Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(1-Methylethoxy)-5-nitrophenyl N -methylcarbamate

Guang-Ming Sang, ${ }^{\text {a }}$ Shi-Neng Luo, ${ }^{\text {b }}$ * Jian-Guo Lin, ${ }^{\text {b }}$ Hai-Lin Yang ${ }^{c}$ and Yong-Mei Xia ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China, ${ }^{\text {b }}$ The Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China, and ${ }^{\text {c }}$ The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
Correspondence e-mail: shineng914@yahoo.com.cn

Received 25 November 2008; accepted 3 December 2008

Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.049 ; w R$ factor $=0.105$; data-to-parameter ratio $=19.0$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$, the nitro group is approximately coplanar with the benzene ring, making a dihedral angle of $4.26(17)^{\circ}$. The dihedral angle between the methylcarbamate group and the benzene ring is 72.47 (6) ${ }^{\circ}$. There is a strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the N and O atoms from adjacent methylcarbamate groups, forming a one-dimensional network along the a axis.

Related literature

For general background, see: Wang et al. (1998); Moreno et al. (2001). For related structures, see: Czugler \& Kalman (1975); Xu et al. (2005). For the synthesis, see: Allan et al. (1926).

Experimental

Crystal data

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \quad M_{r}=254.24
$$

Triclinic, $P \overline{1}$
$a=5.034(2) \AA$
$b=10.4221$ (16) \AA
$c=12.6319$ (12) \AA
$\alpha=91.361$ (3) ${ }^{\circ}$
$\beta=97.492(2)^{\circ}$
$\gamma=94.6930(10)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\text {min }}=0.97, T_{\text {max }}=0.98$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
3172 reflections
$V=654.5(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=291$ (2) K
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

7186 measured reflections 3172 independent reflections 2005 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.05	$2.788(2)$	143

Symmetry code: (i) $x-1, y, z$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Wu Jieping Medical Foundation (32067500615) and National "863" Project of China (No. 2006AA10Z449)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2175).

References

Allan, J., Oxford, A. E., Robinson, R. \& Smith, J. C. (1926). J. Chem. Soc. pp. 401-411.
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Czugler, M. \& Kalman, A. (1975). Cryst. Struct. Commun. 4, 531-532.
Moreno, M. J., Abad, A. \& Montoya, A. (2001). J. Agric. Food Chem. 49, 7278.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, T. C., Chiou, J. M., Chang, Y. L. \& Hu, M. C. (1998). Carcinogenesis, 19, 623-629.
Xu, L.-Z., Yu, G.-P. \& Yang, S.-H. (2005). Acta Cryst. E61, o1924-o1926.

supporting information

2-(1-Methylethoxy)-5-nitrophenyl \mathbf{N}-methylcarbamate

Guang-Ming Sang, Shi-Neng Luo, Jian-Guo Lin, Hai-Lin Yang and Yong-Mei Xia

S1. Comment

2-(1-Methylethoxy)phenyl methylcarbamate (Trade name: Propoxur) is an important economical insecticide. It is widely used to control agricultural and household insect pests due to its low toxicity to mammals and other vertebrates (Wang et al., 1998; Moreno et al., 2001). Immunoassay is one of effective analytical methods of determining the residua of the methylcarbamate pesticide propoxur. Propoxur, like most pesticides, is a small and simple organic molecule, which lacks a functional group (amido or carboxylic acid) for coupling to proteins and is non immunogenic by itself. Therefore, it is necessary to synthesis hapten resembling as much as possible the structural and electronic distribution of propoxur for the production of highaffinity antibodies (Moreno et al., 2001). With this idea in mind, we intend to synthesis 5-amino-2-(1methylethoxy)phenyl methylcarbamate. As a vital intermediate compound for the stepwise reactions of hapten synthesis, the synthesis and crystal structure of the title compound has been reported herein.
In the title compound (I) (Fig. 1), $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$, the nitro group is approximately coplanar with the phenyl ring [dihedral angle $\left.=4.26(17)^{\circ}\right]$. All the nonhydrogen atoms in the methylcarbamate group are almost in a plane, and the dihedral angle between methylcarbamate group and phenyl is 72.47 (6) ${ }^{\circ}$. There is a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bond between the N 2 atom and O 5 atom from adjacent methylcarbamate groups (Table 1). And the crystal structure is stabilized by these strong hydrogen bond interactions to form one-dimensional supramolecular network along a axis (Table 1 and Fig. 2).

S2. Experimental

The title compound (I) was synthesized as follows (Allan et al., 1926): Nitric acid ($25 \mathrm{ml}, d 1.42,0.6 \mathrm{~mol}$) was added to a solution of 2-(1-methylethoxy)-phenyl methylcarbamate ($20.9 \mathrm{~g}, 0.1 \mathrm{~mol}$) in acetic acid (30 ml), and the mixture was heated on the oil-bath until the onset of a vigorous reaction was manifested by the copious evolution of red fumes and temperature rising to around $100^{\circ} \mathrm{C}$. Then, the reaction mixture was heated on this condition for 3 h , poured into cool water, and stirred for 30 min . After filtering, washing with water and drying in vacuum, a white powder was then obtained (yield: 75%). $\mathrm{mp} 120-121^{\circ} \mathrm{C}$. The title compound was recrystallized from ethanol solvent; colourless blockshaped crystals were formed after several days (yield 58\%). Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 51.97, H 5.55, N 11.02%; found: C 51.92, H 5.49, N 11.08\%.

S3. Refinement

H atoms bonded to N atom was located in a difference map and refined with distance restraints of $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol $\mathrm{C}-\mathrm{C}$ bond $)$, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2(1.5$ for methyl groups $)$ times $U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

Perspective view of the supramolecular network along a axis built from strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted.

2-(1-Methylethoxy)-5-nitrophenyl N-methylcarbamate

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=254.24$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.034(2) \AA$
$b=10.4221(16) \AA$
$c=12.6319(12) \AA$
$\alpha=91.361(3)^{\circ}$
$\beta=97.492(2)^{\circ}$

$$
\begin{aligned}
& \gamma=94.693(1)^{\circ} \\
& V=654.5(3) \AA^{3} \\
& Z=2 \\
& F(000)=268 \\
& D_{\mathrm{x}}=1.290 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 825 \text { reflections } \\
& \theta=2.1-25.4^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=291 \mathrm{~K}$

Block, colourless

Data collection

Bruker SMART APEX CCD diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.97, T_{\text {max }}=0.98$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
3172 reflections
167 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

7186 measured reflections
3172 independent reflections
2005 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-6 \rightarrow 6$
$k=-13 \rightarrow 13$
$l=-10 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.04 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.25$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.015 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.6429(3)$	$1.05070(14)$	$0.65269(13)$	$0.0418(3)$
C2	$0.4552(3)$	$1.04573(14)$	$0.72651(12)$	$0.0408(3)$
H2	0.4010	1.1205	0.7557	0.049^{*}
C3	$0.3576(3)$	$0.92824(15)$	$0.75300(12)$	$0.0401(3)$
C4	$0.4281(3)$	$0.81480(14)$	$0.70606(12)$	$0.0404(3)$
C5	$0.6183(3)$	$0.82349(14)$	$0.63360(12)$	$0.0410(3)$
H5	0.6732	0.7492	0.6039	0.049^{*}
C6	$0.7215(3)$	$0.94193(14)$	$0.60731(12)$	$0.0412(3)$
H6	0.8450	0.9487	0.5586	0.049^{*}
C7	$0.4126(3)$	$0.58077(15)$	$0.71348(12)$	$0.0419(3)$
H7	0.6049	0.5905	0.7068	0.050^{*}
C8	$0.3506(4)$	$0.49615(16)$	$0.80518(15)$	$0.0503(4)$

H8A	0.4181	0.5406	0.8719	0.075^{*}
H8B	0.4351	0.4173	0.8004	0.075^{*}
H8C	0.1596	0.4772	0.8011	0.075^{*}
C9	$0.2464(4)$	$0.52696(15)$	$0.61402(13)$	$0.0475(4)$
H9A	0.0596	0.5236	0.6231	0.071^{*}
H9B	0.2939	0.4417	0.5556	0.071^{*}
H9C	0.2783	0.5809	$0.91676(12)$	$0.0379(3)$
C10	$0.2341(3)$	$0.86019(14)$	$1.06731(13)$	$0.0446(4)$
C11	$0.0362(3)$	$0.77353(16)$	1.0669	0.067^{*}
H11A	0.1398	0.7002	1.0827	0.067^{*}
H11B	-0.1414	0.7466	1.1211	0.067^{*}
H11C	0.1217	0.8356	$0.62443(11)$	$0.0435(3)$
N1	$0.7563(3)$	$1.17674(12)$	$0.96365(10)$	$0.0403(3)$
N2	$0.0186(3)$	$0.83114(12)$	0.9318	0.048^{*}
H2A	-0.1364	0.8468	$0.66209(9)$	$0.0473(3)$
O1	$0.6715(2)$	$1.27246(10)$	$0.56528(9)$	$0.0446(3)$
O2	$0.9315(2)$	$1.18325(10)$	$0.73769(9)$	$0.0420(3)$
O3	$0.3060(2)$	$0.70444(10)$	$0.82168(9)$	$0.0418(3)$
O4	$0.1650(2)$	$0.91925(10)$	$0.95050(9)$	$0.0421(3)$
O5	$0.4638(2)$	$0.84188(10)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0464(9)$	$0.0377(7)$	$0.0423(8)$	$0.0040(6)$	$0.0085(7)$	$0.0037(6)$
C2	$0.0388(8)$	$0.0429(8)$	$0.0423(8)$	$0.0116(6)$	$0.0067(6)$	$0.0029(6)$
C3	$0.0387(8)$	$0.0459(8)$	$0.0372(8)$	$0.0083(6)$	$0.0084(6)$	$-0.0029(6)$
C4	$0.0410(8)$	$0.0418(8)$	$0.0404(8)$	$0.0090(6)$	$0.0110(6)$	$-0.0028(6)$
C5	$0.0468(9)$	$0.0389(7)$	$0.0389(8)$	$0.0066(6)$	$0.0111(6)$	$-0.0056(6)$
C6	$0.0428(8)$	$0.0432(8)$	$0.0396(8)$	$0.0111(6)$	$0.0081(6)$	$0.0020(6)$
C7	$0.0422(8)$	$0.0495(8)$	$0.0368(8)$	$0.0112(7)$	$0.0107(6)$	$0.0048(6)$
C8	$0.0526(10)$	$0.0487(9)$	$0.0528(10)$	$0.0121(7)$	$0.0124(8)$	$0.0120(7)$
C9	$0.0516(10)$	$0.0448(9)$	$0.0474(9)$	$0.0104(7)$	$0.0098(7)$	$-0.0148(7)$
C10	$0.0319(7)$	$0.0431(8)$	$0.0404(8)$	$0.0099(6)$	$0.0081(6)$	$-0.0047(6)$
C11	$0.0439(9)$	$0.0507(9)$	$0.0422(9)$	$0.0122(7)$	$0.0101(7)$	$0.0093(7)$
N1	$0.0403(7)$	$0.0433(7)$	$0.0477(8)$	$0.0027(5)$	$0.0091(6)$	$0.0016(5)$
N2	$0.0333(6)$	$0.0458(7)$	$0.0453(8)$	$0.0124(5)$	$0.0118(5)$	$0.0096(5)$
O1	$0.0508(7)$	$0.0413(6)$	$0.0529(7)$	$0.0042(5)$	$0.0191(5)$	$0.0017(5)$
O2	$0.0530(7)$	$0.0433(6)$	$0.0387(6)$	$-0.0037(5)$	$0.0141(5)$	$0.0074(4)$
O3	$0.0415(6)$	$0.0427(6)$	$0.0437(6)$	$0.0036(4)$	$0.0136(5)$	$-0.0016(4)$
O4	$0.0447(6)$	$0.0411(5)$	$0.0450(6)$	$0.0169(5)$	$0.0170(5)$	$0.0039(4)$
O5	$0.0360(6)$	$0.0487(6)$	$0.0449(6)$	$0.0140(5)$	$0.0097(5)$	$0.0127(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.368(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	$1.410(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600
$\mathrm{C} 1-\mathrm{N} 1$	$1.4600(19)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600

C2-C3	1.348 (2)
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
C3-O4	1.3818 (18)
C3-C4	1.402 (2)
C4-O3	1.3530 (19)
C4-C5	1.408 (2)
C5-C6	1.365 (2)
C5-H5	0.9300
C6-H6	0.9300
C7-O3	1.4766 (18)
C7-C9	1.486 (2)
C7-C8	1.521 (2)
C7-H7	0.9800
C6- $\mathrm{C} 1-\mathrm{C} 2$	122.26 (14)
C6- $\mathrm{C} 1-\mathrm{N} 1$	119.34 (15)
C2-C1-N1	118.40 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	117.29 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	121.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.4
C2-C3-O4	119.06 (13)
C2-C3-C4	122.00 (15)
O4-C3-C4	118.72 (13)
O3-C4-C3	115.20 (14)
O3-C4-C5	125.76 (13)
C3-C4-C5	119.03 (14)
C6-C5-C4	119.41 (14)
C6-C5-H5	120.3
C4-C5-H5	120.3
C5-C6-C1	119.92 (15)
C5-C6- H 6	120.0
C1-C6-H6	120.0
O3-C7-C9	106.04 (13)
O3-C7-C8	104.34 (12)
C9-C7-C8	108.30 (15)
O3-C7-H7	112.5
C9-C7-H7	112.5
C8-C7-H7	112.5
C7-C8-H8A	109.5
C7-C8-H8B	109.5
H8A-C8-H8B	109.5
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	1.2 (2)
N1-C1-C2-C3	-178.66 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	-177.36 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-2.9 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	-177.54 (14)
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	-3.1 (2)

C9—-H9A	0.9600
C9—H9B	0.9600
C9—H9C	0.9600
C10-O5	$1.2107(18)$
C10-N2	$1.3195(18)$
C10-O4	$1.3797(19)$
C11—N2	$1.4487(19)$
C11—H11A	0.9600
C11—H11B	0.9600
C11—H11C	0.9600
N1—O1	$1.2263(17)$
N1—O2	$1.2270(17)$
N2—H2A	0.8600

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
126.72 (15)
122.87 (14)
110.40 (13)
109.5
109.5
109.5
109.5
109.5
109.5
122.72 (13)
117.78 (13)
119.50 (13)
121.78 (13)
119.1
119.1
118.97 (12)
116.28 (12)
-3.8(2)
-4.2 (2)
175.73 (15)
1.4 (2)
-177.13 (13)
-165.57 (13)

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$3.7(3)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.15(14)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$178.71(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-2.7(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.3(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.56(14)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 1$	$176.26(14)$

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 7$	$13.1(2)$
$\mathrm{C} 9-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 4$	$-96.64(16)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 4$	$149.11(14)$
$\mathrm{O} 5-\mathrm{C} 10-\mathrm{O} 4-\mathrm{C} 3$	$15.7(2)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{O} 4-\mathrm{C} 3$	$-165.71(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 10$	$-118.54(16)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 10$	$66.83(18)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 5^{\mathrm{i}}$	0.86	2.05	$2.788(2)$	143

Symmetry code: (i) $x-1, y, z$.

