
C10	0.0541 (9)	0.0686 (11)	0.0709 (11)	0.0011 (8)	0.0114 (9)	-0.0043 (8)
C11	0.0579 (11)	0.0797 (13)	0.0914 (15)	0.0039 (9)	0.0140 (10)	-0.0032 (11)
C12	0.0496 (9)	0.0788 (12)	0.0699 (11)	0.0015 (8)	0.0152 (9)	-0.0109 (10)
C13	0.0646 (12)	0.1008 (16)	0.0759 (14)	0.0096 (11)	0.0135 (10)	-0.0116 (12)
C14	0.0818 (16)	0.110 (2)	0.112 (2)	0.0257 (15)	0.0257 (15)	0.0243 (17)
C15	0.0982 (19)	0.0830 (17)	0.151 (3)	-0.0029 (15)	0.051 (2)	-0.0083 (19)
C16	0.0969 (19)	0.107 (2)	0.114 (2)	-0.0291 (16)	0.0341 (17)	-0.0437 (17)
C17	0.0717 (13)	0.1021 (19)	0.0835 (16)	-0.0096 (12)	0.0062 (12)	-0.0137 (12)
C18	0.0524 (9)	0.0674 (10)	0.0539 (10)	0.0028 (7)	-0.0071 (8)	0.0086 (8)
C19	0.0684 (11)	0.0826 (13)	0.0679 (12)	-0.0119 (10)	-0.0139 (9)	0.0199 (10)
C20	0.0599 (12)	0.1052 (16)	0.0738 (13)	-0.0160 (10)	-0.0057 (10)	0.0108 (12)
C21	0.0585 (11)	0.0676 (11)	0.0779 (13)	-0.0108 (9)	-0.0156 (10)	0.0089 (9)
C22	0.0761 (15)	0.130 (2)	0.0772 (15)	-0.0115 (14)	-0.0137 (12)	-0.0058 (14)
C23	0.118 (2)	0.192 (3)	0.0747 (19)	-0.071 (2)	-0.0107 (18)	-0.006 (2)
C24	0.195 (4)	0.142 (3)	0.112 (3)	-0.098 (3)	-0.080 (3)	0.058 (2)
C25	0.163 (3)	0.0748 (17)	0.176 (4)	-0.0163 (19)	-0.104 (3)	0.037 (2)
C26	0.0874 (16)	0.0754 (13)	0.134 (2)	0.0046 (11)	-0.0398 (16)	-0.0007 (15)

Geometric parameters (Å, °)

S1—C8	1.6670 (18)	C23—C24	1.360 (7)	
S2—C8	1.6532 (18)	C24—C25	1.358 (7)	
N1-C1	1.393 (2)	C25—C26	1.376 (6)	
N1—C7	1.335 (2)	С2—Н2	0.9300	
N1-C18	1.471 (2)	С3—Н3	0.9300	
N2—C6	1.390 (2)	C4—H4	0.9300	
N2—C7	1.341 (2)	С5—Н5	0.9300	
N2—C9	1.468 (2)	С9—Н9А	0.9700	
C1—C2	1.388 (2)	С9—Н9В	0.9700	
C1—C6	1.385 (2)	C10—H10A	0.9700	
С2—С3	1.382 (3)	C10—H10B	0.9700	
C3—C4	1.391 (3)	C11—H11A	0.9700	
C4—C5	1.358 (3)	C11—H11B	0.9700	
C5—C6	1.388 (2)	C13—H13	0.9300	
С7—С8	1.485 (2)	C14—H14	0.9300	
C9—C10	1.517 (2)	C15—H15	0.9300	
C10-C11	1.520 (3)	C16—H16	0.9300	

C11—C12	1.504 (2)	C17—H17	0.9300
C12—C13	1.388 (3)	C18—H18A	0.9700
C12—C17	1.379 (3)	C18—H18B	0.9700
C13—C14	1.372 (4)	C19—H19A	0.9700
C14—C15	1.342 (5)	C19—H19B	0.9700
C15—C16	1.376 (5)	C20—H20A	0.9700
C16—C17	1.386 (4)	C20—H20B	0.9700
C18—C19	1.514 (2)	C22—H22	0.9300
C19—C20	1.520 (3)	C23—H23	0.9300
C_{20} C_{21}	1.500 (3)	C24—H24	0.9300
C_{21} C_{22}	1.376 (3)	C25—H25	0.9300
$C_{21} = C_{26}$	1 373 (3)	C26—H26	0.9300
C^{22} C^{23}	1 374 (4)	020 1120	0.9500
022 025	1.374 (4)		
S1…N1	3.5268 (15)	C21…H18B	2.8200
S1…N2	3.5103 (14)	C22…H18B	2.9100
S2…N1	3.4747 (15)	C22…H19A	2.7300
S2…N2	3.4648 (15)	C24····H10B ⁱ	2.9000
S2…C19 ⁱ	3.680 (2)	H2…C18	2.9700
S1H24 ⁱⁱ	2.9900	H2···S1 ⁱⁱ	3.0900
S1···H2 ⁱⁱⁱ	3.0900	H4…C13 ^{iv}	3.0000
S1H9A	3.1600	H4…C14 ^{iv}	2.9200
S2…H10B	3.1600	Н5…С9	3.0100
S2H19Bi	2.8700	H5H9B	2 5900
N1…S1	3.5268 (15)	H5C12 ^{iv}	3.0900
N1····S2	3 4747 (15)	$H5 \cdots C13^{iv}$	3 0400
N1…N2	2 1776 (19)	$H5 \cdots C14^{iv}$	2 9900
N2…S1	35103(14)	H5····C15 ^{iv}	2.9900
N2…S2	3 4648 (15)	H5C16 ^{iv}	3 0100
N2…N1	2 1776 (19)	$H5 \cdots C17^{iv}$	3.0600
C^{2} C19	3 533 (3)	H9AS1	3 1600
C3…C18 ⁱⁱ	3 590 (2)	H9A····C8	2 6700
$C4\cdots C14^{iv}$	3 560 (3)	H94H11B	2.0700
$C5\cdots C14^{iv}$	3,579 (3)	H9B···C5	2.4300
C6…C25 ⁱⁱ	3.373(3)	H9BH5	2.5700
$C10\cdots C24^{v}$	3,527 (5)		2.5900
$C10^{\circ}C24^{\circ}$	3,579 (3)	H10B\$2	3 1600
C14 C3	3,560 (3)	H10B 32	2 0300
C14C3	3.500 (3)		2.9300
C18C22	3.390(2)		2.9000
C10 C22	3.441(3)		2.3800
C19····C2	3.555 (5)		2.3700
C19 52 [.]	3.000(2)	H11DH17	2.4300
$C22$ $C10$ $C24$ $C10^{i}$	3.441(3)	\mathbf{U}_{12} \mathbf{U}_{11}	2.3900
C24C6iii	3.327(3)		2.3700
C1H10D	3.423 (3) 2.8000		2.3000
С1Ц18А	2.8900	П10 П15 Ц17Ц11D	2.3000
C2 1110A	2.9900		2.3900
C2HIAR	2.9300	HIðA…C2	2.9900

C3…H18A ⁱⁱ	3.0000	H18A…H20A	2.4500
C4…H20B ^v	2.9600	H18A…C3 ⁱⁱⁱ	3.0000
С5…Н9В	2.9700	H18B…C8	2.7000
C8…H18B	2.7000	H18B…C21	2.8200
С8…Н9А	2.6700	H18B…C22	2.9100
С9…Н5	3.0100	H19A…C22	2.7300
C12…H5 ^{vi}	3.0900	H19A…H22	2.1700
C13…H5 ^{vi}	3.0400	H19B…C1	2.8900
C13…H4 ^{vi}	3.0000	H19B…C2	2.9500
C14····H4 ^{vi}	2.9200	H19B…S2 ^v	2.8700
C14…H5 ^{vi}	2.9900	H20A…H18A	2.4500
C15…H5 ^{vi}	2.9800	H20A…H26	2.3600
C16…H5 ^{vi}	3.0100	H20B…C4 ⁱ	2.9600
C17····H5 ^{vi}	3.0600	H22…C19	2.7100
C17…H10B	2.9300	H22…H19A	2.1700
C18…H2	2.9700	H24…S1 ⁱⁱⁱ	2.9900
C19…H22	2.7100	H26…H20A	2.3600
C1—N1—C7	108.94 (13)	С6—С5—Н5	122.00
C1—N1—C18	124.29 (14)	N2—C9—H9A	109.00
C7—N1—C18	126.57 (14)	N2—C9—H9B	109.00
C6—N2—C7	109.09 (13)	С10—С9—Н9А	109.00
C6—N2—C9	125.67 (14)	С10—С9—Н9В	109.00
C7—N2—C9	125.22 (14)	H9A—C9—H9B	108.00
N1—C1—C2	131.68 (16)	C9—C10—H10A	109.00
N1—C1—C6	106.68 (14)	C9—C10—H10B	109.00
C2-C1-C6	121.64 (15)	C11—C10—H10A	109.00
C1—C2—C3	116.21 (17)	C11—C10—H10B	109.00
C2—C3—C4	121.64 (18)	H10A—C10—H10B	108.00
C3—C4—C5	122.17 (18)	C10-C11-H11A	109.00
C4—C5—C6	116.81 (17)	C10—C11—H11B	109.00
N2—C6—C1	106.40 (14)	C12—C11—H11A	109.00
N2—C6—C5	132.07 (16)	C12—C11—H11B	109.00
C1—C6—C5	121.53 (16)	H11A—C11—H11B	108.00
N1—C7—N2	108.89 (14)	С12—С13—Н13	119.00
N1—C7—C8	125.98 (15)	C14—C13—H13	119.00
N2—C7—C8	125.12 (15)	C13—C14—H14	120.00
<u>\$1</u> —C8— <u>\$2</u>	130.51 (11)	C15—C14—H14	120.00
S1—C8—C7	115.53 (12)	C14—C15—H15	120.00
S2—C8—C7	113.96 (12)	С16—С15—Н15	120.00
N2—C9—C10	112.26 (13)	С15—С16—Н16	120.00
C9-C10-C11	111.50 (14)	С17—С16—Н16	120.00
C10—C11—C12	112.27 (14)	С12—С17—Н17	119.00
C11—C12—C13	121.03 (18)	C16—C17—H17	119.00
C11—C12—C17	121.63 (18)	N1—C18—H18A	109.00
C13—C12—C17	117.32 (18)	N1-C18-H18B	109.00
C12—C13—C14	121.3 (2)	C19—C18—H18A	109.00
C13—C14—C15	120.5 (3)	C19—C18—H18B	109.00

C14—C15—C16	120.3 (3)	H18A—C18—H18B	108.00
C15—C16—C17	119.4 (3)	C18—C19—H19A	109.00
C12—C17—C16	121.1 (2)	C18—C19—H19B	109.00
N1—C18—C19	111.12 (14)	С20—С19—Н19А	109.00
C18—C19—C20	112.03 (16)	C20—C19—H19B	109.00
C19—C20—C21	115.34 (17)	H19A—C19—H19B	108.00
C20—C21—C22	122.21 (18)	С19—С20—Н20А	108.00
C20—C21—C26	120.1 (2)	С19—С20—Н20В	108.00
C22—C21—C26	117.7 (2)	C21—C20—H20A	108.00
C21—C22—C23	121.0 (3)	C21—C20—H20B	108.00
C22—C23—C24	120.6 (3)	H20A—C20—H20B	107.00
C23—C24—C25	119.2 (4)	C21—C22—H22	119.00
C24—C25—C26	120.6 (4)	C23—C22—H22	119.00
C_{21} — C_{26} — C_{25}	121.0 (3)	C22—C23—H23	120.00
C1—C2—H2	122.00	C24—C23—H23	120.00
C3—C2—H2	122.00	C23—C24—H24	120.00
C2-C3-H3	119.00	C_{25} C_{24} H24	120.00
C4—C3—H3	119.00	C_{24} C_{25} H_{25}	120.00
C3—C4—H4	119.00	$C_{26} = C_{25} = H_{25}$	120.00
C5-C4-H4	119.00	$C_{20} = C_{20} = H_{20}$	120.00
C4—C5—H5	122.00	C_{25} C_{26} H_{26}	119.00
	122.00	020 020 1120	119.00
C7—N1—C1—C2	179.97 (18)	C4—C5—C6—C1	-0.7 (2)
C18—N1—C1—C2	4.8 (3)	N1—C7—C8—S2	89.55 (19)
C7—N1—C1—C6	-0.39 (18)	N2	90.04 (19)
C18—N1—C1—C6	-175.53 (14)	N1-C7-C8-S1	-91.39 (19)
C1—N1—C7—N2	0.86 (18)	N2	-89.03 (19)
C18—N1—C7—N2	175.86 (14)	N2-C9-C10-C11	-174.26 (15)
C1—N1—C7—C8	-177.91 (15)	C9-C10-C11-C12	176.22 (16)
C18—N1—C7—C8	-2.9 (3)	C10-C11-C12-C13	104.4 (2)
C7—N1—C18—C19	-101.35 (19)	C10-C11-C12-C17	-73.8 (2)
C1—N1—C18—C19	72.9 (2)	C11—C12—C13—C14	-178.7 (2)
C9—N2—C7—N1	-179.33 (14)	C13—C12—C17—C16	0.2 (3)
C6—N2—C7—C8	177.78 (15)	C17—C12—C13—C14	-0.4 (3)
C6—N2—C7—N1	-1.00 (18)	C11—C12—C17—C16	178.4 (2)
C9—N2—C6—C1	179.06 (15)	C12—C13—C14—C15	0.3 (4)
C9—N2—C7—C8	-0.6 (2)	C13-C14-C15-C16	0.1 (5)
C9—N2—C6—C5	-2.3 (3)	C14—C15—C16—C17	-0.3 (5)
C7—N2—C9—C10	97.6 (2)	C15—C16—C17—C12	0.2 (4)
C7—N2—C6—C5	179.42 (18)	N1-C18-C19-C20	-173.65 (15)
C6-N2-C9-C10	-80.5 (2)	C18—C19—C20—C21	-64.2 (2)
C7—N2—C6—C1	0.74 (18)	C19—C20—C21—C22	-35.6 (3)
C6—C1—C2—C3	0.1 (2)	C19—C20—C21—C26	146.1 (2)
N1—C1—C2—C3	179.71 (17)	C20—C21—C22—C23	-179.2 (3)
N1—C1—C6—C5	-179.06 (15)	C26—C21—C22—C23	-0.9 (4)
C2-C1-C6-N2	179.47 (15)	C20—C21—C26—C25	178.1 (2)
N1—C1—C6—N2	-0.21 (18)	C22—C21—C26—C25	-0.3 (4)
C2—C1—C6—C5	0.6 (3)	C21—C22—C23—C24	0.0 (5)
			~

C1—C2—C3—C4	-0.7 (2)	C22—C23—C24—C25	2.1 (7)
C2—C3—C4—C5	0.6 (3)	C23—C24—C25—C26	-3.2 (6)
C3—C4—C5—C6	0.1 (3)	C24—C25—C26—C21	2.4 (5)
C4—C5—C6—N2	-179.24 (17)		

Symmetry codes: (i) -x+1, -y+1, z+1/2; (ii) -x+1, -y, z-1/2; (iii) -x+1, -y, z+1/2; (iv) -x+1/2, y-1/2, z-1/2; (v) -x+1, -y+1, z-1/2; (vi) -x+1/2, y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C19—H19 <i>B</i> ···S2 ^v	0.97	2.87	3.680 (2)	142
C5—H5··· <i>Cg</i> 1 ^{iv}	0.93	2.70	3.523 (2)	148

Symmetry codes: (iv) -*x*+1/2, *y*-1/2, *z*-1/2; (v) -*x*+1, -*y*+1, *z*-1/2.