Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Dichloridobis(3,4-dimethylpyridine)platinum(II)

Alexander N. Chernyshev, ${ }^{\text {a }}$ Nadezhda A. Bokach, ${ }^{\text {a }}$
Youlia A. Izotova ${ }^{\text {a }}$ and Matti Haukka ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, St. Petersburg State University, 198504 Stary Petergof, Russian Federation, and ${ }^{\text {b }}$ Department of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland
Correspondence e-mail: matti.haukka@joensuu.fi

Received 30 October 2008; accepted 8 December 2008
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.015 ; w R$ factor $=0.030 ;$ data-to-parameter ratio $=24.2$.

In the title compound, trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$, the $\mathrm{Pt}^{\mathrm{II}}$ atom is located on an inversion center and is coordinated by two 3,4dimethylpyridine ligands and two chloride ligands, resulting in a typical slightly distorted square-planar geometry. The crystallographic inversion centre forces the value of the C -$\mathrm{N}-\mathrm{N}-\mathrm{C}$ torsion angle to be linear and the 3,4-dimethylpyridine ligands to be coplanar.

Related literature

For related complexes see: Tessier \& Rochon (1999); Eremenko et al. (1997); Shaver et al. (2000); Zordan et al. (2005); Rochon et al. (1996); Colamarino \& Orioli (1975). For the geometry of the pyridine ligand, see: Bond \& Davies (2002). For related literature, see: Orpen et al. (1989).

Experimental

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$
$M_{r}=480.29$
Monoclinic, $P 2_{1} / n$
$a=7.9763$ (5) A
$b=7.1102$ (3) \AA
$c=13.3586$ (7) A
$\beta=98.247$ (5)
$V=749.77(7) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=9.70 \mathrm{~mm}^{-1}$
$T=120$ (2) K
$0.21 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.201, T_{\text {max }}=0.381$
17165 measured reflections 2177 independent reflections 1705 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015 \quad 90$ parameters
$w R\left(F^{2}\right)=0.030$
$S=1.08$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.67 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.78 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Pt} 1-\mathrm{N} 1$	$2.0148(18)$	$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.2901(6)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$89.85(6)$		

Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

This work was supported by the Russian Fund for Basic Research (grants 08-03-00247 and 08-03-00631).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2108).

References

Bond, A. D. \& Davies, J. E. (2002). Acta Cryst. E58, o328-o330.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Colamarino, P. \& Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 16561659.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229

Eremenko, I. L., Golubichnaya, M. A., Nefedov, S. E., Sidorov, A. A., Nesterenko, D. A., Konovalova, N. P., Volkova, L. M. \& Eremenko, L. T. (1997). Russ. Chem. Bull. pp. 1672-1679.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-3.

Rochon, F. D., Beauchamp, A. L. \& Bensimon, C. (1996). Can. J. Chem. 74, 2121-2130.
Shaver, M. P., Vogels, C. M., Wallbank, A. I., Hennigar, T. L., Biradha, K., Zaworotko, M. J. \& Westcott, S. A. (2000). Can. J. Chem. 78, 568-576.
Sheldrick, G. M. (2003). SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tessier, C. \& Rochon, F. D. (1999). Inorg. Chim. Acta, 295, 25-38.
Zordan, F., Brammer, L. \& Sherwood, P. (2005). J. Am. Chem. Soc. 127, 59795989.

supporting information

Acta Cryst. (2009). E65, m60 [doi:10.1107/S1600536808041597]

trans-Dichloridobis(3,4-dimethylpyridine)platinum(II)

Alexander N. Chernyshev, Nadezhda A. Bokach, Youlia A. Izotova and Matti Haukka

S1. Comment

The complex trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$ has an inversion symmetry and the $\mathrm{Pt}^{\mathrm{II}}$ atom is situated at an inversion center and it is coordinated by two 3,4-dimethylpyridine ligands and two chloro ligands and exhibit trans configuration. Such arrangement of ligands leads to the square planar geometry. In the coordination polyhedron, all angles are very close to the ideal value of 90°. The crystallographic inversion centre forces the value of the torsion angle $\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ (symmetry operation i: $-\mathrm{x},-\mathrm{y},-\mathrm{z}$) to be 180° and the the 3,4-dimethyl-pyridine ligands to be coplanar.
The geometry of 3,4-dimethylpyridine ligands resembles the geometry of the uncoordinated 3,4-dimethylpyridine, i.e. the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances and angles in the coordinated 3,4-dimethylpyridine agree well with the expected value (Bond, Davies, 2002). The bond distance $\mathrm{Pt}-\mathrm{N}(2.0148(18) \AA)$ is similar to the $\mathrm{Pt}-\mathrm{N}$ bond lengths in other related compounds (Orpen et al., 1989). The $\mathrm{Pt}-\mathrm{Cl}$ bond lengths agree well with the reported values (See Table 2).
All trans- $\left[\mathrm{PtCl}_{2} L_{2}\right]$ complexes given in Table 2 have the same coordination environment as in the title compound. Indeed, they are square-planar and their pyridine rings lie in the same plane. The $\mathrm{N}-\mathrm{Pt}-\mathrm{N}$ and $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ angles in all observed compounds are equal to 180°, the angles $\mathrm{N} — \mathrm{Pt}-\mathrm{Cl}$ are very close to 90°.

S2. Experimental

3,4-dimethylpyridine (1 ml) was added to the powder of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right](0.2 \mathrm{~g})$ and the resulting mixture was heated to $150^{\circ} \mathrm{C}$ until the complete evaporation of the 3,4-dimethylpyridine. The resulting complex was recrystallized from CHCl_{3} (yield 92%). Crystals were obtained by slow evaporation of CHCl_{3} solution. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Pt}: C, 35.01 ; \mathrm{H}, 3.78 ; \mathrm{N}$, 5.83%. Found: C, 35.30 ; H, 3.96 ; N, 5.54%.

S3. Refinement

Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$, and U ĩso $\sim 1.2-1.5 U \sim$ eq $\sim($ parent atom $)$. The highest peak is located $0.87 \AA$ from atom Pt1 and the deepest hole is located $0.83 \AA$ from atom Pt1.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50\% probability level.

trans-Dichloridobis(3,4-dimethylpyridine)platinum(II)

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$
$M_{r}=480.29$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=7.9763$ (5) \AA
$b=7.1102$ (3) \AA
$c=13.3586(7) \AA$
$\beta=98.247(5)^{\circ}$
$V=749.77$ (7) \AA^{3}
$Z=2$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Horizontally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm-1 pixels mm^{-1}
φ scans and ω scans with κ offset
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$F(000)=456$
$D_{\mathrm{x}}=2.127 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2339 reflections
$\theta=1.0-20.0^{\circ}$
$\mu=9.70 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, pale yellow
$0.21 \times 0.20 \times 0.10 \mathrm{~mm}$
$T_{\text {min }}=0.201, T_{\text {max }}=0.381$
17165 measured reflections
2177 independent reflections
1705 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-11 \rightarrow 10$
$k=-10 \rightarrow 9$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.030$
$S=1.08$
2177 reflections
90 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0064 P)^{2}+0.7739 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.78 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} U_{\mathrm{eq}}$
Pt1	0.0000	0.0000	0.0000	$0.01078(3)$
C11	$-0.12594(8)$	$-0.27477(8)$	$0.03883(4)$	$0.01897(11)$
N1	$0.0259(2)$	$0.0765(3)$	$0.14663(13)$	$0.0127(4)$
C1	$-0.0247(3)$	$0.2464(3)$	$0.17546(16)$	$0.0143(4)$
H1	-0.0716	0.3324	0.1246	0.017^{*}
C2	$-0.0115(3)$	$0.3015(3)$	$0.27567(16)$	$0.0141(4)$
C3	$-0.0729(3)$	$0.4918(3)$	$0.30137(17)$	$0.0227(5)$
H3A	-0.1179	0.5582	0.2390	0.034^{*}
H3B	0.0215	0.5637	0.3379	0.034^{*}
H3C	-0.1623	0.4781	0.3440	0.034^{*}
C4	$0.0634(3)$	$0.1776(3)$	$0.35029(16)$	$0.0138(4)$
C5	$0.0883(3)$	$0.2318(4)$	$0.45953(16)$	$0.0188(5)$
H5A	0.1668	0.3383	0.4702	0.028^{*}
H5B	0.1353	0.1249	0.5006	0.028^{*}
H5C	-0.0209	0.2676	0.4795	0.028^{*}
C6	$0.1162(3)$	$0.0044(4)$	$0.31969(15)$	$0.0161(4)$
H6	0.1677	-0.0824	0.3688	0.019^{*}
C7	$0.0948(3)$	$-0.0435(3)$	$0.21858(17)$	$0.0163(5)$
H7	0.1297	-0.1645	0.1994	0.020^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.01278(5)$	$0.01094(5)$	$0.00822(5)$	$0.00154(6)$	$0.00017(3)$	$-0.00158(5)$
C11	$0.0265(3)$	$0.0165(2)$	$0.0140(2)$	$-0.0048(2)$	$0.0032(2)$	$-0.0015(2)$
N1	$0.0139(9)$	$0.0141(8)$	$0.0096(8)$	$0.0001(8)$	$0.0003(7)$	$-0.0017(7)$
C1	$0.0145(10)$	$0.0156(11)$	$0.0126(9)$	$-0.0004(9)$	$0.0014(8)$	$0.0006(8)$
C2	$0.0168(11)$	$0.0133(11)$	$0.0132(10)$	$-0.0030(9)$	$0.0050(8)$	$-0.0033(8)$
C3	$0.0370(13)$	$0.0158(10)$	$0.0165(10)$	$0.0026(13)$	$0.0077(9)$	$-0.0002(11)$
C4	$0.0122(10)$	$0.0181(11)$	$0.0111(10)$	$-0.0041(9)$	$0.0019(8)$	$-0.0013(8)$
C5	$0.0222(12)$	$0.0232(12)$	$0.0109(10)$	$-0.0042(10)$	$0.0018(9)$	$-0.0026(9)$
C6	$0.0168(9)$	$0.0174(10)$	$0.0131(9)$	$0.0019(11)$	$-0.0013(7)$	$0.0011(11)$

C7	$0.0166(11)$	$0.0173(12)$	$0.0147(10)$	$0.0027(8)$	$0.0008(8)$	$-0.0010(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Pt} 1-\mathrm{N} 1^{\mathrm{i}}$	2.0148 (18)	C3-H3B	0.9800
Pt1-N1	2.0148 (18)	C3-H3C	0.9800
$\mathrm{Pt} 1-\mathrm{Cl1}{ }^{\text {i }}$	2.2901 (6)	C4-C6	1.382 (3)
$\mathrm{Pt} 1-\mathrm{Cl} 1$	2.2901 (6)	C4-C5	1.495 (3)
N1-C7	1.343 (3)	C5-H5A	0.9800
N1-C1	1.347 (3)	C5-H5B	0.9800
C1-C2	1.384 (3)	C5-H5C	0.9800
C1-H1	0.9500	C6-C7	1.380 (3)
C2-C4	1.398 (3)	C6-H6	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	1.495 (3)	C7-H7	0.9500
C3-H3A	0.9800		
N1 ${ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{N} 1$	180.0	C2-C3-H3C	109.5
$\mathrm{N} 1-\mathrm{Ptl}-\mathrm{Cl1}^{\mathrm{i}}$	89.85 (6)	H3A-C3-H3C	109.5
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Cl}^{1}{ }^{\text {i }}$	90.15 (6)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
N1--Pt1-Cl1	90.15 (6)	C6-C4-C2	117.88 (19)
N1—Pt1-Cl1	89.85 (6)	C6-C4-C5	121.0 (2)
$\mathrm{Cl1}$ - $\mathrm{Ptl}-\mathrm{Cl} 1$	180.0	C2-C4-C5	121.1 (2)
C7-N1-C1	118.30 (19)	C4-C5-H5A	109.5
C7-N1-Ptl	119.91 (15)	C4-C5-H5B	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pt} 1$	121.79 (15)	H5A-C5-H5B	109.5
N1-C1-C2	123.1 (2)	C4-C5-H5C	109.5
N1-C1-H1	118.5	H5A-C5-H5C	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.5	H5B-C5-H5C	109.5
C1-C2-C4	118.5 (2)	C7-C6-C4	120.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.8 (2)	C7-C6-H6	119.7
C4-C2-C3	121.78 (19)	C4-C6-H6	119.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	N1-C7-C6	121.6 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5	N1-C7-H7	119.2
H3A-C3-H3B	109.5	C6-C7-H7	119.2

Symmetry code: (i) $-x,-y,-z$.

