Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[8-(Diphenylphosphanyl)naphthyl- $\kappa^2 C^1$,*P*](phenylethynyl)tris(trimethyl-phosphane- κP)iron(II)

Robert Beck,* Hongjian Sun, Dexin Guan and Xiaoyan Li

School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China Correspondence e-mail: metallacycle@gmail.com

Received 6 November 2008; accepted 7 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.043; *wR* factor = 0.098; data-to-parameter ratio = 14.4.

The title compound, $[Fe(C_8H_5)(C_{22}H_{16}P)(C_3H_9P)_3]$, was synthesized by the addition of phenylethine to a solution of the parent methyl iron complex $Fe(CH_3){P(C_6H_5)_2(C_{10}H_6)}$ -(PMe₃)₃ at 213 K, accompanied by evolution of methane. The coordination around the iron center can be described as slightly distorted octahedral [Fe-P 2.2485 (12)-2.2902 (12) Å; Fe-C 1.918 (5), 2.015 (4) Å], with a *meridional* arrangement of the trimethylphosphine ligands and the introduced terminal alkinyl-ligand *trans* to the P(Ph)₂anchoring group.

Related literature

Some details of the synthesis of intermediates were described by Carré *et al.* (2000) and Karsch (1977). For related iron(II) complexes, see: Venturi *et al.* (2004); Costuas *et al.* (2004); Beck *et al.* (2008). Highly active iron(II) catalysts for olefin polymerization have bee prepared by Britovsek *et al.* (1998) and Small *et al.* (1998).

Experimental

Crystal data

 $[Fe(C_8H_5)(C_{22}H_{16}P)(C_3H_9P)_3]$ $M_r = 696.50$ Monoclinic, *Cc* a = 9.6667 (18) Å b = 19.965 (4) Å c = 19.035 (4) Å $\beta = 99.322$ (7)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.913, T_{max} = 0.945$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	
$wR(F^2) = 0.098$	
S = 1.00	
5830 reflections	
406 parameters	
2 restraints	

 $V = 3625.2 (12) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.62 mm^{-1} T = 293 (2) K 0.15 \times 0.13 \times 0.10 mm

19984 measured reflections 5830 independent reflections 4723 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.066$

H-atom parameters constrained $\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983); 2641 Friedel pairs Flack parameter: 0.045 (17)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Financial support of this work by the China Postdoctoral Science Foundation and the Shandong University Postdoctoral Science Foundation is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2474).

References

- Beck, R., Zheng, T., Sun, H., Li, X., Flörke, U. & Klein, H.-F. (2008). J. Organomet. Chem. 693, 3471–3478.
- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Britovsek, G. J. P., Gibson, V. C., Kimberely, B. S., Maddox, P. J., Solan, G. A., White, A. J. P. & Williams, D. J. (1998). *Chem. Commun.* pp. 849–850.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carré, F. H., Chuit, C., Corriu, R. J. P., Douglas, W. E., Guy, D. M. H. & Reye, C. (2000). *Eur. J. Inorg. Chem.* pp. 647–653.
- Costuas, K., Paul, F., Toupet, L., Halet, J.-F. & Lapinte, C. (2004). *Organometallics*, **23**, 2053–2068.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Karsch, H. H. (1977). Chem. Ber. 110, 2699-2711.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 102, 4049–4050.
- Venturi, C., Bellachioma, G., Cardaci, G. & Macchioni, A. (2004). *Inorg. Chim.* Acta, 357, 3712–3720.

supporting information

Acta Cryst. (2009). E65, m71 [doi:10.1107/S1600536808041421]

[8-(Diphenylphosphanyl)naphthyl- $\kappa^2 C^1$,*P*](phenylethynyl)tris(trimethyl-phosphane- κP)iron(II)

Robert Beck, Hongjian Sun, Dexin Guan and Xiaoyan Li

S1. Comment

Recently, much attention has been paid to the use of highly active bis(imino) pyridine iron complexes for ethylene polymerization and alpha-olefine oligomerization as catalyst precursors reported by Britovsek *et al.* (1998) and Small *et al.* (1998). At this stage it is remarkable how little is known about this type of reactive intermediates. With labile methyl iron complexes in the presence $P(Ph)_2$ -anchoring groups we were able to synthesize five-membered metallacyles under smooth conditions (see Beck *et al.* 2008). These complexes represents model compounds for the catalytic functionalization of C,*C* bonds. Related, phenylethinyl-iron(II) complexes were prepared by Venturi *et al.* (2004) and Costuas *et al.* (2004). The title compound Fe(CCPh){P(C₆H₅)₂(C₁₀H₆)}(PMe₃)₃ (1), was synthesized by addition of phenylethine to a solution of the parent methyl iron complex Fe(CH₃){P(C₆H₅)₂(C₁₀H₆)}(PMe₃)₃ at low temperature (213 K), accompanied by evolution of methane.

The *meridional-cis* arrangement of the ligands in the configuration remained stable when the reaction is finished, by means no rearrangement occurred because of different *trans* influence of the alkinyl carbon atom and no indication for isomers after the reaction was completed. From pentane solutions at 253 K orange-red crystal in form of needles were obtained, which were suitable for X-ray diffraction. The molecular structure of 1 is shown in Figure 1. The iron atom attains an octahedral coordination with a *meridional* arrangement of the trimethylphosphine ligands by two *trans* PMe₃ orientated groups (P3—Fe1—P2 = 158.97 (5)°) a *cis* disposed PMe₃ group (P4) *trans* to the metallated carbon (C1) atom (C1—Fe1—P4 = 174.38 (14)°), and the chelating phosphorus atom (P1) *trans* to the alkinyl group (CCPh) with an angle of (C11—Fe1—P1 = 173.69 (14)°). The inner bond angles of the trimethylphosphine ligands are close to 90°, with the smallest involving the bite angle of the five-membered chelate ring (C1—Fe1—P1 = 84.07 (13)°). The sum of internal angles is 537°, indicating considerable relaxation of the metallacycle towards planarity. The Fe—P bond lengths fall within the range observed for other Fe(II) complexes containing PMe₃ groups (Venturi *et al.*, 2004). The complex contains two different Fe—C bonds with *sp*, and *sp*² hybridization with bond lengths of 1.918 (5) and 2.015 (4) Å, respectively, which are consistent with those in related Cp-stabilized iron(II) complexes with terminal alkinyl groups reported by Costuas *et al.* (2004).

S2. Experimental

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. Literature methods were applied in the preparation of dimethyltetrakis(trimethylphosphine)iron(II) (Karsch, 1977), and 1-Diphenylphosphanyl-naphthaline (Carré *et al.*, 2000). Other chemicals were used as purchased. The title compound was synthesized by combining a solution of phenylethine (140 mg, 1.37 mmol) in 50 ml of THF at -70 °C with a sample of Fe(CH₃) $\{P(C_6H_5)_2(C_{10}H_6)\}(PMe_3)_3$ (836 mg, 1.37 mmol) in 50 ml of THF, effecting a change of color from red to orange. After warm-up the mixture was kept stirring at 293 K for 16 h, and then the volatiles were removed *in vacuo* to give orange

solid. This was dissolved in 50 ml of pentane and crystallized at 253 K to give yellow crystals, which were suitable for Xray diffraction. Yield 391 mg (41%); 396-398 K (dec.).

S3. Refinement

All H atoms were fixed geometrically and treated as riding on their parent atoms with C-H = 0.93 Å (aromatic) and 0.96 Å (methyl), and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figure 1

The molecular structure of (1) showing the atomic labels and 50% probability displacement ellipsoids. H atoms omitted for clarity.

[8-(Diphenylphosphanyl)naphthyl- $\kappa^2 C^1$, P](phenylethynyl)tris(trimethylphosphane- κ P)iron(II)

Crystal data	
$[Fe(C_8H_5)(C_{22}H_{16}P)(C_3H_9P)_3]$ $M_r = 696.50$ Monoclinic, <i>Cc</i> Hall symbol: C -2yc a = 9.6667 (18) Å b = 19.965 (4) Å c = 19.035 (4) Å $\beta = 99.322$ (7)° V = 3625.2 (12) Å ³ Z = 4	F(000) = 1472 $D_x = 1.276 \text{ Mg m}^{-3}$ Melting point: 398 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1391 reflections $\theta = 1.9-27.3^{\circ}$ $\mu = 0.62 \text{ mm}^{-1}$ T = 293 K Block, orange $0.15 \times 0.13 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{min} = 0.913$, $T_{max} = 0.945$ 19984 measured reflections 5830 independent reflections 4723 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.066$	$k = -21 \rightarrow 23$
$\theta_{\max} = 25.0^{\circ}, \ \theta_{\min} = 2.0^{\circ}$	$l = -22 \rightarrow 22$
$h = -11 \rightarrow 11$	

Refinement

-j	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.047P)^2 + 0.0194P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
5830 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
406 parameters	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983); 2641 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.045 (17)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.57710 (4)	0.97187 (3)	-0.00279 (3)	0.03402 (15)
P1	0.73164 (11)	0.89846 (6)	0.05495 (5)	0.0365 (3)
P2	0.42146 (11)	0.96230 (6)	0.07337 (6)	0.0445 (3)
P3	0.73799 (11)	1.02026 (6)	-0.06302 (6)	0.0415 (3)
P4	0.44623 (13)	0.90402 (7)	-0.08487 (6)	0.0484 (3)
C1	0.6666 (5)	1.0366 (2)	0.0723 (2)	0.0393 (10)
C2	0.7904 (4)	1.0176 (2)	0.12015 (19)	0.0369 (10)
C3	0.8470 (4)	0.9530 (2)	0.1165 (2)	0.0385 (10)
C4	0.9682 (5)	0.9347 (2)	0.1606 (2)	0.0473 (11)
H4	1.0048	0.8919	0.1571	0.057*
C5	1.0364 (5)	0.9798 (3)	0.2105 (2)	0.0575 (14)
Н5	1.1195	0.9673	0.2392	0.069*
C6	0.9829 (5)	1.0414 (3)	0.2174 (2)	0.0549 (13)
H6	1.0288	1.0704	0.2516	0.066*
C7	0.8580 (5)	1.0626 (2)	0.1735 (2)	0.0453 (11)
C8	0.7988 (6)	1.1257 (3)	0.1804 (2)	0.0577 (14)
H8	0.8412	1.1553	0.2150	0.069*
C9	0.6789 (6)	1.1436 (3)	0.1365 (3)	0.0610 (14)
Н9	0.6382	1.1851	0.1423	0.073*
C10	0.6157 (5)	1.0999 (2)	0.0822 (2)	0.0498 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H10	0.5363	1.1144	0.0518	0.060*
C11	0.4624 (4)	1.0389 (2)	-0.0559 (2)	0.0404 (11)
C12	0.3897 (5)	1.0786 (2)	-0.0953 (2)	0.0458 (11)
C13	0.3001 (4)	1.1223 (2)	-0.1402 (2)	0.0386 (10)
C14	0.3382 (5)	1.1498 (2)	-0.2021(2)	0.0504 (12)
H14	0.4253	1.1396	-0.2141	0.060*
C15	0.2487 (7)	1.1918 (2)	-0.2458 (2)	0.0632 (15)
H15	0.2769	1.2102	-0.2860	0.076*
C16	0.1194 (7)	1.2065 (3)	-0.2303 (3)	0.0667 (15)
H16	0.0590	1.2343	-0.2602	0.080*
C17	0.0789 (5)	1.1804 (3)	-0.1706 (3)	0.0642 (14)
H17	-0.0097	1.1900	-0.1602	0.077*
C18	0.1684 (5)	1.1397 (2)	-0.1254 (3)	0.0533 (12)
H18	0.1401	1.1235	-0.0842	0.064*
C19	0.9258 (5)	1.0057 (3)	-0.0370 (3)	0.0612 (14)
H19A	0.9456	0.9589	-0.0418	0.092*
H19B	0.9542	1.0191	0.0116	0.092*
H19C	0.9765	1.0314	-0.0671	0.092*
C20	0.7453 (6)	1.1119 (2)	-0.0592(3)	0.0710 (15)
H20A	0.7928	1.1284	-0.0963	0.107*
H20B	0.7953	1.1258	-0.0138	0.107*
H20C	0.6518	1.1297	-0.0656	0.107*
C21	0.7253 (6)	1.0122 (3)	-0.1594 (2)	0.0716 (16)
H21A	0.7990	1.0375	-0.1751	0.107*
H21B	0.6362	1.0289	-0.1823	0.107*
H21C	0.7340	0.9659	-0.1716	0.107*
C22	0.4704 (6)	0.9031 (3)	-0.1791 (2)	0.0835 (19)
H22A	0.5626	0.8868	-0.1824	0.125*
H22B	0.4596	0.9476	-0.1981	0.125*
H22C	0.4016	0.8742	-0.2057	0.125*
C23	0.2569 (6)	0.9208 (3)	-0.1019 (3)	0.0697 (16)
H23A	0.2120	0.8903	-0.1374	0.105*
H23B	0.2408	0.9659	-0.1184	0.105*
H23C	0.2191	0.9148	-0.0587	0.105*
C24	0.4422 (6)	0.8136 (3)	-0.0715 (3)	0.0725 (17)
H24A	0.4217	0.8043	-0.0247	0.109*
H24B	0.5317	0.7948	-0.0761	0.109*
H24C	0.3710	0.7941	-0.1065	0.109*
C25	0.4800 (6)	0.9780(3)	0.1683 (2)	0.0638 (15)
H25A	0.5080	1.0239	0.1753	0.096*
H25B	0.5580	0.9494	0.1855	0.096*
H25C	0.4046	0.9688	0.1941	0.096*
C26	0.3291 (6)	0.8838 (3)	0.0838 (3)	0.0706 (16)
H26A	0.2769	0.8880	0.1224	0.106*
H26B	0.3959	0.8481	0.0938	0.106*
H26C	0.2660	0.8741	0.0407	0.106*
C27	0.2763 (5)	1.0220 (3)	0.0600 (3)	0.0677 (16)
H27A	0.2163	1.0141	0.0947	0.101*

H27B	0.2238	1.0165	0.0131	0.101*
H27C	0.3127	1.0668	0.0653	0.101*
C28	0.6955 (5)	0.8309 (2)	0.1165 (2)	0.0443 (11)
C29	0.7102 (5)	0.8412 (3)	0.1906 (2)	0.0558 (13)
H29	0.7395	0.8827	0.2097	0.067*
C30	0.6813 (6)	0.7903 (3)	0.2350 (3)	0.0701 (16)
H30	0.6910	0.7977	0.2838	0.084*
C31	0.6384 (7)	0.7290 (4)	0.2078 (4)	0.088 (2)
H31	0.6192	0.6951	0.2383	0.106*
C32	0.6232 (7)	0.7169 (3)	0.1358 (4)	0.091 (2)
H32	0.5930	0.6752	0.1175	0.109*
C33	0.6539 (6)	0.7681 (3)	0.0904 (3)	0.0659 (15)
H33	0.6462	0.7597	0.0418	0.079*
C34	0.8435 (4)	0.8478 (2)	0.0054 (2)	0.0404 (10)
C35	0.8159 (5)	0.8479 (2)	-0.0685 (2)	0.0502 (12)
H35	0.7431	0.8740	-0.0920	0.060*
C36	0.8947 (6)	0.8099 (3)	-0.1076 (3)	0.0643 (15)
H36	0.8734	0.8103	-0.1571	0.077*
C37	1.0031 (6)	0.7718 (3)	-0.0754 (3)	0.0642 (14)
H37	1.0567	0.7469	-0.1023	0.077*
C38	1.0324 (5)	0.7704 (2)	-0.0022 (3)	0.0616 (14)
H38	1.1056	0.7441	0.0204	0.074*
C39	0.9539 (5)	0.8080 (2)	0.0377 (2)	0.0554 (13)
H39	0.9752	0.8067	0.0871	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0313 (3)	0.0370 (3)	0.0331 (3)	0.0010 (3)	0.0032 (2)	0.0010 (3)
P1	0.0365 (6)	0.0344 (7)	0.0374 (5)	0.0002 (5)	0.0027 (4)	0.0021 (5)
P2	0.0356 (6)	0.0585 (8)	0.0404 (6)	0.0014 (6)	0.0090 (5)	0.0033 (6)
P3	0.0362 (6)	0.0459 (7)	0.0431 (6)	0.0010 (5)	0.0087 (5)	0.0066 (5)
P4	0.0468 (7)	0.0534 (8)	0.0419 (6)	-0.0074 (6)	-0.0024 (5)	-0.0050 (6)
C1	0.045 (3)	0.039 (3)	0.036 (2)	0.004 (2)	0.0099 (18)	0.0032 (19)
C2	0.039 (2)	0.037 (3)	0.036 (2)	-0.006 (2)	0.0091 (17)	0.0010 (18)
C3	0.038 (2)	0.042 (3)	0.036 (2)	-0.003 (2)	0.0074 (18)	0.0065 (19)
C4	0.041 (3)	0.047 (3)	0.051 (2)	0.001 (2)	-0.001 (2)	0.009 (2)
C5	0.052 (3)	0.068 (4)	0.046 (3)	-0.009 (3)	-0.013 (2)	0.007 (2)
C6	0.052 (3)	0.059 (4)	0.048 (3)	-0.014 (3)	-0.008(2)	-0.007(2)
C7	0.051 (3)	0.041 (3)	0.042 (2)	-0.012 (2)	0.0012 (19)	-0.002 (2)
C8	0.075 (4)	0.046 (3)	0.048 (3)	-0.014 (3)	-0.004 (2)	-0.011 (2)
C9	0.075 (4)	0.044 (3)	0.062 (3)	0.009 (3)	0.005 (3)	-0.016 (2)
C10	0.050 (3)	0.048 (3)	0.049 (2)	0.006 (2)	-0.001 (2)	-0.004 (2)
C11	0.033 (2)	0.045 (3)	0.044 (2)	0.001 (2)	0.0092 (19)	-0.009 (2)
C12	0.040 (3)	0.050 (3)	0.045 (2)	0.003 (2)	-0.001 (2)	-0.001 (2)
C13	0.037 (2)	0.035 (3)	0.042 (2)	-0.004 (2)	0.0024 (18)	-0.0018 (19)
C14	0.058 (3)	0.043 (3)	0.052 (3)	0.010 (2)	0.013 (2)	-0.001 (2)
C15	0.104 (5)	0.039 (3)	0.044 (2)	0.004 (3)	0.007 (3)	0.004 (2)

C16	0.077 (4)	0.047 (3)	0.069 (3)	0.020 (3)	-0.009 (3)	0.002 (3)
C17	0.043 (3)	0.061 (4)	0.086 (4)	0.016 (3)	0.002 (3)	0.000 (3)
C18	0.045 (3)	0.054 (3)	0.061 (3)	0.002 (2)	0.008 (2)	0.009 (2)
C19	0.043 (3)	0.067 (4)	0.075 (3)	-0.005 (3)	0.015 (2)	0.021 (3)
C20	0.068 (4)	0.055 (3)	0.095 (4)	-0.006 (3)	0.030 (3)	0.016 (3)
C21	0.069 (4)	0.097 (5)	0.052 (3)	-0.008 (3)	0.019 (2)	0.014 (3)
C22	0.080 (4)	0.125 (6)	0.041 (3)	-0.011 (4)	0.000 (3)	-0.011 (3)
C23	0.055 (3)	0.079 (4)	0.068 (3)	-0.003 (3)	-0.010 (3)	-0.004 (3)
C24	0.069 (4)	0.065 (4)	0.079 (4)	-0.014 (3)	0.000 (3)	-0.019 (3)
C25	0.060 (3)	0.087 (4)	0.046 (3)	0.009 (3)	0.016 (2)	0.001 (3)
C26	0.065 (4)	0.083 (4)	0.067 (3)	-0.009 (3)	0.023 (3)	0.008 (3)
C27	0.045 (3)	0.096 (5)	0.064 (3)	0.015 (3)	0.015 (2)	0.010 (3)
C28	0.038 (2)	0.046 (3)	0.048 (2)	0.001 (2)	0.0051 (18)	0.009 (2)
C29	0.051 (3)	0.065 (3)	0.051 (3)	-0.007 (3)	0.007 (2)	0.016 (2)
C30	0.070 (4)	0.085 (5)	0.057 (3)	-0.010 (3)	0.017 (3)	0.021 (3)
C31	0.089 (5)	0.085 (5)	0.091 (5)	-0.019 (4)	0.014 (4)	0.043 (4)
C32	0.097 (5)	0.053 (4)	0.119 (6)	-0.026 (3)	0.007 (4)	0.022 (4)
C33	0.080 (4)	0.042 (3)	0.073 (3)	-0.012 (3)	0.006 (3)	0.006 (3)
C34	0.042 (2)	0.037 (3)	0.043 (2)	0.002 (2)	0.0089 (19)	-0.001 (2)
C35	0.054 (3)	0.047 (3)	0.049 (2)	0.008 (2)	0.005 (2)	0.000 (2)
C36	0.086 (4)	0.057 (3)	0.050 (3)	0.012 (3)	0.013 (3)	-0.014 (2)
C37	0.073 (4)	0.050 (3)	0.075 (4)	0.006 (3)	0.029 (3)	-0.013 (3)
C38	0.062 (4)	0.047 (3)	0.077 (3)	0.020 (2)	0.013 (3)	0.003 (3)
C39	0.062 (3)	0.053 (3)	0.052 (3)	0.015 (3)	0.009 (2)	-0.001 (2)

Geometric parameters (Å, °)

Fe1—C11	1.918 (5)	C19—H19B	0.9600
Fe1—C1	2.015 (4)	С19—Н19С	0.9600
Fe1—P1	2.2485 (12)	C20—H20A	0.9600
Fe1—P2	2.2601 (12)	C20—H20B	0.9600
Fe1—P4	2.2882 (13)	С20—Н20С	0.9600
Fe1—P3	2.2902 (12)	C21—H21A	0.9600
P1—C3	1.838 (4)	C21—H21B	0.9600
P1—C34	1.846 (4)	C21—H21C	0.9600
P1—C28	1.857 (4)	C22—H22A	0.9600
P2—C27	1.827 (5)	C22—H22B	0.9600
P2—C26	1.831 (6)	C22—H22C	0.9600
P2—C25	1.832 (5)	С23—Н23А	0.9600
Р3—С19	1.827 (5)	С23—Н23В	0.9600
P3—C21	1.826 (5)	С23—Н23С	0.9600
Р3—С20	1.833 (5)	C24—H24A	0.9600
P4—C24	1.825 (6)	C24—H24B	0.9600
Р4—С23	1.836 (6)	C24—H24C	0.9600
Р4—С22	1.846 (5)	C25—H25A	0.9600
C1—C10	1.380 (6)	C25—H25B	0.9600
C1—C2	1.434 (6)	С25—Н25С	0.9600
C2—C3	1.407 (6)	C26—H26A	0.9600

C2—C7	1.432 (6)	C26—H26B	0.9600
C3—C4	1.375 (6)	С26—Н26С	0.9600
C4—C5	1.395 (6)	С27—Н27А	0.9600
C4—H4	0.9300	С27—Н27В	0.9600
C5—C6	1.348 (7)	С27—Н27С	0.9600
С5—Н5	0.9300	C28—C33	1.384 (6)
C6—C7	1.417 (6)	C28—C29	1.410 (6)
С6—Н6	0.9300	С29—С30	1.380 (7)
C7—C8	1.398 (7)	С29—Н29	0.9300
C8—C9	1.363 (7)	C30—C31	1.367 (8)
С8—Н8	0.9300	С30—Н30	0.9300
C9—C10	1.413 (6)	C31—C32	1.376 (9)
С9—Н9	0.9300	С31—Н31	0.9300
С10—Н10	0.9300	C32—C33	1.401 (8)
C11—C12	1.230 (6)	С32—Н32	0.9300
C12—C13	1.416 (6)	С33—Н33	0.9300
C13—C18	1.392 (6)	C34—C35	1.390 (6)
C13—C14	1.402 (6)	C34—C39	1.392 (6)
C14—C15	1.381 (7)	C35—C36	1.376 (7)
C14—H14	0.9300	С35—Н35	0.9300
C15—C16	1.362 (8)	C36—C37	1.358 (7)
С15—Н15	0.9300	С36—Н36	0.9300
C16—C17	1.364 (8)	С37—С38	1.375 (7)
С16—Н16	0.9300	С37—Н37	0.9300
C17—C18	1.380 (6)	C38—C39	1.379 (7)
С17—Н17	0.9300	С38—Н38	0.9300
C18—H18	0.9300	С39—Н39	0.9300
C19—H19A	0.9600		
C11—Fe1—C1	94.06 (16)	Р3—С19—Н19В	109.5
C11—Fe1—P1	173.69 (14)	H19A—C19—H19B	109.5
C1—Fe1—P1	84.07 (13)	Р3—С19—Н19С	109.5
C11—Fe1—P2	90.51 (13)	H19A—C19—H19C	109.5
C1—Fe1—P2	81.56 (13)	H19B—C19—H19C	109.5
P1—Fe1—P2	95.16 (5)	P3—C20—H20A	109.5
C11—Fe1—P4	81.08 (13)	Р3—С20—Н20В	109.5
C1—Fe1—P4	171.99 (14)	H20A—C20—H20B	109.5
P1—Fe1—P4	101.42 (5)	Р3—С20—Н20С	109.5
P2—Fe1—P4	92.07 (5)	H20A—C20—H20C	109.5
C11—Fe1—P3	79.82 (13)	H20B-C20-H20C	109.5
C1—Fe1—P3	80.56 (13)	P3—C21—H21A	109.5
P1—Fe1—P3	93.92 (5)	P3—C21—H21B	109.5
P2—Fe1—P3	158.97 (5)	H21A—C21—H21B	109.5
P4—Fe1—P3	104.66 (5)	P3—C21—H21C	109.5
C3—P1—C34	107.7 (2)	H21A—C21—H21C	109.5
C3—P1—C28	100.65 (19)	H21B—C21—H21C	109.5
C34—P1—C28	96.3 (2)	P4—C22—H22A	109.5
C3—P1—Fe1	102.26 (14)	P4—C22—H22B	109.5

C34—P1—Fe1	120.34 (13)	H22A—C22—H22B	109.5
C28—P1—Fe1	127.17 (15)	P4—C22—H22C	109.5
C27—P2—C26	101.3 (3)	H22A—C22—H22C	109.5
C27—P2—C25	97.7 (2)	H22B—C22—H22C	109.5
C26—P2—C25	96.7 (3)	P4—C23—H23A	109.5
C27—P2—Fe1	115.56 (18)	P4—C23—H23B	109.5
C26—P2—Fe1	121.94 (19)	H23A—C23—H23B	109.5
C25—P2—Fe1	119.18 (18)	P4—C23—H23C	109.5
C19—P3—C21	99.2 (3)	H23A—C23—H23C	109.5
C19—P3—C20	96.8 (3)	H23B—C23—H23C	109.5
$C_{21} - P_{3} - C_{20}$	97.1 (3)	P4—C24—H24A	109.5
C19—P3—Fe1	121 53 (17)	P4-C24-H24B	109.5
C21—P3—Fe1	121.69 (19)	$H^{2}4A - C^{2}4 - H^{2}4B$	109.5
C20—P3—Fe1	115 26 (19)	P4-C24-H24C	109.5
$C_{24} P_{4} C_{23}$	99 3 (3)	$H^{2}4A - C^{2}4 - H^{2}4C$	109.5
C_{24} P4 C_{22}	97.7 (3)	$H_2 H_1 = C_2 + H_2 + C_2$ $H_2 + H_2 + C_2$	109.5
$C_{24} = P_4 = C_{22}$	96.3 (3)	P2H25A	109.5
C23 - P4 - C22	120.82(17)	P2-C25-H25B	109.5
C_{23} P4 Fe1	120.02(17) 115.95(19)	H_{25}^{-} C_{25}^{-} H_{25B}^{-}	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.95(19) 121.8(2)	$P_2 C_{25} H_{25}C$	109.5
$C_{22} - 1 + -101$	121.0(2) 115.8(4)	$H_{2} = C_{2} = H_{2} = C_{2}$	109.5
C10 $C1$ $Ee1$	113.0(4) 124.3(3)	$H_{25R} = C_{25} = H_{25C}$	109.5
$C_1 = C_1 = F_{c_1}$	124.3(3) 1100(3)	$P_2 C_{26} H_{26} A$	109.5
$C_2 = C_1 = \Gamma e_1$	119.9(3) 118.3(4)	P2 C26 H26P	109.5
$C_{3} = C_{2} = C_{1}$	110.3(4) 120.2(4)	$H_{2} = C_{20} = H_{20} = H_{20}$	109.5
C_{7} C_{2} C_{1}	120.2(4) 121.5(4)	$P_2 C_26 H_26C$	109.5
$C_{1} = C_{2} = C_{1}$	121.3(4) 120.0(4)	$H_{2} = C_{20} = H_{20} C_{20}$	109.5
C4 - C3 - C2	120.9(4) 126.9(4)	H26R C26 H26C	109.5
$C_4 - C_3 - \Gamma_1$	120.9(4)	$P_2 C_{27} H_{27A}$	109.5
$C_2 = C_3 = \Gamma_1$	111.9(3) 120 4 (4)	$P_2 = C_2 7 = H_2 7 R$	109.5
$C_3 = C_4 = C_3$	120.4 (4)	$H_2 = C_2 / H_1 Z / B$	109.5
C_{5} C_{4} H_{4}	119.8	$H_2/A = C_2/=H_2/B$	109.5
C_{5}	119.6	$H_{2} = C_{2} / = H_{2} / C_{2}$	109.5
C6 C5 H5	120.0 (4)	$\frac{112}{A} - \frac{12}{C}$	109.5
C_{0} C_{5} H_{5}	119.7	$H_2/B = C_2/=H_2/C$	109.3
$C4 - C3 - \Pi 3$	119.7	$C_{33} = C_{26} = C_{29}$	117.9 (4)
C_{5} C_{6} H_{6}	121.3 (4)	C_{20} C_{28} P1	120.4(3)
C_{3}	119.4	C_{29} C_{20} C_{20} C_{28}	121.7(4)
$C^{\circ} C^{\circ} C^{\circ} C^{\circ} C^{\circ}$	119.4	C_{30} C_{29} C_{28}	120.3 (3)
$C_{8} = C_{7} = C_{8}$	122.3(4)	C_{30} C_{29} H_{29} C_{28} C_{20} H_{20}	119.7
$C_{0} = C_{1} = C_{2}$	119.1 (4) 119.5 (4)	$C_{28} = C_{29} = H_{29}$	119.7
$C_{0} - C_{1} - C_{2}$	118.3 (4)	$C_{31} = C_{30} = C_{29}$	120.4 (3)
C9 - C8 - C7	120.0 (4)	$C_{31} - C_{30} - H_{30}$	119.8
С9—С8—Н8	120.0	$C_{29} - C_{30} - H_{30}$	119.8
$C^{0} = C^{0} = C^{10}$	120.0	$C_{30} = C_{31} = U_{32}$	120.8 (5)
$C_{0} = C_{0} = U_{0}$	120.6 (5)	$C_{30} = C_{31} = H_{31}$	119.6
$C_{10} = C_{10} = H_{10}$	119./	$C_{21} = C_{22} = C_{22}$	119.6
C10 - C9 - H9	119./	$C_{31} = C_{32} = C_{33}$	119.1 (6)
CI-CI0-C9	123.0 (4)	C31—C32—H32	120.4

C1 C10 H10	119 5	C22 C22 H22	120.4
	110.5	C33—C32—H32	120.4
C9—C10—H10	118.5	$C_{28} = C_{33} = C_{32}$	121.2 (5)
C12—C11—Fel	174.3 (4)	С28—С33—Н33	119.4
C11—C12—C13	177.2 (5)	С32—С33—Н33	119.4
C18—C13—C14	116.5 (4)	C35—C34—C39	117.1 (4)
C18—C13—C12	121.4 (4)	C35—C34—P1	119.0 (3)
C14—C13—C12	122.1 (4)	C39—C34—P1	123.9 (3)
C15—C14—C13	121.3 (5)	C36—C35—C34	121.0 (4)
C15—C14—H14	119.4	C36—C35—H35	119.5
C13 - C14 - H14	119.4	C_{34} C_{35} H_{35}	119.5
C_{16} C_{15} C_{14}	120.5 (5)	C_{27} C_{26} C_{25}	119.3 121.2(5)
$C_{10} = C_{13} = C_{14}$	120.3 (3)	$C_{37} = C_{36} = C_{35}$	121.2(3)
C10-C15-H15	119.7	$C_{3} = C_{3} = C_{3$	119.4
С14—С15—Н15	119.7	C35—C36—H36	119.4
C15—C16—C17	119.7 (5)	C36—C37—C38	119.1 (5)
C15—C16—H16	120.2	С36—С37—Н37	120.5
C17—C16—H16	120.2	С38—С37—Н37	120.5
C16—C17—C18	120.5 (5)	C37—C38—C39	120.4 (5)
C16—C17—H17	119.7	С37—С38—Н38	119.8
C18—C17—H17	119.7	C39—C38—H38	119.8
C17—C18—C13	121 5 (5)	$C_{38} - C_{39} - C_{34}$	1212(4)
C17 - C18 - H18	119.3	C_{38} C_{39} H_{39}	119.4
C_{12} C_{18} H_{18}	110.3	C_{24} C_{20} H_{20}	110.4
$C_{13} = C_{10} = H_{10}$	119.5	C34—C39—1139	117.4
Р3—С19—Н19А	109.5		
C1—Fe1—P1—C3	-10.24 (18)	C10—C1—C2—C7	-1.6 (6)
P2—Fe1—P1—C3	-91.18 (14)	Fe1—C1—C2—C7	179.1 (3)
P4—Fe1—P1—C3	175.66 (14)	C7—C2—C3—C4	-3.3 (6)
P3—Fe1—P1—C3	69.83 (14)	C1—C2—C3—C4	177.9 (4)
C1—Fe1—P1—C34	-129.5 (2)	C7—C2—C3—P1	171.0 (3)
P2—Fe1—P1—C34	149.58 (16)	C1—C2—C3—P1	-7.8(5)
P4—Fe1—P1—C34	56.41 (17)	C34—P1—C3—C4	-46.0(4)
P3—Fe1—P1—C34	-49 41 (16)	C_{28} P1 - C3 - C4	54 1 (4)
C1—Fe1—P1—C28	103.5(2)	F_{e1} P1 C3 C4	-173.8(4)
$P_{2} = P_{1} = P_{1} = C_{2}^{0}$	105.5(2)	C_{24} P_1 C_2 C_2	1/3.0(+)
$\mathbf{r}_{2} - \mathbf{r}_{1} = \mathbf{r}_{1} - \mathbf{c}_{20}$	22.33(19)	$C_{34} = F_{1} = C_{3} = C_{2}$	140.1(3)
P4 - FeI - PI - C28	-70.63(19)	C_{28} P_{1} C_{3} C_{2}	-119.7 (3)
P3—FeI—PI—C28	-1/6.46 (19)	Fel—Pl—C3—C2	12.3 (3)
C11—Fe1—P2—C27	-5.6 (3)	C2—C3—C4—C5	0.8 (7)
C1—Fe1—P2—C27	88.4 (2)	P1—C3—C4—C5	-172.6 (4)
P1—Fe1—P2—C27	171.6 (2)	C3—C4—C5—C6	1.6 (7)
P4—Fe1—P2—C27	-86.7 (2)	C4—C5—C6—C7	-1.3 (8)
P3—Fe1—P2—C27	56.4 (3)	C5—C6—C7—C8	178.7 (5)
C11—Fe1—P2—C26	118.1 (3)	C5—C6—C7—C2	-1.2(7)
C1—Fe1—P2—C26	-147.9(2)	C3—C2—C7—C8	-176.5(4)
P1—Fe1—P2—C26	-647(2)	C1-C2-C7-C8	2.3 (6)
$P_4 = F_{e1} = P_2 = C_{26}$	370(2)	C_{3} C_{2} C_{7} C_{6}	2.5 (6)
$P_{1} = P_{1} = P_{2} = C_{20}$	-170.0(2)	$C_{1} = C_{2} = C_{1} = C_{0}$	-177.9(4)
$r_{2} - r_{2} - r_{2} - r_{2} - r_{2}$	-1/9.9(2)	$C_1 - C_2 - C_1 - C_0$	-1/7.8(4)
C_{11} —rei—r2—C25	-121.5(2)		1/9.6 (5)
$(1 - Fe_1 - P_2 - C_25)$	-275(2)	(22 - (22 - (28 - (29	-0.4(7)

P1—Fe1—P2—C25	55.7 (2)	C7—C8—C9—C10	-2.0 (8)
P4—Fe1—P2—C25	157.4 (2)	C2—C1—C10—C9	-0.9 (7)
P3—Fe1—P2—C25	-59.5 (2)	Fe1—C1—C10—C9	178.4 (4)
C11—Fe1—P3—C19	165.2 (3)	C8—C9—C10—C1	2.8 (8)
C1—Fe1—P3—C19	69.2 (3)	C18—C13—C14—C15	-0.1 (7)
P1—Fe1—P3—C19	-14.1 (2)	C12—C13—C14—C15	179.3 (4)
P2—Fe1—P3—C19	101.4 (3)	C13-C14-C15-C16	-1.3 (7)
P4—Fe1—P3—C19	-117.0 (2)	C14—C15—C16—C17	1.0 (8)
C11—Fe1—P3—C21	-68.0 (3)	C15—C16—C17—C18	0.7 (8)
C1—Fe1—P3—C21	-163.9 (3)	C16—C17—C18—C13	-2.1 (8)
P1—Fe1—P3—C21	112.8 (2)	C14—C13—C18—C17	1.8 (7)
P2—Fe1—P3—C21	-131.8 (3)	C12—C13—C18—C17	-177.6 (4)
P4—Fe1—P3—C21	9.9 (2)	C3—P1—C28—C33	-157.4 (4)
C11—Fe1—P3—C20	48.9 (3)	C34—P1—C28—C33	-48.0 (4)
C1—Fe1—P3—C20	-47.0 (3)	Fe1—P1—C28—C33	88.2 (4)
P1—Fe1—P3—C20	-130.3 (2)	C3—P1—C28—C29	22.2 (4)
P2—Fe1—P3—C20	-14.9 (3)	C34—P1—C28—C29	131.6 (4)
P4—Fe1—P3—C20	126.8 (2)	Fe1—P1—C28—C29	-92.3 (4)
C11—Fe1—P4—C24	-165.1 (3)	C33—C28—C29—C30	-1.1 (7)
P1—Fe1—P4—C24	20.8 (2)	P1-C28-C29-C30	179.3 (4)
P2—Fe1—P4—C24	-74.9 (2)	C28—C29—C30—C31	0.2 (9)
P3—Fe1—P4—C24	117.9 (2)	C29—C30—C31—C32	0.0 (10)
C11—Fe1—P4—C23	-45.2 (2)	C30—C31—C32—C33	0.7 (11)
P1—Fe1—P4—C23	140.7 (2)	C29—C28—C33—C32	1.8 (8)
P2—Fe1—P4—C23	45.0 (2)	P1-C28-C33-C32	-178.6 (5)
P3—Fe1—P4—C23	-122.1 (2)	C31—C32—C33—C28	-1.7 (10)
C11—Fe1—P4—C22	71.3 (3)	C3—P1—C34—C35	-126.4 (4)
P1—Fe1—P4—C22	-102.8 (3)	C28—P1—C34—C35	130.3 (4)
P2—Fe1—P4—C22	161.5 (3)	Fe1—P1—C34—C35	-10.0 (4)
P3—Fe1—P4—C22	-5.7 (3)	C3—P1—C34—C39	54.7 (4)
C11—Fe1—C1—C10	15.3 (4)	C28—P1—C34—C39	-48.6 (4)
P1—Fe1—C1—C10	-170.7 (4)	Fe1—P1—C34—C39	171.2 (3)
P2—Fe1—C1—C10	-74.6 (4)	C39—C34—C35—C36	0.2 (7)
P3—Fe1—C1—C10	94.3 (4)	P1-C34-C35-C36	-178.7 (4)
C11—Fe1—C1—C2	-165.4 (3)	C34—C35—C36—C37	-0.9 (8)
P1—Fe1—C1—C2	8.5 (3)	C35—C36—C37—C38	1.2 (8)
P2—Fe1—C1—C2	104.7 (3)	C36—C37—C38—C39	-0.8 (8)
P3—Fe1—C1—C2	-86.5 (3)	C37—C38—C39—C34	0.2 (8)
C10—C1—C2—C3	177.1 (4)	C35—C34—C39—C38	0.1 (7)
Fe1—C1—C2—C3	-2.2 (5)	P1—C34—C39—C38	179.0 (4)