Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(3-Hydroxypropyl)amino]-1-phenylbut-2-en-1-one

T. S. Arul Jeevan* and K. S. Nagaraja

Department of Chemistry, Loyola Institute of Frontier Energy, Loyola College, Chennai 600 034, India Correspondence e-mail: jejeevan@gmail.com

Received 1 December 2008; accepted 18 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.079; data-to-parameter ratio = 8.1.

The title compound, $C_{13}H_{17}NO_2$, has an intramolecular N— H···O hydrogen bond, forming a planar six-membered ring with a mean deviation of 0.015 (5) Å from the plane. This plane makes a dihedral angle of 7.19 (8)° with the adjacent phenyl ring. Through an intermolecular O—H···O hydrogen bond, the molecules with their 2₁ screw and *b*-translation equivalents form a helical chain running parallel to the *b* axis.

Related literature

For general background, see: Morozova *et al.* (2007). For a related structure, see: Shi (2005).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{17}NO_2\\ M_r = 219.28\\ Orthorhombic, P2_12_12_1\\ a = 5.9131 \ (3) \ \text{\AA}\\ b = 8.0101 \ (4) \ \text{\AA}\\ c = 24.9626 \ (13) \ \text{\AA} \end{array}$

 $V = 1182.34 (10) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.08 \text{ mm}^{-1}\) T = 293 (2) K 0.30 \times 0.20 \times 0.20 \text{ mm}\)

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\min} = 0.944, T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.079$	independent and constrained
S = 1.05	refinement
1236 reflections	$\Delta \rho_{\rm max} = 0.12 \ {\rm e} \ {\rm \AA}^{-3}$
153 parameters	$\Delta \rho_{\rm min} = -0.09 \text{ e } \text{\AA}^{-3}$

11541 measured reflections

 $R_{\rm int} = 0.022$

1236 independent reflections

1168 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$D2 - H2A \cdots O1^{i}$ $N1 - H1N \cdots O1$	0.82 0.85 (2)	1.99 1.94 (2)	2.805 (2) 2.642 (2)	176 139.1 (18)
	1 1			

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

The authors express their thanks to the Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai, for the collection of X-ray diffraction data. The authors are also grateful to the Department of Science and Technology (DST), India, for financial support (SR/S3/ME/03/2005-SERC) to carry out this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2371).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Morozova, N. B., Stabnikov, P. A. & Igumenov, I. K. (2007). J. Struct. Chem. 48, 889–898.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Y.-C. (2005). Acta Cryst. E61, o2005-o2007.

supporting information

Acta Cryst. (2009). E65, o206 [doi:10.1107/S1600536808043183]

3-[(3-Hydroxypropyl)amino]-1-phenylbut-2-en-1-one

T. S. Arul Jeevan and K. S. Nagaraja

S1. Comment

The Schiff base 1-phenyl-3-[(3-hydroxypropyl)amino]-1-butanone could be a good chelating ligand and may find use in the field of coordination chemistry of transition metal complexes. The compound could act as a bidentate ligand through the N and O atoms. The replacement of oxygen by nitrogen in the ligand can increase the covalency of the complexes (Morozova *et al.*, 2007).

Figure 1 gives *ORTEP* representation of the molecule with atoms represented as 50% anisotropic ellipsoids. Figure 2 gives packing of the molecules showing hydrogen bonded interactions. The molecules and their 2_1 screw translation equivalents are bound through O2—H2A···O1 hydrogen bonds (Table 1). These H-bonded pairs are further linked with their b-translation equivalents to form an one-dimensional hydrogen bonded network parallel to *b* axis. There is an intramolecular N1—H1···O1 hydrogen bond between the imino hydrogen and the keto oxygen (Table 1). The packing is further stabilized through van der Waals interactions. The crystal is found to cleave easily through the (001) plane. The closely related compound, $C_{12}H_{15}O_2N$, (3-[(2-hydroxyethyl)amino]-1-phenylbut-2-en-1-one) crystallizes in monoclinic system with centrosymmetric space group $P2_1/n$, forming hydrogen bonded dimers in the structure (Shi, 2005), while the title compound crystallizes in polar space group $P2_12_12_1$ and with extended hydrogen bonding in the structure.

S2. Experimental

The title Schiff base ligand was synthesized by the condensation of 3-amino-1-propanol and benzoylacetone. To 0.1 molar solution of 3-amino-1-propanol (dissolved in 5 ml of ethanol) was slowly added to a 0.1 molar solution (in ethanol) of benzoylacetone. The reaction mixture was refluxed for 30 min. The solution was cooled overnight and the precipitate was washed with ethanol. The compound was crystallized in ethanol by slow evaporation (m.p. = 394 K). Anal. Calc. for $C_{13}H_{18}O_2N$: (Found %): C 70.88 (69.96), H 8.24 (8.13), N 6.35 (6.26). IR (KBr, cm⁻¹): 3170 = v(O—H); 3340, v(N—H); 1596, v[(C—N)—C=C)]; 1265, v(C—O). ¹H NMR (400 MHz, CDCl₃) δ values at 1.8, 2.0, 3.4, 3.6, 5.7 and 7.4 p.p.m. for CH₃, CH₂, NH—CH₂, CH₂—OH, H—C=C and aromatic protons respectively. ¹³C NMR (400 MHz, CDCl₃) δ values at 14.83, 32.53, 40.06, 92.46, 128, 140.39 and 187 for CH₃, CH₂,-HN—CH₂, -CH₂—CH₂—CH₂—N)]+, 148.10, (22); *M* [(C₆H₅-C=O)]+, 104.52, (100); *M* [(O—CH₂—CH₂—CH₂—N)]+, 74.63, (65).

S3. Refinement

All the hydrogen atoms could be located in a difference Fourier map. However, the H atoms except that of NH, were fixed at geometrically meaningful positions and refined using riding model. The riding tertiary CH_3 hydrogen atoms were assigned 1.5 times the equivalent displacement parameters of parent atoms, while 1.2 times was assigned for CH_2 and aromatic H atoms. The aromatic C—H distances were fixed at 0.93 Å while the secondary CH_2 and tertiary CH_3 were assigned 0.97 Å and 0.96 Å respectively. The isotropic displacement parameter of hydroxyl hydrogen was refined. In the

absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figure 1

The ORTEP representation of the molecule with atoms represented as 50% probability ellipsoid.

Figure 2

Packing of molecules in the unit cell. Intra and intermolecular interactions are shown with dotted lines.

3-[(3-Hydroxypropyl)amino]-1-phenylbut-2-en-1-one

Crystal data	
$C_{13}H_{17}NO_2$	F(000) = 472
$M_r = 219.28$	$D_{\rm x} = 1.232 {\rm ~Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 7505 reflections
a = 5.9131 (3) Å	$\theta = 2.5 - 31.0^{\circ}$
b = 8.0101 (4) Å	$\mu=0.08~\mathrm{mm^{-1}}$
c = 24.9626 (13) Å	T = 293 K
$V = 1182.34 (10) \text{ Å}^3$	Needle, colourless
Z = 4	$0.30 \times 0.20 \times 0.20$ mm
Data collection	
Bruker Kappa APEXII CCD	11541 measured reflections
diffractometer	1236 independent reflections
Radiation source: fine-focus sealed tube	1168 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
ω and φ scan	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 5$
(SADABS; Bruker, 1999)	$k = -9 \rightarrow 9$
$T_{\min} = 0.944, \ T_{\max} = 0.984$	<i>l</i> = −29→28

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of independent
$wR(F^2) = 0.079$	and constrained refinement
S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.1578P]$
1236 reflections	where $P = (F_o^2 + 2F_c^2)/3$
153 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.09 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL,
Secondary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.025 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5484 (4)	-0.3200 (2)	0.04625 (8)	0.0547 (5)
H1	0.6664	-0.2439	0.0430	0.066*
C2	0.5575 (4)	-0.4692 (3)	0.01828 (8)	0.0652 (6)
H2	0.6805	-0.4922	-0.0037	0.078*
C3	0.3864 (4)	-0.5822 (3)	0.02298 (8)	0.0647 (6)
Н3	0.3928	-0.6825	0.0043	0.078*
C4	0.2058 (4)	-0.5480 (3)	0.05513 (8)	0.0664 (6)
H4	0.0900	-0.6258	0.0586	0.080*
C5	0.1939 (4)	-0.3984 (3)	0.08253 (7)	0.0554 (5)
Н5	0.0680	-0.3753	0.1036	0.066*
C6	0.3664 (3)	-0.2826 (2)	0.07901 (6)	0.0410 (4)
C7	0.3439 (3)	-0.1211 (2)	0.10934 (6)	0.0400 (4)
C8	0.5240 (3)	-0.0080(2)	0.11068 (6)	0.0428 (4)
H8	0.6541	-0.0342	0.0915	0.048 (5)*
С9	0.5197 (3)	0.1415 (2)	0.13909 (6)	0.0409 (4)
C10	0.7269 (3)	0.2485 (3)	0.14091 (9)	0.0608 (5)
H9A	0.6929	0.3566	0.1264	0.091*
H9B	0.8447	0.1973	0.1201	0.091*
H9C	0.7762	0.2601	0.1774	0.091*
C11	0.3128 (3)	0.3395 (2)	0.19816 (7)	0.0489 (5)
H10A	0.1609	0.3829	0.1936	0.059*
H10B	0.4180	0.4238	0.1857	0.059*
C12	0.3543 (3)	0.3077 (3)	0.25711 (7)	0.0560 (5)

H11A	0.5089	0.2699	0.2618	0.067*
H11B	0.3377	0.4120	0.2765	0.067*
C13	0.1971 (4)	0.1805 (3)	0.28110 (7)	0.0575 (5)
H12A	0.2223	0.0735	0.2639	0.069*
H12B	0.2318	0.1679	0.3189	0.069*
N1	0.3385 (3)	0.19014 (19)	0.16559 (6)	0.0438 (4)
01	0.1589 (2)	-0.09436 (16)	0.13305 (5)	0.0543 (4)
O2	-0.0328 (2)	0.2249 (2)	0.27548 (6)	0.0679 (4)
H2A	-0.0723	0.2808	0.3014	0.099 (10)*
H1N	0.227 (3)	0.124 (3)	0.1625 (8)	0.049 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0546 (11)	0.0488 (10)	0.0607 (10)	-0.0008 (10)	0.0154 (9)	0.0000 (9)
C2	0.0728 (14)	0.0592 (12)	0.0638 (12)	0.0068 (12)	0.0237 (12)	-0.0057 (10)
C3	0.0883 (16)	0.0500 (11)	0.0559 (10)	-0.0010 (12)	0.0091 (12)	-0.0107 (9)
C4	0.0767 (16)	0.0610 (12)	0.0615 (11)	-0.0212 (12)	0.0108 (12)	-0.0123 (10)
C5	0.0540 (11)	0.0626 (11)	0.0495 (9)	-0.0137 (11)	0.0107 (9)	-0.0108 (9)
C6	0.0435 (9)	0.0453 (9)	0.0341 (7)	-0.0013 (8)	0.0018 (7)	0.0036 (7)
C7	0.0389 (9)	0.0474 (9)	0.0338 (7)	-0.0013 (8)	0.0041 (7)	0.0029 (7)
C8	0.0386 (9)	0.0511 (10)	0.0388 (8)	-0.0040 (8)	0.0076 (8)	-0.0018 (7)
C9	0.0359 (9)	0.0509 (9)	0.0359 (7)	-0.0064 (8)	0.0011 (7)	0.0042 (7)
C10	0.0451 (11)	0.0699 (13)	0.0674 (11)	-0.0171 (10)	0.0066 (9)	-0.0082 (11)
C11	0.0467 (10)	0.0418 (9)	0.0583 (9)	-0.0049 (9)	0.0044 (9)	-0.0059 (8)
C12	0.0481 (10)	0.0662 (12)	0.0538 (9)	0.0008 (11)	-0.0027 (9)	-0.0156 (9)
C13	0.0636 (13)	0.0598 (12)	0.0492 (9)	0.0125 (12)	0.0086 (9)	-0.0018 (9)
N1	0.0384 (8)	0.0449 (8)	0.0481 (7)	-0.0081 (8)	0.0042 (7)	-0.0052 (7)
01	0.0418 (7)	0.0553 (7)	0.0659 (7)	-0.0085 (7)	0.0168 (6)	-0.0116 (6)
O2	0.0542 (9)	0.0851 (11)	0.0643 (8)	-0.0029 (9)	0.0093 (7)	-0.0059 (9)

Geometric parameters (Å, °)

C1—C6	1.385 (3)	C9—C10	1.496 (2)
C1—C2	1.385 (3)	C10—H9A	0.9600
С1—Н1	0.9300	C10—H9B	0.9600
С2—С3	1.363 (3)	C10—H9C	0.9600
С2—Н2	0.9300	C11—N1	1.454 (2)
C3—C4	1.364 (3)	C11—C12	1.513 (2)
С3—Н3	0.9300	C11—H10A	0.9700
C4—C5	1.382 (3)	C11—H10B	0.9700
C4—H4	0.9300	C12—C13	1.504 (3)
С5—С6	1.381 (3)	C12—H11A	0.9700
С5—Н5	0.9300	C12—H11B	0.9700
С6—С7	1.505 (2)	C13—O2	1.412 (3)
C7—O1	1.262 (2)	C13—H12A	0.9700
С7—С8	1.399 (2)	C13—H12B	0.9700
С8—С9	1.392 (2)	N1—H1N	0.85 (2)

C8—H8	0.9300	O2—H2A	0.8200
C9—N1	1.318 (2)		
C6—C1—C2	120.95 (19)	С9—С10—Н9В	109.5
C6—C1—H1	119.5	H9A—C10—H9B	109.5
C2—C1—H1	119.5	С9—С10—Н9С	109.5
C3—C2—C1	120.07 (19)	H9A—C10—H9C	109.5
С3—С2—Н2	120.0	H9B—C10—H9C	109.5
C1—C2—H2	120.0	N1—C11—C12	112.86 (16)
C2—C3—C4	119.90 (19)	N1-C11-H10A	109.0
С2—С3—Н3	120.0	C12—C11—H10A	109.0
С4—С3—Н3	120.0	N1-C11-H10B	109.0
C3—C4—C5	120.4 (2)	C12—C11—H10B	109.0
C3—C4—H4	119.8	H10A—C11—H10B	107.8
C5—C4—H4	119.8	C13—C12—C11	113.63 (16)
C6—C5—C4	120.85 (18)	C13—C12—H11A	108.8
С6—С5—Н5	119.6	C11—C12—H11A	108.8
C4—C5—H5	119.6	C13—C12—H11B	108.8
C5—C6—C1	117.82 (16)	C11—C12—H11B	108.8
C5—C6—C7	118.66 (15)	H11A—C12—H11B	107.7
C1—C6—C7	123.48 (16)	O2—C13—C12	112.62 (18)
O1—C7—C8	122.59 (15)	O2—C13—H12A	109.1
O1—C7—C6	117.30 (15)	C12—C13—H12A	109.1
C8—C7—C6	120.12 (15)	O2—C13—H12B	109.1
C9—C8—C7	123.76 (15)	C12—C13—H12B	109.1
С9—С8—Н8	118.1	H12A—C13—H12B	107.8
С7—С8—Н8	118.1	C9—N1—C11	127.51 (16)
N1—C9—C8	121.66 (16)	C9—N1—H1N	113.8 (13)
N1—C9—C10	118.77 (15)	C11—N1—H1N	118.7 (13)
C8—C9—C10	119.55 (15)	C13—O2—H2A	109.5
С9—С10—Н9А	109.5		
C6—C1—C2—C3	-0.4 (3)	C1—C6—C7—C8	-7.9 (2)
C1—C2—C3—C4	0.2 (4)	O1—C7—C8—C9	1.8 (3)
C2—C3—C4—C5	0.8 (4)	C6—C7—C8—C9	-177.97 (15)
C3—C4—C5—C6	-1.6 (3)	C7—C8—C9—N1	-2.6 (2)
C4—C5—C6—C1	1.4 (3)	C7—C8—C9—C10	175.92 (16)
C4—C5—C6—C7	179.54 (18)	N1-C11-C12-C13	-59.7 (2)
C2-C1-C6-C5	-0.4 (3)	C11—C12—C13—O2	-57.9 (2)
C2—C1—C6—C7	-178.45 (18)	C8—C9—N1—C11	177.83 (15)
C5—C6—C7—O1	-5.7 (2)	C10—C9—N1—C11	-0.7 (3)
C1—C6—C7—O1	172.33 (17)	C12—C11—N1—C9	-95.5 (2)
C5—C6—C7—C8	174.08 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
$O2-H2A\cdotsO1^{i}$	0.82	1.99	2.805 (2)	176

			supporting information		
N1—H1 <i>N</i> …O1	0.85 (2)	1.94 (2)	2.642 (2)	139.1 (18)	
Symmetry code: (i) $-x$, $y+1/2$, $-z+1/2$.					