metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[(μ_6 -naphthalene-1,4-dicarboxylato- $\kappa^6 O^1: O^{1'}: O^{1'}: O^4: O^{4'}: O^{4'})$ iron(II)]

Jan Boeckmann, Inke Jess and Christian Näther*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany Correspondence e-mail: cnaether@ac.uni-kiel.de

Received 11 December 2008; accepted 15 December 2008

Key indicators: single-crystal X-ray study; T = 170 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.087; data-to-parameter ratio = 14.6.

In the title compound, $[Fe(C_{12}H_6O_4)]_n$, the Fe^{II} atom is coordinated by six O atoms from six symmetrically equivalent naphthalene-1,4-dicarboxylate ligands in a strongly distorted octahedral geometry. These octahedra are connected via common edges into chains that elongate along the *a* axis, with Fe $\cdot\cdot$ Fe distances of 2.9712 (4) and 2.9724 (4) Å. The chains are linked via the naphthalene-1,4-dicarboxylate ligands into a three-dimensional coordination network.

Related literature

For isotypical structures with Mn^{II} and Co^{II}, see: Maji et al. (2005).

Experimental

Crystal data

•	
$[Fe(C_{12}H_6O_4)]$	$V = 960.10 (12) \text{ Å}^3$
$M_r = 270.02$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 4.7863 (4) Å	$\mu = 1.57 \text{ mm}^{-1}$
b = 14.8940 (9) Å	T = 170 (2) K
c = 13.4705 (10) Å	$0.30 \times 0.04 \times 0.04$ mm
$\beta = 91.098 \ (9)^{\circ}$	

Data collection

Stoe IPDS-1 diffractometer Absorption correction: none 13722 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ 155 parameters $wR(F^2) = 0.087$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.46$ e Å⁻³ 2256 reflections

 $R_{\rm int}=0.026$

2256 independent reflections

1816 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Fe1-O4	2.1550 (13)	Fe1-Fe1 ^v	2.9724 (4)
Fe1-O1	2.1533 (13)	Fe1-Fe1 ^{vi}	2.9712 (4)
Fe1-O2 ⁱⁱ	2.0604 (11)	Fe1-O1 ^v	2.1908 (11)
Fe1-O3 ⁱ	2.0557 (11)	Fe1-O4 ^{iv}	2.1867 (11)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) -x + 1, -y + 1, -z + 1; (vi) -x, -y + 1, -z + 1.

Data collection: IPDS (Stoe & Cie, 1998); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for the facility to use his equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2174).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Maji, T. K., Kaneko, W., Ohba, M. & Kitagawa, S. (2005). Chem. Commun. pp. 4613-4615.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (1998). IPDS. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2009). E65, m102 [doi:10.1107/S1600536808042669]

$Poly[(\mu_6-naphthalene-1,4-dicarboxylato-\kappa^6O^1:O^1':O^1':O^4:O^4':O^4')iron(II)]$

Jan Boeckmann, Inke Jess and Christian Näther

S1. Comment

The structure determination of the title compound was performed as a part of a project on the synthesis of new metal– organic frameworks. In this project we have reacted iron(II) sulfate with naphthalene-1,4-dicarboxylic acid in potassium hydroxide and water, which leads to the formation of a naphthalene-1,4-dicarboxylate iron(II) coordination polymer.

The title compound is isostructural to the manganese(II) and cobalt(II) complexes of naphthalene-1,4-dicarboxylate (Maji *et al.*, 2005). In the title compound, the Fe^{II} atom is surrounded by six O atoms from six crystallographically equivalent naphthalene-1,4-dicarboxylate ligands in a distorted octahedral coordination environment (Fig. 1 and Table 1). The Fe atoms are linked by O atoms of the carboxylate groups in a μ_3 -O:O':O' mode into chains, which elongate along the *a* axis (Fig. 2). Within these chains the Fe coordination octahedra are connected *via* common edges. These chains are connected by the naphthalene-1,4-dicarboxylate ligands into a three-dimensional network.

S2. Experimental

A mixture of $FeSO_4.7H_2O$ (0.139 g, 0.5 mmol), naphthalene-1,4-dicarboxylic acid (0.108 g, 0.5 mmol), KOH (0.112 g, 1 mmol) and water (5 ml) was transfered into a glass tube and heated to 423 K for 4 d. On cooling, yellow needle crystals of the title compound were obtained.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structure of the title compound, together with symmetry-related atoms to complete the Fe coordination. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x+1/2, -y+1/2, z-1/2; (ii) x-1, y, z; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+1/2, y+1/2, -z+3/2; (v) -x+1, -y+1, -z+1.]

Figure 2

A view of the chains formed by the Fe coordination octahedra.

Figure 3

Three-dimensional structure of the title compound viewed along the *a* axis.

Poly[(μ_6 -naphthalene-1,4-dicarboxylato- $\kappa^6 O^1:O^1:O^1:O^4:O^4:O^4':O^4'$)iron(II)]

Crystal data	
$[Fe(C_{12}H_6O_4)]$ $M_r = 270.02$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 4.7863 (4) Å b = 14.8940 (9) Å c = 13.4705 (10) Å $\beta = 91.098$ (9)° V = 960.10 (12) Å ³ Z = 4	F(000) = 544 $D_x = 1.868 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8000 reflections $\theta = 9-26^{\circ}$ $\mu = 1.57 \text{ mm}^{-1}$ T = 170 K Needle, yellow $0.30 \times 0.04 \times 0.04 \text{ mm}$
Data collection	
Stoe IPDS-1 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ scans	13722 measured reflections 2256 independent reflections 1816 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$

 $h = -6 \rightarrow 6$ $k = -19 \rightarrow 19$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.087$ S = 1.062256 reflections 155 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

$$l = -17 \rightarrow 17$$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.4222P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.46$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.012 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.24998 (4)	0.440859 (14)	0.501167 (14)	0.00529 (13)	
01	0.6268 (3)	0.44515 (7)	0.59098 (9)	0.0071 (2)	
O2	1.0178 (2)	0.36165 (8)	0.59405 (9)	0.0095 (2)	
03	-0.0120 (2)	0.13335 (8)	0.90581 (9)	0.0099 (2)	
O4	0.3838 (3)	0.05263 (7)	0.90583 (9)	0.0067 (2)	
C1	0.6451 (3)	0.31639 (10)	0.69582 (11)	0.0077 (3)	
C2	0.6838 (4)	0.22537 (11)	0.68337 (12)	0.0097 (3)	
H2	0.8026	0.2044	0.6326	0.012*	
C3	0.5492 (4)	0.16326 (11)	0.74501 (12)	0.0097 (3)	
Н3	0.5782	0.1008	0.7353	0.012*	
C4	0.3761 (3)	0.19163 (10)	0.81920 (11)	0.0074 (3)	
C5	0.1863 (4)	0.31859 (12)	0.91907 (13)	0.0165 (4)	
Н5	0.0869	0.2776	0.9593	0.020*	
C6	0.1788 (5)	0.40864 (12)	0.94029 (14)	0.0233 (5)	
H6	0.0777	0.4292	0.9959	0.028*	
C7	0.3198 (5)	0.47108 (12)	0.88038 (13)	0.0199 (4)	
H7	0.3155	0.5332	0.8963	0.024*	
C8	0.4628 (4)	0.44215 (10)	0.79915 (13)	0.0135 (4)	
H8	0.5519	0.4848	0.7579	0.016*	
С9	0.4798 (3)	0.34898 (10)	0.77570 (11)	0.0081 (3)	
C10	0.3413 (3)	0.28589 (11)	0.83760 (11)	0.0084 (3)	
C11	0.7751 (3)	0.37880 (10)	0.62232 (11)	0.0067 (3)	
C12	0.2371 (3)	0.12168 (10)	0.88160 (11)	0.0067 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.00470 (18)	0.00449 (16)	0.00679 (17)	0.00009 (8)	0.00311 (10)	0.00003 (7)
01	0.0072 (6)	0.0065 (5)	0.0076 (5)	0.0000 (4)	0.0012 (4)	0.0020 (4)
02	0.0071 (6)	0.0088 (5)	0.0129 (5)	0.0000 (4)	0.0048 (4)	0.0036 (4)

supporting information

O3	0.0063 (6)	0.0095 (5)	0.0139 (5)	-0.0002 (4)	0.0036 (4)	0.0044 (4)
O4	0.0071 (6)	0.0056 (5)	0.0074 (5)	-0.0002 (4)	0.0009 (4)	0.0023 (4)
C1	0.0069 (7)	0.0085 (7)	0.0078 (7)	-0.0012 (6)	0.0011 (6)	0.0027 (5)
C2	0.0103 (8)	0.0096 (7)	0.0094 (7)	0.0010 (6)	0.0048 (6)	0.0017 (5)
C3	0.0116 (8)	0.0071 (7)	0.0104 (7)	0.0008 (5)	0.0032 (6)	0.0020 (6)
C4	0.0068 (8)	0.0071 (7)	0.0082 (6)	-0.0004 (5)	0.0009 (5)	0.0029 (5)
C5	0.0230 (10)	0.0120 (8)	0.0150 (8)	0.0004 (7)	0.0117 (7)	0.0020 (6)
C6	0.0367 (12)	0.0128 (9)	0.0210 (9)	0.0038 (8)	0.0183 (8)	-0.0011 (7)
C7	0.0338 (11)	0.0089 (8)	0.0173 (8)	0.0011 (7)	0.0100 (8)	-0.0005 (6)
C8	0.0207 (10)	0.0077 (8)	0.0122 (7)	-0.0020 (6)	0.0050 (7)	0.0011 (6)
C9	0.0084 (8)	0.0075 (7)	0.0083 (7)	-0.0003 (5)	0.0017 (6)	0.0017 (5)
C10	0.0091 (8)	0.0081 (7)	0.0080 (7)	0.0004 (5)	0.0025 (6)	0.0016 (5)
C11	0.0074 (8)	0.0066 (7)	0.0061 (6)	-0.0018 (5)	0.0012 (5)	0.0000 (5)
C12	0.0076 (8)	0.0070 (7)	0.0056 (6)	-0.0011 (5)	0.0015 (5)	0.0004 (5)

Geometric parameters (Å, °)

Fe1—O3 ⁱ	2.0557 (11)	C2—H2	0.9500
Fe1—O2 ⁱⁱ	2.0604 (11)	C3—C4	1.377 (2)
Fe1—O1	2.1533 (13)	С3—Н3	0.9500
Fe1—O4 ⁱⁱⁱ	2.1550 (13)	C4—C10	1.436 (2)
Fe1—O4 ^{iv}	2.1867 (11)	C4—C12	1.502 (2)
Fe1—O1 ^v	2.1908 (11)	C5—C6	1.372 (3)
Fe1—Fe1 ^{vi}	2.9712 (4)	C5—C10	1.422 (2)
Fe1—Fe1 ^v	2.9724 (4)	С5—Н5	0.9500
01—C11	1.2835 (19)	C6—C7	1.411 (3)
O2—C11	1.256 (2)	С6—Н6	0.9500
O3—C12	1.254 (2)	C7—C8	1.371 (2)
O4—C12	1.2839 (19)	С7—Н7	0.9500
C1—C2	1.379 (2)	C8—C9	1.426 (2)
C1—C9	1.433 (2)	C8—H8	0.9500
C1-C11	1.502 (2)	C9—C10	1.428 (2)
C2—C3	1.407 (2)		
O3 ⁱ —Fe1—O2 ⁱⁱ	112.54 (5)	C2—C1—C9	120.12 (14)
O3 ⁱ —Fe1—O1	84.19 (5)	C2C1C11	118.04 (13)
O2 ⁱⁱ —Fe1—O1	97.55 (5)	C9—C1—C11	121.82 (14)
O3 ⁱ —Fe1—O4 ⁱⁱⁱ	96.08 (5)	C1—C2—C3	120.69 (15)
O2 ⁱⁱ —Fe1—O4 ⁱⁱⁱ	86.89 (5)	C1—C2—H2	119.7
O1—Fe1—O4 ⁱⁱⁱ	175.08 (4)	C3—C2—H2	119.7
O3 ⁱ —Fe1—O4 ^{iv}	159.92 (5)	C4—C3—C2	121.01 (15)
O2 ⁱⁱ —Fe1—O4 ^{iv}	85.45 (4)	С4—С3—Н3	119.5
O1—Fe1—O4 ^{iv}	84.65 (4)	С2—С3—Н3	119.5
O4 ⁱⁱⁱ —Fe1—O4 ^{iv}	93.64 (4)	C3—C4—C10	119.93 (14)
O3 ⁱ —Fe1—O1 ^v	84.50 (4)	C3—C4—C12	118.20 (14)
O2 ⁱⁱ —Fe1—O1 ^v	160.39 (5)	C10—C4—C12	121.83 (13)
O1—Fe1—O1 ^v	93.65 (4)	C6—C5—C10	120.77 (16)
O4 ⁱⁱⁱ —Fe1—O1 ^v	81.50 (4)	С6—С5—Н5	119.6

$O4^{iv}$ —Fe1—O1 ^v	79.61 (5)	С10—С5—Н5	119.6
O3 ⁱ —Fe1—Fe1 ^{vi}	140.19 (4)	C5—C6—C7	120.69 (16)
O2 ⁱⁱ —Fe1—Fe1 ^{vi}	84.39 (3)	С5—С6—Н6	119.7
O1—Fe1—Fe1 ^{vi}	130.85 (3)	С7—С6—Н6	119.7
O4 ⁱⁱⁱ —Fe1—Fe1 ^{vi}	47.26 (3)	C8—C7—C6	120.04 (16)
O4 ^{iv} —Fe1—Fe1 ^{vi}	46.37 (3)	С8—С7—Н7	120.0
O1 ^v —Fe1—Fe1 ^{vi}	76.12 (3)	С6—С7—Н7	120.0
O3 ⁱ —Fe1—Fe1 ^v	81.72 (3)	C7—C8—C9	120.93 (15)
O2 ⁱⁱ —Fe1—Fe1 ^v	142.14 (4)	С7—С8—Н8	119.5
O1—Fe1—Fe1 ^v	47.35 (3)	С9—С8—Н8	119.5
O4 ⁱⁱⁱ —Fe1—Fe1 ^v	127.79 (3)	C8—C9—C10	118.82 (14)
O4 ^{iv} —Fe1—Fe1 ^v	78.44 (3)	C8—C9—C1	122.06 (14)
O1 ^v —Fe1—Fe1 ^v	46.30 (3)	C10—C9—C1	119.01 (14)
Fe1 ^{vi} —Fe1—Fe1 ^v	107.275 (14)	C5—C10—C9	118.68 (14)
C11-O1-Fe1	127.88 (10)	C5—C10—C4	122.14 (14)
C11—O1—Fe1 ^v	129.03 (11)	C9—C10—C4	119.07 (13)
Fe1—O1—Fe1 ^v	86.35 (4)	O2—C11—O1	124.47 (14)
C11—O2—Fe1 ^{vii}	125.49 (10)	O2—C11—C1	118.13 (14)
C12—O3—Fe1 ^{viii}	128.98 (10)	O1—C11—C1	117.38 (14)
C12—O4—Fe1 ^{ix}	123.36 (10)	O3—C12—O4	124.25 (14)
C12—O4—Fe1 ^x	126.21 (10)	O3—C12—C4	118.88 (14)
Fe1 ^{ix} —O4—Fe1 ^x	86.36 (4)	O4—C12—C4	116.87 (14)

Symmetry codes: (i) *x*+1/2, -*y*+1/2, *z*-1/2; (ii) *x*-1, *y*, *z*; (iii) *x*-1/2, -*y*+1/2, *z*-1/2; (iv) -*x*+1/2, *y*+1/2, -*z*+3/2; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*, -*y*+1, -*z*+1; (vii) *x*+1, *y*, *z*; (viii) *x*-1/2, -*y*+1/2, *z*+1/2; (ix) *x*+1/2, -*y*+1/2, *z*+1/2; (v) -*x*+1/2, *y*-1/2, -*z*+3/2.