

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-amino-3-nitropyridinium) dichromate(VI)

Samah Akriche* and Mohamed Rzaigui

Laboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia Correspondence e-mail: samah.akriche@fsb.rnu.tn

Received 12 December 2008; accepted 17 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.106; data-to-parameter ratio = 16.1.

The title compound, $(C_5H_6N_3O_2)_2[Cr_2O_7]$, consists of 2amino-3-nitropyridinium cations and discrete dichromate anions linked together by N-H···O and C-H···O hydrogen bonds, forming thick layers parallel to (101). Layer cohesion is ensured by N-H···O hydrogen bonding in addition to electrostatic and van der Waals interactions, forming a threedimensional framework. The dichromate anion is located on a twofold axis that passes through its bridging O atom.

Related literature

For related structures, see: Akriche & Rzaigui (2000); Khadhrani *et al.* (2006); Nicoud *et al.* (1997); Panunto *et al.* (1987); Sieroń (2007); Le Fur *et al.* (1998). For a discussion of hydrogen bonding, see: Desiraju (1989, 1995).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C_5H_6N_3O_2})_2[{\rm Cr_2O_7}] \\ M_r = 496.26 \\ {\rm Monoclinic}, \ C2/c \\ a = 14.799 \ (2) \\ {\rm \AA} \\ b = 7.464 \ (3) \\ {\rm \AA} \\ c = 17.870 \ (5) \\ {\rm \AA} \\ \beta = 116.71 \ (4)^\circ \end{array}$

Data collection

Enraf–Nonius TurboCAD-4 diffractometer $V = 1763.3 (11) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 1.31 \text{ mm}^{-1}\) T = 298 K 0.25 \times 0.23 \times 0.19 \text{ mm}\)

Absorption correction: none 3444 measured reflections

2123 independent reflections 1562 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 132 parameters $wR(F^2) = 0.106$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.44$ e Å $^{-3}$ 2123 reflections $\Delta \rho_{min} = -0.37$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O2	0.86	1.87	2.707 (3)	165
$N2-H2A\cdots O4$	0.86	2.17	2.974 (4)	155
$N2-H2B\cdots O6$	0.86	2.06	2.654 (4)	125
$N2 - H2B \cdot \cdot \cdot O6^{i}$	0.86	2.59	3.061 (4)	116
C3-H3···O4 ⁱⁱ	0.93	2.58	3.494 (4)	167
C4-H4···O3 ⁱⁱⁱ	0.93	2.50	3.337 (4)	150
$C5-H5\cdots O2^{iv}$	0.93	2.34	3.232 (4)	160

metal-organic compounds

2 standard reflections

frequency: 120 min

intensity decay: 3%

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-32 for Windows* (Farrugia, 1998); *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2417).

References

- Akriche, S. & Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 617-618.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal impact GbR, Bonn, Germany.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, Vol 54. New York: Elsevier.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2321.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1998). ORTEP-32 for Windows. University of Glasgow, Scotland.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
- Khadhrani, H., Ben Smaïl, R., Driss, A. & Jouini, T. (2006). Acta Cryst. E62, m146–m148.
- Le Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159-163.
- Nicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35–39.
- Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786–7797.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sieroń, L. (2007). Acta Cryst. E63, m2068.

supporting information

Acta Cryst. (2009). E65, m123 [doi:10.1107/S1600536808043018]

Bis(2-amino-3-nitropyridinium) dichromate(VI)

Samah Akriche and Mohamed Rzaigui

S1. Comment

A new engineering strategy using organic-inorganic hybrid materials have appeared over the past years. The challenge was to combine the advantages of organic crystals and those of the inorganic materials. As a part of our study of crystal packing in amino-nitro "push-pull" system, a new organic-inorganic salt, bis (2-amino-3-nitropyridinium) dichromate (I) have been synthesized.

The dichromate anion has a binary internal symmetry since its bridging oxygen atom is located on a twofold axis, and so is built by only one independent (CrO_4) group. This later with one independent $(2-NH_2-3-NO_2C_5H_3NH)_+$ cation constitute the asymmetric unit of (I) (Fig. 1).

As expected, the main geometrical features of anion agree with those previously observed for this group in other coumpounds (Sieroń, 2007; Khadhrani *et al.*,2006). The bond lengths and the angles within the cation are comparable with those observed for 2-amino-3-nitropyridinium dihydrogenphosphate (Akriche *et al.*,2000), 2-amino-3-nitropyridinium hydrogensulfate(Le Fur *et al.*, 1998) and 2-amino-3-nitropyridinium chloride (Nicoud *et al.*,1997).

The dichromate and organic entities manifest different interactions (electrostatic, H-bonds, Van Der Waals) to keep up the three-dimensionel network cohesion (Fig. 2). The main links are from the N—H…O bonds (Table 1) with H…O bond lengths falling in the range from 1.87–2.59 Å.

Long C—H…O contacts occur between cations and cation-anion moities with C…O bond lengths ranging from 3.494 (4)–3.232 (4)Å (Desiraju, 1989; Desiraju, 1995).

It's worth noticing the intracation contact N2—H2B···O6 (see Table 1 for symmetry code) which is always present in nitroaniline in which nitro and amino groups are *ortho* to one another, as clearly shown in a study of hydrogen patterns of nitroaniline derivatives (Panunto *et al.*, 1987). This situation precludes the rotation of the nitro group with respect to pyridinium ring. The angle between the planes of the NO₂ group and the heterocycle is 7.98° for cation, indicating a coplanar geometry.

S2. Experimental

 $0.004 \text{ mol of } 2\text{-amino-}3\text{-nitropyridine was dissolved in } 20 \text{ ml of pure acetic acid. } 5 \text{ ml solution containing } 0.004 \text{ mol of } CrO_3$ was added drop by drop under stirring at 333 K. The obtained solution is slowly evaporated at the ambiant temperature. After some days, Brown single crystals of the title compound are formed in the reactionnel midle.

Figure 1

An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) -x+1, y, -z+1/2]

Figure 2

Projection of (I) along the *b* axis.

Bis(2-amino-3-nitropyridinium) dichromate(VI)

Crystal data (C₅H₆N₃O₂)₂[Cr₂O₇] $M_r = 496.26$ Monoclinic, C2/c Hall symbol: -C 2yc a = 14.799 (2) Å b = 7.464 (3) Å c = 17.870 (5) Å $\beta = 116.71$ (4)° V = 1763.3 (11) Å³ Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator F(000) = 1000 $D_x = 1.869 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 25 reflections $\theta = 9-11^{\circ}$ $\mu = 1.31 \text{ mm}^{-1}$ T = 298 KDiamond-shaped, brown $0.25 \times 0.23 \times 0.19 \text{ mm}$

non-profiled ω scans 3444 measured reflections 2123 independent reflections 1562 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -19 \rightarrow 19$ $k = 0 \rightarrow 9$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.039$ Hydrogen site location: inferred from $wR(F^2) = 0.106$ neighbouring sites S = 1.04H-atom parameters constrained 2123 reflections $w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 0.8978P]$ where $P = (F_o^2 + 2F_c^2)/3$ 132 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.002$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $l = -10 \rightarrow 23$

intensity decay: 3%

2 standard reflections every 120 min

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cr1	0.51253 (3)	0.65455 (6)	0.34930 (3)	0.03488 (15)	
01	0.5000	0.5931 (6)	0.2500	0.0760 (11)	
O2	0.63121 (14)	0.6372 (3)	0.41598 (13)	0.0434 (5)	
03	0.4736 (2)	0.8522 (3)	0.35084 (18)	0.0672 (7)	
O4	0.44934 (17)	0.5121 (3)	0.37400 (14)	0.0544 (6)	
05	0.7372 (2)	-0.1246 (3)	0.67939 (16)	0.0607 (7)	
06	0.6258 (2)	-0.0987 (3)	0.55077 (17)	0.0687 (7)	
N1	0.70398 (18)	0.4291 (3)	0.55486 (16)	0.0416 (6)	
H1	0.6730	0.5020	0.5139	0.050*	
N2	0.58479 (19)	0.2213 (4)	0.47828 (16)	0.0544 (7)	
H2A	0.5568	0.3004	0.4397	0.065*	
H2B	0.5594	0.1155	0.4719	0.065*	
N3	0.69260 (19)	-0.0377 (3)	0.61537 (17)	0.0425 (6)	
C1	0.6667 (2)	0.2622 (4)	0.54739 (17)	0.0351 (6)	
C2	0.72292 (19)	0.1482 (3)	0.61610 (16)	0.0317 (5)	
C3	0.8061 (2)	0.2088 (4)	0.68474 (18)	0.0402 (6)	
Н3	0.8409	0.1320	0.7296	0.048*	
C4	0.8388 (2)	0.3827 (4)	0.6881 (2)	0.0499 (8)	
H4	0.8953	0.4252	0.7345	0.060*	
C5	0.7856 (2)	0.4899 (4)	0.6213 (2)	0.0494 (8)	
Н5	0.8063	0.6077	0.6218	0.059*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.0320 (2)	0.0429 (3)	0.0274 (2)	0.0004 (2)	0.01125 (17)	0.00519 (19)
01	0.073 (2)	0.122 (3)	0.0321 (17)	0.000	0.0232 (17)	0.000
O2	0.0357 (9)	0.0461 (11)	0.0406 (11)	-0.0011 (9)	0.0101 (9)	0.0065 (9)
03	0.0642 (15)	0.0518 (14)	0.0762 (18)	0.0208 (12)	0.0233 (14)	0.0154 (12)
O4	0.0483 (12)	0.0604 (14)	0.0583 (13)	-0.0093 (11)	0.0272 (11)	0.0052 (11)
O5	0.0850 (18)	0.0428 (13)	0.0624 (15)	0.0050 (12)	0.0402 (15)	0.0172 (11)
06	0.0712 (16)	0.0492 (13)	0.0703 (17)	-0.0253 (12)	0.0182 (14)	-0.0142 (12)
N1	0.0445 (13)	0.0357 (12)	0.0502 (15)	0.0080 (11)	0.0263 (12)	0.0123 (11)
N2	0.0428 (14)	0.0691 (18)	0.0389 (14)	-0.0034 (13)	0.0072 (12)	0.0105 (13)
N3	0.0505 (14)	0.0339 (12)	0.0511 (15)	-0.0035 (11)	0.0298 (12)	-0.0016 (12)
C1	0.0334 (12)	0.0418 (15)	0.0339 (14)	0.0036 (12)	0.0186 (11)	0.0044 (12)
C2	0.0343 (12)	0.0304 (12)	0.0323 (13)	0.0013 (11)	0.0168 (11)	0.0004 (11)
C3	0.0407 (14)	0.0429 (15)	0.0327 (14)	0.0044 (12)	0.0128 (12)	0.0036 (12)
C4	0.0453 (16)	0.0486 (18)	0.0464 (17)	-0.0110 (14)	0.0122 (14)	-0.0121 (14)
C5	0.0550 (18)	0.0321 (15)	0.068 (2)	-0.0080 (13)	0.0342 (17)	-0.0074 (14)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cr1-03	1.588 (2)	N2—H2A	0.8600
Cr1—O4	1.603 (2)	N2—H2B	0.8600
Cr1—02	1.625 (2)	N3—C2	1.457 (3)
Cr1—O1	1.7601 (14)	C1—C2	1.416 (4)
O1-Cr1 ⁱ	1.7601 (14)	C2—C3	1.366 (4)
O5—N3	1.219 (3)	C3—C4	1.377 (4)
O6—N3	1.221 (4)	С3—Н3	0.9300
N1—C5	1.336 (4)	C4—C5	1.356 (5)
N1—C1	1.344 (4)	C4—H4	0.9300
N1—H1	0.8600	С5—Н5	0.9300
N2—C1	1.320 (4)		
O3—Cr1—O4	110.50 (14)	N2—C1—N1	118.1 (3)
O3—Cr1—O2	110.01 (13)	N2—C1—C2	127.3 (3)
O4—Cr1—O2	108.49 (11)	N1—C1—C2	114.6 (2)
03—Cr1—O1	112.62 (17)	C3—C2—C1	121.3 (3)
04—Cr1—01	107.14 (15)	C3—C2—N3	118.2 (2)
02—Cr1—O1	107.93 (9)	C1—C2—N3	120.4 (2)
Crl ⁱ —Ol—Crl	149.8 (3)	C2—C3—C4	120.5 (3)
C5—N1—C1	124.7 (3)	С2—С3—Н3	119.7
C5—N1—H1	117.7	C4—C3—H3	119.7
C1—N1—H1	117.7	C5—C4—C3	117.7 (3)
C1—N2—H2A	120.0	C5—C4—H4	121.2
C1—N2—H2B	120.0	C3—C4—H4	121.2
H2A—N2—H2B	120.0	N1C5C4	121.1 (3)
O5—N3—O6	123.8 (3)	N1—C5—H5	119.4

supporting information

O5—N3—C2	117.6 (3)	С4—С5—Н5	119.4
O6—N3—C2	118.6 (3)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1…O2	0.86	1.87	2.707 (3)	165
N2—H2A····O4	0.86	2.17	2.974 (4)	155
N2—H2 <i>B</i> ···O6	0.86	2.06	2.654 (4)	125
N2—H2 <i>B</i> ···O6 ⁱⁱ	0.86	2.59	3.061 (4)	116
C3—H3····O4 ⁱⁱⁱ	0.93	2.58	3.494 (4)	167
C4—H4···O3 ^{iv}	0.93	2.50	3.337 (4)	150
С5—Н5…О2 ^v	0.93	2.34	3.232 (4)	160

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) x+1/2, -y+1/2, z+1/2; (iv) x+1/2, -y+3/2, z+1/2; (v) -x+3/2, -y+3/2, -z+1.