1950 independent reflections

 $R_{\rm int} = 0.042$

1207 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phenyl pyrazin-2-yl ether

Azila Idris, Azhar Afiffin, Zanariah Abdullah and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 27 November 2008; accepted 28 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.046; *wR* factor = 0.119; data-to-parameter ratio = 16.5.

In the title compound, $C_{10}H_8N_2O$, the dihedral angle between the aromatic rings is 64.2 (1)° and the bridging C–O–C angle is 119.1 (1)°.

Related literature

For the structure of quinoxalinyl phenyl ether, see: Hassan *et al.* (2008). For the structure of *N*-(pyrazin-2-yl)aniline, see: Wan Saffiee *et al.* (2008).

Experimental

Crystal data $C_{10}H_8N_2O$ $M_r = 172.18$ Monoclinic, P_{21}/c a = 5.704 (1) Å b = 8.557 (2) Å c = 17.595 (4) Å $\beta = 94.382$ (3)°

$$\begin{split} V &= 856.4 \ (3) \ \text{\AA}^3 \\ Z &= 4 \\ \text{Mo } K \alpha \text{ radiation} \\ \mu &= 0.09 \ \text{mm}^{-1} \\ T &= 100 \ (2) \ \text{K} \\ 0.20 \ \times \ 0.15 \ \times \ 0.10 \ \text{mm} \end{split}$$

Data collection

```
Bruker SMART APEX
diffractometer
Absorption correction: none
4641 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 118 parameters $wR(F^2) = 0.119$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$ 1950 reflections $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the University of Malaya for supporting this study (grant No. FS358/2008 A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2867).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, 02105.
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o7 [doi:10.1107/S1600536808040099]

Phenyl pyrazin-2-yl ether

Azila Idris, Azhar Afiffin, Zanariah Abdullah and Seik Weng Ng

S1. Experimental

Phenol (0.94 g, 0.01 mol) was dissolved in a small volume of water containing sodium hydroxide (0.40 g, 0.01 mol). The mixture was heated to remove most of the water. This and 2-chloropyrazine (1.15 g, 0.01 mol) were heated for 5 h. The material was extracted with chloroform and the organic phase then dried over sodium sulfate. Evaporation of the solvent gave the crude product, which was recrystallized from chloroform.

S2. Refinement

The H atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Phenyl pyrazin-2-yl ether

Crystal data	
$C_{10}H_8N_2O$	F(000) = 360
$M_r = 172.18$	$D_{\rm x} = 1.335 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 739 reflections
a = 5.704 (1) Å	$\theta = 3.3 - 26.1^{\circ}$
b = 8.557 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 17.595 (4) Å	T = 100 K
$\beta = 94.382 \ (3)^{\circ}$	Irregular block, colorless
$V = 856.4 (3) \text{ Å}^3$	$0.20 \times 0.15 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 4641 measured reflections 1950 independent reflections	1207 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -6 \rightarrow 7$ $k = -11 \rightarrow 10$ $l = -22 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.119$ S = 0.97 1950 reflections 118 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0572P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.20$ e Å ⁻³ $\Delta\rho_{min} = -0.27$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.0900 (2)	0.70888 (14)	0.45704 (7)	0.0301 (3)
N1	0.4770 (3)	0.56153 (17)	0.60955 (8)	0.0281 (4)
N2	0.4352 (3)	0.81790 (16)	0.51088 (8)	0.0252 (4)
C1	0.0879 (3)	0.8138 (2)	0.39557 (9)	0.0244 (4)
C2	-0.1015 (3)	0.9128 (2)	0.38509 (10)	0.0288 (4)
H2	-0.2208	0.9130	0.4199	0.035*
C3	-0.1150 (3)	1.0127 (2)	0.32238 (10)	0.0320 (5)
H3	-0.2447	1.0819	0.3140	0.038*
C4	0.0604 (3)	1.0112 (2)	0.27248 (10)	0.0309 (5)
H4	0.0520	1.0803	0.2301	0.037*
C5	0.2481 (3)	0.9097 (2)	0.28386 (10)	0.0298 (5)
Н5	0.3672	0.9086	0.2489	0.036*
C6	0.2641 (3)	0.8093 (2)	0.34580 (9)	0.0266 (4)
H6	0.3927	0.7393	0.3539	0.032*
C7	0.2816 (3)	0.70451 (19)	0.50838 (9)	0.0225 (4)
C8	0.2987 (3)	0.5762 (2)	0.55764 (10)	0.0279 (4)
H8	0.1799	0.4981	0.5537	0.033*
С9	0.6367 (3)	0.6767 (2)	0.61232 (10)	0.0275 (4)
H9	0.7686	0.6707	0.6486	0.033*
C10	0.6149 (3)	0.8027 (2)	0.56430 (9)	0.0274 (4)
H10	0.7311	0.8823	0.5690	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
01	0.0285 (7)	0.0309 (8)	0.0299 (7)	-0.0092 (6)	-0.0033 (5)	0.0105 (6)

supporting information

N1	0.0356 (9)	0.0253 (8)	0.0237 (8)	-0.0023 (7)	0.0037 (7)	0.0021 (7)
N2	0.0304 (9)	0.0229 (8)	0.0222 (8)	-0.0055 (6)	0.0020 (6)	0.0000 (7)
C1	0.0279 (10)	0.0230 (10)	0.0215 (9)	-0.0088(8)	-0.0028 (7)	0.0039 (8)
C2	0.0233 (10)	0.0323 (11)	0.0307 (10)	-0.0049 (8)	0.0021 (7)	0.0031 (9)
C3	0.0267 (11)	0.0321 (11)	0.0362 (10)	-0.0007(8)	-0.0041 (8)	0.0044 (9)
C4	0.0338 (11)	0.0344 (11)	0.0237 (9)	-0.0062 (9)	-0.0037 (8)	0.0068 (9)
C5	0.0316 (11)	0.0368 (11)	0.0209 (9)	-0.0056 (9)	0.0011 (8)	-0.0027 (9)
C6	0.0280 (10)	0.0256 (10)	0.0255 (9)	-0.0014 (8)	-0.0020 (8)	-0.0032 (8)
C7	0.0253 (10)	0.0224 (10)	0.0203 (8)	-0.0029 (7)	0.0043 (7)	-0.0007(8)
C8	0.0319 (11)	0.0246 (10)	0.0274 (10)	-0.0060(8)	0.0048 (8)	0.0015 (8)
C9	0.0315 (11)	0.0287 (10)	0.0219 (9)	-0.0001 (8)	-0.0011 (7)	0.0005 (8)
C10	0.0295 (10)	0.0287 (11)	0.0238 (9)	-0.0076 (8)	0.0003 (7)	-0.0011 (9)

Geometric parameters (Å, °)

01—C7	1.364 (2)	С3—Н3	0.9500
01—C1	1.4050 (19)	C4—C5	1.382 (3)
N1	1.320 (2)	C4—H4	0.9500
N1-C9	1.340 (2)	C5—C6	1.385 (2)
N2—C7	1.306 (2)	С5—Н5	0.9500
N2-C10	1.343 (2)	С6—Н6	0.9500
C1—C2	1.374 (3)	C7—C8	1.398 (2)
C1—C6	1.383 (2)	C8—H8	0.9500
C2—C3	1.394 (2)	C9—C10	1.370 (2)
С2—Н2	0.9500	С9—Н9	0.9500
C3—C4	1.381 (3)	C10—H10	0.9500
C7 01 C1	110 11 (12)	01 05 115	110.0
C = 0 = 0	119.11 (13)	C6-C5-H5	119.8
$C_8 = N_1 = C_9$	116.18 (15)	C1 = C6 = C5	118.29 (17)
$C = N_2 = C_{10}$	115.21 (15)		120.9
$C_2 = C_1 = C_6$	122.28 (16)	C5—C6—H6	120.9
C2_C1_01	117.23 (15)	N2-C7-01	120.23 (15)
C6-C1-O1	120.38 (16)	N2—C7—C8	123.24 (16)
C1—C2—C3	118.68 (17)	01	116.52 (15)
C1—C2—H2	120.7	N1—C8—C7	121.13 (16)
C3—C2—H2	120.7	N1—C8—H8	119.4
C4—C3—C2	119.90 (18)	С7—С8—Н8	119.4
C4—C3—H3	120.0	N1—C9—C10	121.80 (16)
С2—С3—Н3	120.0	N1—C9—H9	119.1
C3—C4—C5	120.36 (17)	С10—С9—Н9	119.1
C3—C4—H4	119.8	N2—C10—C9	122.43 (17)
C5—C4—H4	119.8	N2-C10-H10	118.8
C4—C5—C6	120.49 (17)	C9—C10—H10	118.8
С4—С5—Н5	119.8		
C7—O1—C1—C2	-126.78 (17)	C10—N2—C7—O1	179.05 (14)
C7—O1—C1—C6	56.9 (2)	C10—N2—C7—C8	0.5 (2)
C6-C1-C2-C3	-0.5 (3)	C1—O1—C7—N2	15.5 (2)

01—C1—C2—C3	-176.75 (15)	C1—O1—C7—C8	-165.92 (14)
C1—C2—C3—C4	-0.2 (3)	C9—N1—C8—C7	0.6 (2)
C2—C3—C4—C5	0.8 (3)	N2-C7-C8-N1	-1.1 (3)
C3—C4—C5—C6	-0.7 (3)	O1—C7—C8—N1	-179.72 (15)
C2-C1-C6-C5	0.6 (3)	C8—N1—C9—C10	0.4 (3)
O1—C1—C6—C5	176.75 (14)	C7—N2—C10—C9	0.5 (2)
C4—C5—C6—C1	0.0 (3)	N1—C9—C10—N2	-1.0 (3)