metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(μ -2-chloro-4-nitrobenzoato- $\kappa^2 O:O'$)bis[aquacopper(II)]

Eng Khoon Lim,^a Siang Guan Teoh,^a Ibrahim Abdul Razak,^b‡ Samuel Robinson Jebas^b§ and Hoong-Kun Fun^b*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 19 November 2008; accepted 10 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.049; wR factor = 0.121; data-to-parameter ratio = 36.3.

In the title binuclear copper(II) complex, $[Cu_2(C_7H_3CINO_4)_4-(H_2O)_2]$, each of the two independent Cu^{II} center is fivecoordinated by four O atoms of the carboxylate groups in the basal plane and one O atom of a water molecule in the apical position, in a distorted square-pyramidal geometry. The Cu– Cu distance is 2.6458 (4) Å. In the crystal structure, the dinuclear units are linked into a three-dimensional network by $O-H\cdots O$, $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds. One of the Cl atoms is disordered over two positions with occupancies of 0.650 (2) and 0.350 (2).

Related literature

For general background, see: Balaraman *et al.* (2006). For bond-length data, see: Allen *et al.* (1987). For related structures, see: Kabbani *et al.* (2004); Stachová *et al.* (2004).

V = 1669.63 (7) Å³

Mo $K\alpha$ radiation

 $0.76 \times 0.19 \times 0.10 \text{ mm}$

61401 measured reflections

18745 independent reflections

13379 reflections with $I > 2\sigma(I)$

 $\mu = 1.69 \text{ mm}^{-1}$ T = 293 (2) K

 $R_{\rm int} = 0.041$

Z = 2

Experimental

Crystal data [Cu₂(C₇H₃ClNO₄)₄(H₂O)₂]

 $M_r = 965.33$ Monoclinic, *Pc* a = 7.6721 (2) Å b = 15.2938 (4) Å c = 14.5653 (3) Å $\beta = 102.327$ (1)°

Data collection

Bruker SMART APEXII CCD area-detector diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.360, T_{max} = 0.844$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.049 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.121 & \mbox{$\Delta\rho_{\rm max}$} = 1.75 \mbox{ e \AA^{-3}} \\ S = 1.11 & \mbox{$\Delta\rho_{\rm min}$} = -0.85 \mbox{ e \AA^{-3}} \\ 18745 \mbox{ reflections} & \mbox{Absolute structure: Flack (1983),} \\ 516 \mbox{ parameters} & \mbox{8242 Friedel pairs} \\ 2 \mbox{ restraints} & \mbox{Flack parameter: 0.526 (8)} \end{array}$

 Table 1

 Selected bond lengths (Å).

Cu1-O7	1.953 (2)	Cu2-O3	1.948 (2)
Cu1-O4	1.967 (2)	Cu2-O8	1.964 (2)
Cu1-O5	1.971 (2)	Cu2-O1	1.968 (2)
Cu1-O2	1.983 (2)	Cu2-O6	1.987 (2)
Cu1 - O2W	2.159 (2)	Cu2-O1W	2.137 (2)

‡ On sabbatical leave at Universiti Sains Malaysia.

Nagar, Coimbatore 641114, India.

[§] Permanent address : Department of Physics, Karunya University, Karunya

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1W1···O13 ⁱ	0.85	2.35	2.910 (3)	124
$O1W - H2W1 \cdots O2^{ii}$	0.85	1.99	2.838 (3)	175
$O2W - H1W2 \cdots O9^{iii}$	0.82	2.15	2.927 (3)	158
$O2W - H2W2 \cdots O6^{iv}$	0.85	1.98	2.826 (3)	173
$C1-H1A\cdots Cl1^{v}$	0.93	2.78	3.417 (3)	127
$C4-H4A\cdots O14^{vi}$	0.93	2.51	3.331 (4)	147
$C8-H8A\cdots O12^{v}$	0.93	2.38	3.269 (4)	159
$C18-H18A\cdots O10^{vii}$	0.93	2.55	3.364 (4)	147
$C22-H22A\cdots O16^{viii}$	0.93	2.36	3.240 (4)	158
$C23-H23A\cdots O2W^{i}$	0.93	2.51	3.385 (3)	157
			(-)	

Symmetry codes: (i) $x, -y + 2, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) x - 1, y, z; (v) $x, -y + 1, z - \frac{1}{2}$; (vi) x - 1, y - 1, z; (vii) x + 1, y + 1, z; (viii) $x, -y + 2, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2732).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

- Balaraman, S., Venugopal, R., Palanisamy, U. M., Helen, S. & Mallayan, P. (2006). J. Inorg. Biochem. 100, 316–330.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 11, 749–756.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mrozińki, J. & Glowiak, T. (2004). Polyhedron, 23, 1303–1308.

supporting information

Acta Cryst. (2009). E65, m82-m83 [doi:10.1107/S1600536808041986]

Tetrakis(μ -2-chloro-4-nitrobenzoato- $\kappa^2 O:O'$)bis[aquacopper(II)]

Eng Khoon Lim, Siang Guan Teoh, Ibrahim Abdul Razak, Samuel Robinson Jebas and Hoong-Kun Fun

S1. Comment

In our quest to study the biological properties of Cu^{II} complexes, we have managed to prepare several water soluble Cu^{II} complexes. Cu^{II} complexes have been known to exhibit DNA cleavage activity *in vitro* (Balaraman *et al.*, 2006). Herein, we report the preparation and crystal structure of the title compound.

The coordination geometry around each Cu^{II} atom is square-pyramidal. Four O atoms, one each from the carboxylate groups of four organic ligands, form the basal plane with an average Cu—O bond distance of 1.968 (2) Å. The O atom of the water molecules lie in the apical position with an average Cu—O distance of 2.148 (2) Å. The Cu1 and Cu2 atoms are slightly displaced from the corresponding basal plane by 0.2037 (2) and 0.1959 (2) Å, respectively. The Cu1—Cu2 distance is 2.6458 (4) Å. Similar characteristics of the copper atom were also reported by Kabbani *et al.* (2004) and Stachová *et al.* (2004).

Bond lengths in the ligand show normal values (Allen *et al.*, 1987). Dihedral angles between nitro groups and benzene rings are: 6.3 (4) [C1-C6/O9,O10,N1], 16.0 (3) [C8-C13/O11,O12,N2], 6.5 (4) [C15-C20/O13,O14,N3] and 19.9 (3) Å [C22-C27/O15,O16,N4].

In the crystal structure, O—H···O, C—H···O and C—H···Cl intermolecular interactions (Table 2) form a threedimensional network (Fig.2).

S2. Experimental

An ethanol solution (50 ml) of 2-chloro-4-nitrobenzoic acid (4.84 g, 0.024 mol) was added to a solution of copper(II) sulfate pentahydrate (3.00 g, 0.012 mol) in ethanol (50 ml). This mixture was then stirred and refluxed and left to cool down to room temperature. After a few days of slow evaporation, blue crystals which are suitable for X-ray analysis were collected.

S3. Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the O atom, with $U_{iso}(H) = 1.5U_{eq}(O)$. All other H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Atom Cl3 attached to one of the phenyl rings is disordered over two positions with occupancies of 0.650 (2) and 0.350 (2). The structure shows a pseudo centre of symmetry. It can be solved and refined in the space group P2₁/c but the final *R* value (0.098) is large. The highest residual electron density peak is located at 1.02 Å from Cl3A and the deepest hole is located at 0.63Å from Cu1. The crystal is a twin with BASF = 0.526 (8).

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are given.

Figure 2

The crystal packing of the title compound, viewed down the *a* axis. Hydrogen bonds are shown as dotted lines. Only the major disorder component is shown.

Tetrakis(μ -2-chloro-4-nitrobenzoato- $\kappa^2 O:O'$)bis[aquacopper(II)]

Crystal	data
---------	------

$[C_{H}(C_{H},C NO_{h}),(H,O),]$	F(000) = 964
$[Cu_2(C_7\Pi_3C\Pi_3C\Pi_3C_1)_4(\Pi_2C)_2]$	T(000) = 904
$M_r = 965.33$	$D_{\rm x} = 1.920 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Pc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P -2yc	Cell parameters from 7272 reflections
a = 7.6721 (2) Å	$\theta = 2.7 - 38.1^{\circ}$
b = 15.2938 (4) Å	$\mu = 1.69 \text{ mm}^{-1}$
c = 14.5653 (3) Å	T = 293 K
$\beta = 102.327 \ (1)^{\circ}$	Block, blue
$V = 1669.63 (7) Å^3$	$0.76 \times 0.19 \times 0.10 \text{ mm}$
Z = 2	
Data collection	

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.360, T_{\max} = 0.844$ 61401 measured reflections 18745 independent reflections 13379 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 40.5^{\circ}, \ \theta_{min} = 1.3^{\circ}$ $h = -13 \rightarrow 13$ $k = -27 \rightarrow 27$ $l = -26 \rightarrow 26$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2]$
S = 1.11	where $P = (F_o^2 + 2F_c^2)/3$
18745 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
516 parameters	$\Delta \rho_{\rm max} = 1.75 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 8242 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.526 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.12722 (3)	0.783035 (19)	0.823603 (19)	0.01681 (6)	
Cu2	0.43478 (3)	0.72693 (2)	0.791272 (19)	0.01749 (6)	
Cl1	0.09737 (12)	0.49165 (5)	0.90348 (5)	0.02859 (15)	
Cl2	0.26779 (10)	0.78853 (4)	1.14338 (5)	0.02285 (13)	
Cl3A	0.51796 (19)	0.94108 (7)	1.07198 (7)	0.0375 (3)	0.650 (2)
H19A	0.4968	1.0306	0.7621	0.045*	0.650 (2)
Cl3B	0.4619 (3)	1.00985 (13)	0.71300 (12)	0.0219 (4)	0.350 (2)
H15A	0.5376	0.9693	1.0367	0.026*	0.350 (2)
Cl4	0.28627 (11)	0.71075 (4)	0.47526 (5)	0.02455 (14)	
01	0.2962 (3)	0.62123 (13)	0.74654 (14)	0.0232 (4)	
O2	0.0341 (3)	0.66738 (13)	0.77463 (14)	0.0208 (4)	
O3	0.4781 (3)	0.67950 (13)	0.91825 (14)	0.0231 (4)	
O4	0.2187 (3)	0.72835 (14)	0.94666 (15)	0.0242 (4)	
O5	0.2647 (3)	0.89022 (14)	0.86431 (15)	0.0245 (4)	
O6	0.5291 (3)	0.84210 (12)	0.84230 (14)	0.0216 (4)	
O7	0.0803 (3)	0.82590 (13)	0.69431 (13)	0.0205 (4)	
O8	0.3478 (3)	0.78407 (13)	0.66932 (15)	0.0234 (4)	
O9	-0.1850 (3)	0.25394 (14)	0.55559 (15)	0.0271 (4)	
O10	-0.1868 (4)	0.22569 (14)	0.70107 (18)	0.0326 (5)	
O11	0.6789 (3)	0.47095 (14)	1.34252 (16)	0.0284 (4)	
O12	0.5010 (4)	0.55861 (16)	1.39558 (16)	0.0381 (6)	
O13	0.7524 (3)	1.25825 (14)	1.05715 (16)	0.0295 (4)	
O14	0.7563 (4)	1.28442 (14)	0.91156 (19)	0.0354 (6)	

O15	-0.1241 (3)	1.02192 (14)	0.26224 (15)	0.0282 (4)
O16	0.0681 (4)	0.93987 (16)	0.21492 (17)	0.0414 (7)
N1	-0.1544 (4)	0.27333 (14)	0.63933 (19)	0.0218 (5)
N2	0.5679 (3)	0.52972 (16)	1.33285 (17)	0.0239 (5)
N3	0.7216 (4)	1.23743 (17)	0.9736 (2)	0.0250 (5)
N4	-0.0059(3)	0.96664 (15)	0.27622 (17)	0.0224 (5)
C1	0.0091 (4)	0.50152 (19)	0.6236 (2)	0.0243 (5)
H1A	0.0222	0.5424	0.5783	0.029*
C2	-0.0583(4)	0.41837(18)	0.59602 (19)	0.0218 (5)
H2A	-0.0893	0.4028	0.5329	0.026*
C3	-0.0775(4)	0.35938(17)	0.66677(19)	0.0198(5)
C4	-0.0312(4)	0.38101(17)	0.76208(19)	0.0204(5)
Н4А	-0.0456	0.3409	0.8078	0.0201(5)
C5	0.0430	0.46238 (18)	0.78645 (18)	0.024
C6	0.0577(4) 0.0573(3)	0.40230(10) 0.52307(17)	0.70049(18) 0.71030(18)	0.0177(3)
C0 C7	0.0375(3) 0.1335(3)	0.52397(17) 0.61080(17)	0.71939(18) 0.74800(18)	0.0173(4)
C?	0.1333(3)	0.01089(17)	1.0754(2)	0.0102(4)
	0.4909 (4)	0.50808 (18)	1.0734 (2)	0.0223 (3)
поА	0.5220	0.5419	1.0223	0.027
C9	0.5457(4)	0.52623 (19)	1.1623 (2)	0.0235 (5)
H9A	0.6004	0.4/1/	1.16/5	0.028*
C10	0.5096 (4)	0.56815 (17)	1.23927 (19)	0.0197 (5)
CII	0.4237 (4)	0.64803 (17)	1.23367 (19)	0.0199 (5)
H11A	0.4004	0.6746	1.2872	0.024*
C12	0.3726 (4)	0.68801 (17)	1.14587 (19)	0.0184 (5)
C13	0.4121 (3)	0.64894 (18)	1.06542 (19)	0.0193 (5)
C14	0.3656 (3)	0.69000 (18)	0.97047 (18)	0.0194 (5)
C15	0.5526 (4)	1.0118 (2)	0.9896 (2)	0.0254 (6)
C16	0.6210 (4)	1.0937 (2)	1.0165 (2)	0.0267 (6)
H16A	0.6517	1.1095	1.0795	0.032*
C17	0.6422 (4)	1.15070 (18)	0.94707 (19)	0.0208 (5)
C18	0.5973 (4)	1.12999 (18)	0.8526 (2)	0.0222 (5)
H18A	0.6125	1.1703	0.8072	0.027*
C19	0.5287 (4)	1.04701 (19)	0.8275 (2)	0.0239 (5)
C20	0.5060 (4)	0.98790 (18)	0.8952 (2)	0.0217 (5)
C21	0.4268 (4)	0.89879 (19)	0.86537 (19)	0.0205 (5)
C22	0.0576 (4)	0.93515 (17)	0.5342 (2)	0.0224 (5)
H22A	0.0303	0.9632	0.5860	0.027*
C23	0.0106 (4)	0.97402 (17)	0.4471 (2)	0.0208 (5)
H23A	-0.0451	1.0283	0.4394	0.025*
C24	0.0497 (4)	0.92867 (17)	0.37110 (18)	0.0190 (5)
C25	0.1356 (4)	0.84924 (16)	0.37889 (19)	0.0197 (5)
H25A	0.1600	0.8210	0.3265	0.024*
C26	0 1848 (4)	0.81247(17)	0.3205 0.46865 (18)	0.021 0.0183(5)
C27	0.1456(3)	0.85452(17)	0 54673 (18)	0.0105(0)
C28	0.1957(4)	0.81801(16)	0.64518 (18)	0.0172(4)
01W	0.1557(7)	0.69210(14)	0.73336(14)	0.0100(4)
H1W1	0.6256	0.6795	0.6754	0.0239 (+)
H_2W_1	0.0230	0.6260	0.0734	0.030
114 VV 1	0.//10	0.0007	0.7402	0.030

supporting information

O2W	-0.0975(3)	0.81661 (13)	0.88410 (14)	0.0207 (4)
H1W2	-0.1240	0.7839	0.9236	0.031*
H2W2	-0.2089	0.8273	0.8676	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.01168 (13)	0.02709 (15)	0.01187 (14)	0.00096 (10)	0.00296 (10)	-0.00209 (11)
Cu2	0.01168 (13)	0.02907 (15)	0.01193 (14)	0.00102 (10)	0.00297 (10)	-0.00302 (11)
Cl1	0.0377 (4)	0.0294 (3)	0.0179 (3)	0.0038 (3)	0.0042 (3)	0.0002 (3)
Cl2	0.0288 (4)	0.0221 (3)	0.0180 (3)	0.0003 (2)	0.0059 (3)	-0.0009(2)
Cl3A	0.0666 (8)	0.0300 (5)	0.0146 (4)	-0.0177 (5)	0.0059 (4)	0.0024 (4)
Cl3B	0.0266 (10)	0.0296 (10)	0.0077 (7)	0.0037 (7)	-0.0005 (6)	-0.0008 (6)
Cl4	0.0340 (4)	0.0204 (3)	0.0189 (3)	0.0019 (2)	0.0048 (3)	-0.0025 (2)
O1	0.0162 (9)	0.0313 (10)	0.0243 (10)	-0.0004 (7)	0.0089 (7)	-0.0065 (7)
O2	0.0155 (8)	0.0259 (9)	0.0214 (10)	0.0022 (6)	0.0050 (7)	-0.0006 (7)
O3	0.0174 (10)	0.0350 (11)	0.0181 (10)	0.0051 (7)	0.0061 (7)	0.0018 (8)
O4	0.0164 (10)	0.0409 (12)	0.0156 (10)	0.0049 (7)	0.0037 (8)	0.0009 (7)
O5	0.0152 (8)	0.0335 (10)	0.0250 (11)	-0.0023 (7)	0.0049 (7)	-0.0111 (8)
O6	0.0140 (8)	0.0286 (9)	0.0221 (10)	-0.0005 (6)	0.0033 (7)	-0.0064 (7)
07	0.0197 (10)	0.0294 (10)	0.0129 (9)	0.0013 (7)	0.0048 (7)	-0.0006 (7)
08	0.0142 (9)	0.0408 (12)	0.0142 (10)	0.0030 (6)	0.0007 (7)	0.0011 (7)
09	0.0290 (11)	0.0311 (10)	0.0216 (10)	0.0008 (8)	0.0063 (8)	-0.0050(8)
O10	0.0419 (15)	0.0304 (11)	0.0262 (12)	-0.0101 (8)	0.0089 (11)	0.0022 (8)
O11	0.0216 (10)	0.0359 (11)	0.0266 (11)	0.0012 (7)	0.0028 (8)	0.0083 (8)
O12	0.0580 (17)	0.0405 (13)	0.0205 (11)	0.0081 (11)	0.0190 (11)	0.0083 (9)
O13	0.0337 (12)	0.0340 (11)	0.0215 (11)	-0.0052 (9)	0.0077 (8)	-0.0077 (9)
O14	0.0453 (16)	0.0361 (13)	0.0281 (13)	-0.0081 (9)	0.0153 (12)	0.0046 (9)
O15	0.0242 (11)	0.0353 (11)	0.0231 (10)	-0.0008(8)	0.0009 (8)	0.0066 (8)
O16	0.076 (2)	0.0343 (12)	0.0192 (11)	0.0149 (12)	0.0221 (12)	0.0073 (9)
N1	0.0219 (11)	0.0263 (11)	0.0188 (11)	0.0021 (7)	0.0075 (9)	-0.0002(8)
N2	0.0272 (13)	0.0280 (11)	0.0172 (11)	-0.0048 (8)	0.0063 (9)	0.0034 (9)
N3	0.0198 (12)	0.0307 (11)	0.0258 (13)	0.0020 (8)	0.0081 (10)	0.0002 (10)
N4	0.0266 (12)	0.0240 (11)	0.0167 (10)	-0.0054 (8)	0.0048 (9)	0.0034 (8)
C1	0.0299 (14)	0.0268 (12)	0.0173 (13)	-0.0025 (9)	0.0077 (10)	-0.0023 (9)
C2	0.0277 (13)	0.0249 (12)	0.0141 (11)	-0.0001 (9)	0.0077 (9)	-0.0012 (9)
C3	0.0203 (12)	0.0246 (12)	0.0157 (11)	0.0012 (8)	0.0063 (9)	-0.0028(9)
C4	0.0220 (12)	0.0248 (12)	0.0155 (12)	0.0032 (9)	0.0067 (9)	0.0007 (9)
C5	0.0184 (11)	0.0288 (12)	0.0114 (11)	0.0029 (8)	0.0024 (8)	-0.0024 (9)
C6	0.0138 (10)	0.0278 (12)	0.0129 (11)	0.0028 (8)	0.0052 (8)	-0.0017 (8)
C7	0.0160 (11)	0.0258 (12)	0.0125 (11)	0.0015 (8)	0.0019 (8)	-0.0012 (8)
C8	0.0188 (12)	0.0352 (14)	0.0120 (11)	0.0036 (9)	0.0015 (8)	-0.0043 (10)
C9	0.0207 (13)	0.0299 (13)	0.0198 (13)	0.0010 (9)	0.0041 (10)	-0.0017 (10)
C10	0.0162 (11)	0.0238 (12)	0.0196 (13)	-0.0031 (8)	0.0051 (9)	0.0031 (9)
C11	0.0217 (13)	0.0252 (12)	0.0135 (11)	-0.0042 (9)	0.0056 (9)	-0.0023 (9)
C12	0.0173 (11)	0.0198 (11)	0.0188 (13)	-0.0034 (8)	0.0053 (9)	0.0005 (9)
C13	0.0140 (11)	0.0285 (12)	0.0152 (12)	-0.0031 (8)	0.0025 (9)	-0.0030 (9)
C14	0.0148 (11)	0.0297 (12)	0.0135 (11)	-0.0032 (8)	0.0029 (8)	-0.0042 (9)

C15	0.0277 (14)	0.0334 (14)	0.0161 (13)	-0.0038 (10)	0.0066 (10)	0.0000 (10)
C16	0.0289 (14)	0.0353 (14)	0.0161 (13)	-0.0077 (10)	0.0052 (10)	-0.0032 (10)
C17	0.0182 (12)	0.0283 (12)	0.0171 (12)	0.0024 (8)	0.0064 (9)	-0.0017 (9)
C18	0.0196 (12)	0.0284 (13)	0.0195 (13)	0.0020 (9)	0.0061 (10)	0.0030 (10)
C19	0.0200 (12)	0.0363 (14)	0.0156 (12)	0.0026 (10)	0.0045 (9)	-0.0028 (10)
C20	0.0173 (11)	0.0287 (13)	0.0189 (13)	-0.0017 (8)	0.0037 (9)	-0.0065 (10)
C21	0.0161 (11)	0.0325 (13)	0.0133 (11)	0.0006 (9)	0.0039 (9)	-0.0035 (9)
C22	0.0221 (13)	0.0250 (12)	0.0211 (13)	0.0002 (9)	0.0070 (10)	-0.0043 (10)
C23	0.0202 (12)	0.0219 (12)	0.0213 (13)	0.0013 (8)	0.0067 (10)	0.0014 (9)
C24	0.0212 (13)	0.0242 (12)	0.0117 (11)	-0.0062 (9)	0.0039 (9)	-0.0016 (9)
C25	0.0244 (13)	0.0215 (11)	0.0143 (12)	-0.0036 (9)	0.0063 (10)	-0.0005 (9)
C26	0.0197 (12)	0.0220 (11)	0.0142 (12)	-0.0009 (8)	0.0055 (9)	-0.0027 (8)
C27	0.0167 (12)	0.0240 (11)	0.0107 (10)	-0.0022 (8)	0.0026 (8)	-0.0008(8)
C28	0.0183 (12)	0.0215 (11)	0.0130 (11)	-0.0019 (8)	0.0005 (9)	-0.0038 (8)
O1W	0.0138 (9)	0.0420 (11)	0.0171 (9)	0.0041 (7)	0.0060 (7)	0.0002 (8)
O2W	0.0151 (9)	0.0296 (10)	0.0184 (9)	0.0010 (6)	0.0055 (7)	0.0006 (7)

Geometric parameters (Å, °)

Cu1—07	1.953 (2)	C2—H2A	0.93
Cu1—O4	1.967 (2)	C3—C4	1.397 (4)
Cu1—O5	1.971 (2)	C4—C5	1.364 (4)
Cu1—O2	1.983 (2)	C4—H4A	0.93
Cu1—O2W	2.159 (2)	C5—C6	1.392 (4)
Cu1—Cu2	2.6458 (3)	C6—C7	1.476 (4)
Cu2—O3	1.948 (2)	C8—C13	1.382 (4)
Cu2—O8	1.964 (2)	C8—C9	1.400 (4)
Cu2—O1	1.968 (2)	C8—H8A	0.93
Cu2—O6	1.987 (2)	C9—C10	1.370 (4)
Cu2—O1W	2.137 (2)	С9—Н9А	0.93
Cl1—C5	1.728 (3)	C10—C11	1.382 (4)
Cl2—C12	1.732 (3)	C11—C12	1.396 (4)
Cl3A—C15	1.678 (3)	C11—H11A	0.93
Cl3B—C19	1.733 (3)	C12—C13	1.405 (4)
Cl3B—H19A	0.7759	C13—C14	1.491 (4)
Cl4—C26	1.733 (3)	C15—C16	1.382 (4)
O1—C7	1.263 (3)	C15—C20	1.393 (4)
O2—C7	1.266 (3)	C15—H15A	0.97
O3—C14	1.277 (3)	C16—C17	1.371 (4)
O4—C14	1.252 (3)	C16—H16A	0.93
O5—C21	1.247 (3)	C17—C18	1.381 (4)
O6—C21	1.262 (3)	C18—C19	1.392 (4)
O7—C28	1.257 (3)	C18—H18A	0.93
O8—C28	1.257 (3)	C19—C20	1.376 (4)
O9—N1	1.228 (3)	C19—H19A	0.96
O10—N1	1.223 (3)	C20—C21	1.518 (4)
011—N2	1.225 (3)	C22—C23	1.378 (4)
O12—N2	1.223 (3)	C22—C27	1.399 (4)

O13—N3	1.232 (3)	C22—H22A	0.93
O14—N3	1.227 (4)	C23—C24	1.393 (4)
O15—N4	1.224 (3)	С23—Н23А	0.93
O16—N4	1.226 (3)	C24—C25	1.375 (4)
N1—C3	1.462 (4)	C25—C26	1.399 (4)
N2—C10	1.464 (4)	С25—Н25А	0.93
N3—C17	1,476 (4)	C26—C27	1,394 (4)
N4—C24	1 476 (4)	C27—C28	1 510 (4)
C1-C2	1 300 (4)	01W H1W1	0.85
C1 - C2	1.377(4)	O1W H2W1	0.85
$C_1 = U_1 A$	0.02	$O_{1}W = H_{1}W_{1}$	0.85
	0.95	$O_2 W = H_1 W_2$	0.82
C2—C3	1.401 (4)	O2w—H2w2	0.85
07—Cu1—04	167 90 (9)	C13—C8—H8A	118.8
07 - Cu1 - 05	89 29 (9)	C9 C8 H8A	118.8
04 - Cu1 = 05	00.20(0)	C_{10} C_{0} C_{8}	117.5(3)
04 - Cu1 - 03	90.90 (10)	$C_{10} = C_{9} = C_{8}$	117.3 (3)
0/Cu102	88.53 (9)	C10 - C9 - H9A	121.3
04—Cu1—02	88.83 (9)	C8—C9—H9A	121.3
05—Cu1—02	168.24 (8)	C9—C10—C11	122.8 (3)
O7—Cu1—O2W	108.34 (8)	C9—C10—N2	119.9 (3)
O4—Cu1—O2W	83.68 (8)	C11—C10—N2	117.2 (2)
O5—Cu1—O2W	95.85 (8)	C10-C11-C12	118.6 (2)
O2—Cu1—O2W	95.81 (8)	C10-C11-H11A	120.7
O7—Cu1—Cu2	85.71 (6)	C12—C11—H11A	120.7
O4—Cu1—Cu2	82.30 (7)	C11—C12—C13	120.6 (2)
O5—Cu1—Cu2	83.29 (6)	C11—C12—Cl2	116.5 (2)
O2—Cu1—Cu2	85.02 (6)	C13—C12—Cl2	122.8 (2)
O2W—Cu1—Cu2	165.93 (6)	C8—C13—C12	118.1 (3)
O3—Cu2—O8	168.65 (9)	C8—C13—C14	119.0 (2)
O3—Cu2—O1	88.80 (9)	C12—C13—C14	122.9 (2)
08—Cu2—O1	90.62.(9)	04	1252(3)
$03-Cu^2-06$	90.01 (9)	04-C14-C13	1185(2)
$08-Cu^2-06$	88 28 (9)	03-C14-C13	116.2(2)
$01 Cu^2 06$	168.47(8)	C_{16} C_{15} C_{20}	110.2(2)
$O_1^2 = C_{12}^2 = O_1^2 W_1^2$	108.47(8)	$C_{10} = C_{15} = C_{20}$	121.2(3)
O_{3}° C_{12}° O_{1W}°	107.00 (8) 84.20 (0)	C_{10} C_{13} C_{13} C_{13}	119.3(2)
08 - Cu2 - 01W	84.29 (9) 95.02 (9)	C_{20} C_{15} C	119.4 (2)
$01 - Cu^2 - 01W$	95.03 (8)	CI6—CI5—HI5A	120.1
06—Cu2—OIW	96.28 (9)	С20—С15—Н15А	118.6
O3—Cu2—Cu1	85.97 (6)	C17—C16—C15	117.7 (3)
08—Cu2—Cu1	82.70 (7)	C17—C16—H16A	121.1
O1—Cu2—Cu1	83.46 (6)	C15—C16—H16A	121.1
O6—Cu2—Cu1	85.02 (6)	C16—C17—C18	123.0 (3)
O1W—Cu2—Cu1	166.88 (6)	C16—C17—N3	119.1 (3)
C7—O1—Cu2	124.26 (18)	C18—C17—N3	117.9 (3)
C7—O2—Cu1	121.62 (18)	C17—C18—C19	118.1 (3)
C14—O3—Cu2	121.26 (18)	C17—C18—H18A	121.0
C14—O4—Cu1	125.22 (19)	C19—C18—H18A	121.0
C21—O5—Cu1	124.00 (19)	C20—C19—C18	120.6 (3)

C21—O6—Cu2	120.73 (18)	C20—C19—Cl3B	114.7 (2)
C28—O7—Cu1	120.60 (18)	C18—C19—Cl3B	124.7 (2)
C28—O8—Cu2	123.54 (19)	С20—С19—Н19А	119.5
O10—N1—O9	124.1 (3)	C18—C19—H19A	119.9
O10—N1—C3	117.9 (3)	C19—C20—C15	119.3 (3)
O9—N1—C3	118.0 (2)	C19—C20—C21	119.3 (2)
O12—N2—O11	124.9 (3)	C15—C20—C21	121.4 (3)
O12—N2—C10	117.2 (3)	O5—C21—O6	126.8 (3)
O11—N2—C10	117.9 (2)	O5—C21—C20	115.8 (2)
O14—N3—O13	123.4 (3)	O6—C21—C20	117.3 (2)
O14—N3—C17	118.4 (3)	C23—C22—C27	121.6 (2)
O13—N3—C17	118.2 (2)	C23—C22—H22A	119.2
O15—N4—O16	123.4 (3)	С27—С22—Н22А	119.2
O15—N4—C24	118.9 (2)	C22—C23—C24	117.3 (2)
016—N4—C24	117.7 (3)	С22—С23—Н23А	121.3
C2—C1—C6	120.6 (3)	C24—C23—H23A	121.3
C2—C1—H1A	119.7	C_{25} C_{24} C_{23}	123.7 (3)
C6—C1—H1A	119.7	$C_{25} - C_{24} - N_{4}$	117.6(2)
C1 - C2 - C3	117.7 (3)	C_{23} C_{24} N4	1187(2)
C1 - C2 - H2A	121.2	C_{24} C_{25} C_{26}	117.5(2)
C3-C2-H2A	121.2	C24—C25—H25A	121.3
C4—C3—C2	122.3 (3)	C26—C25—H25A	121.3
C4—C3—N1	119.1 (2)	C_{27} C_{26} C_{25}	121.0(2)
C2—C3—N1	118.6 (3)	C_{27} C_{26} C_{14}	122.8 (2)
$C_{5}-C_{4}-C_{3}$	118.5 (2)	C_{25} C_{26} C_{14}	116.18 (19)
C5-C4-H4A	120.8	$C_{26} = C_{27} = C_{22}$	118.9 (2)
C3-C4-H4A	120.8	$C_{26} = C_{27} = C_{28}$	1233(2)
C4—C5—C6	122.0 (2)	C_{22} C_{27} C_{28}	117.9 (2)
C4-C5-C11	120.1(2)	08-C28-07	127.2(3)
C6-C5-Cl1	117.9 (2)	08-C28-C27	1168(2)
C5-C6-C1	117.9(2) 119.0(2)	$07 - C_{28} - C_{27}$	116.0(2)
C_{5} C_{6} C_{7}	120.7(2)	$Cu^2 - O1W - H1W1$	110.7
C1 - C6 - C7	120.7(2) 120.3(2)	Cu2 = O1W = H1W1	141.6
01 - C7 - 02	125.6(3)	H1W1 = O1W = H2W1	107.7
01 - C7 - C6	125.0(3)	Cu1 - O2W - H1W2	118 7
$0^{2}-0^{7}-0^{6}$	118.2(2)	Cu1 = O2W = H1W2	140.4
$C_{13} - C_{8} - C_{9}$	1224(3)	H1W2 = O2W = H2W2	86.0
	122.4 (5)	111 W 2 0 2 W 112 W 2	00.0
07-Cu1-Cu2-03	-17767(10)	Cu1 - 02 - C7 - 01	-23(4)
04—Cu1—Cu2—O3	0 72 (9)	Cu1 = 02 = 07 = 01	175 39 (18)
05-Cu1-Cu2-03	92 54 (9)	$C_{5}-C_{6}-C_{7}-O_{1}$	1004(3)
02 - Cu1 - Cu2 - 03	-88 77 (9)	$C_1 - C_6 - C_7 - O_1$	-78.2(3)
02W - Cu1 - Cu2 - O3	53(2)	C_{5} C_{6} C_{7} O_{7}	-77.5(3)
02.00 Curl = 0.02 Curl	3.06.(9)	$C_1 - C_6 - C_7 - O_2^2$	103.9(3)
04-Cu1-Cu2-08	-17855(11)	C_{13} C_{8} C_{9} C_{10}	-14(4)
05-Cu1-Cu2-08	-86 72 (9)	C8-C9-C10-C11	20(4)
02 - Cu1 - Cu2 = 00	91 96 (9)	$C8-C9-C10-N^2$	-1760(2)
02 Cu1 - Cu2 - 00 02W - Cu1 - Cu2 - 00	-1740(2)	012 N2 C10 C9	-1646(3)
02 w -01 -02	1/4.0(2)	012-112-010-09	104.0 (3)

O7—Cu1—Cu2—O1	-88.41 (8)	O11—N2—C10—C9	15.0 (4)
O4—Cu1—Cu2—O1	89.98 (9)	O12—N2—C10—C11	17.3 (4)
O5—Cu1—Cu2—O1	-178.20 (11)	O11—N2—C10—C11	-163.1 (2)
O2—Cu1—Cu2—O1	0.49 (8)	C9-C10-C11-C12	-0.4 (4)
O2W—Cu1—Cu2—O1	94.5 (2)	N2-C10-C11-C12	177.5 (2)
O7—Cu1—Cu2—O6	91.96 (8)	C10-C11-C12-C13	-1.7 (4)
O4—Cu1—Cu2—O6	-89.64 (9)	C10-C11-C12-Cl2	-179.3 (2)
O5—Cu1—Cu2—O6	2.18 (9)	C9—C8—C13—C12	-0.7 (4)
O2—Cu1—Cu2—O6	-179.14 (10)	C9—C8—C13—C14	179.7 (3)
O2W—Cu1—Cu2—O6	-85.1 (2)	C11—C12—C13—C8	2.2 (4)
O7—Cu1—Cu2—O1W	-4.3 (3)	Cl2—C12—C13—C8	179.7 (2)
O4—Cu1—Cu2—O1W	174.1 (3)	C11—C12—C13—C14	-178.1 (2)
O5—Cu1—Cu2—O1W	-94.1 (3)	Cl2—C12—C13—C14	-0.7 (4)
O2—Cu1—Cu2—O1W	84.6 (3)	Cu1—O4—C14—O3	-0.8 (4)
O2W—Cu1—Cu2—O1W	178.6 (4)	Cu1—O4—C14—C13	-177.66 (18)
O3—Cu2—O1—C7	84.2 (2)	Cu2—O3—C14—O4	1.8 (4)
O8—Cu2—O1—C7	-84.4 (2)	Cu2—O3—C14—C13	178.69 (17)
O6—Cu2—O1—C7	0.0 (6)	C8—C13—C14—O4	140.1 (3)
O1W—Cu2—O1—C7	-168.7 (2)	C12—C13—C14—O4	-39.6 (4)
Cu1—Cu2—O1—C7	-1.8 (2)	C8—C13—C14—O3	-37.0 (4)
O7—Cu1—O2—C7	86.5 (2)	C12—C13—C14—O3	143.3 (3)
O4—Cu1—O2—C7	-81.7 (2)	C20-C15-C16-C17	-0.2 (5)
O5—Cu1—O2—C7	7.1 (6)	Cl3A—C15—C16—C17	-177.9 (2)
O2W—Cu1—O2—C7	-165.3 (2)	C15—C16—C17—C18	0.4 (5)
Cu2—Cu1—O2—C7	0.6 (2)	C15—C16—C17—N3	-177.6 (3)
O8—Cu2—O3—C14	2.2 (6)	O14—N3—C17—C16	172.8 (3)
O1—Cu2—O3—C14	-85.0 (2)	O13—N3—C17—C16	-5.9 (4)
O6—Cu2—O3—C14	83.6 (2)	O14—N3—C17—C18	-5.3 (4)
O1W—Cu2—O3—C14	-179.9 (2)	O13—N3—C17—C18	175.9 (3)
Cu1—Cu2—O3—C14	-1.5 (2)	C16—C17—C18—C19	-0.5 (4)
O7—Cu1—O4—C14	7.4 (6)	N3—C17—C18—C19	177.6 (2)
O5—Cu1—O4—C14	-83.3 (2)	C17—C18—C19—C20	0.3 (4)
O2—Cu1—O4—C14	84.9 (2)	C17—C18—C19—Cl3B	179.0 (2)
O2W—Cu1—O4—C14	-179.1 (2)	C18—C19—C20—C15	-0.1 (4)
Cu2—Cu1—O4—C14	-0.2 (2)	Cl3B—C19—C20—C15	-178.9 (2)
O7—Cu1—O5—C21	-87.4 (2)	C18—C19—C20—C21	178.5 (3)
O4—Cu1—O5—C21	80.5 (2)	Cl3B—C19—C20—C21	-0.3 (4)
O2—Cu1—O5—C21	-8.0 (6)	C16—C15—C20—C19	0.0 (5)
O2W—Cu1—O5—C21	164.3 (2)	Cl3A—C15—C20—C19	177.8 (2)
Cu2—Cu1—O5—C21	-1.6 (2)	C16—C15—C20—C21	-178.5 (3)
O3—Cu2—O6—C21	-89.5 (2)	Cl3A—C15—C20—C21	-0.8 (4)
O8—Cu2—O6—C21	79.3 (2)	Cu1—O5—C21—O6	-0.7 (4)
O1—Cu2—O6—C21	-5.4 (6)	Cu1—O5—C21—C20	177.50 (19)
O1W—Cu2—O6—C21	163.3 (2)	Cu2—O6—C21—O5	3.7 (4)
Cu1—Cu2—O6—C21	-3.6 (2)	Cu2—O6—C21—C20	-174.52 (18)
O4—Cu1—O7—C28	-10.3 (5)	C19—C20—C21—O5	-99.2 (3)
O5—Cu1—O7—C28	80.7 (2)	C15—C20—C21—O5	79.4 (4)
O2—Cu1—O7—C28	-87.7 (2)	C19—C20—C21—O6	79.2 (4)

O2W—Cu1—O7—C28	176.62(19)	C15—C20—C21—O6	-102.2(3)
O3—Cu2—O8—C28	-8.3 (6)	C22-C23-C24-C25	-1.6 (4)
O1—Cu2—O8—C28	78.7 (2)	C22-C23-C24-N4	177.4 (2)
O6—Cu2—O8—C28	-89.8 (2)	O15—N4—C24—C25	159.1 (3)
O1W—Cu2—O8—C28	173.7 (2)	O16—N4—C24—C25	-20.0 (4)
Cu1—Cu2—O8—C28	-4.6 (2)	O15—N4—C24—C23	-20.0 (4)
C6—C1—C2—C3	0.7 (4)	O16—N4—C24—C23	160.9 (3)
C1—C2—C3—C4	-0.3 (4)	C23—C24—C25—C26	0.3 (4)
C1-C2-C3-N1	177.6 (3)	N4—C24—C25—C26	-178.6 (2)
O10—N1—C3—C4	5.1 (4)	C24—C25—C26—C27	0.9 (4)
O9—N1—C3—C4	-176.1 (3)	C24—C25—C26—Cl4	178.0 (2)
O10—N1—C3—C2	-172.9 (3)	C25—C26—C27—C22	-0.8 (4)
O9—N1—C3—C2	5.9 (4)	Cl4—C26—C27—C22	-177.7 (2)
C2—C3—C4—C5	-0.3 (4)	C25—C26—C27—C28	-179.9 (2)
N1-C3-C4-C5	-178.2 (3)	Cl4—C26—C27—C28	3.2 (4)
C3—C4—C5—C6	0.5 (4)	C23—C22—C27—C26	-0.6 (4)
C3—C4—C5—C11	-179.2 (2)	C23—C22—C27—C28	178.6 (2)
C4—C5—C6—C1	-0.1 (4)	Cu2—O8—C28—O7	4.3 (4)
Cl1—C5—C6—C1	179.6 (2)	Cu2—O8—C28—C27	-176.45 (17)
C4—C5—C6—C7	-178.7 (3)	Cu1—O7—C28—O8	-0.1 (4)
Cl1—C5—C6—C7	1.0 (3)	Cu1—O7—C28—C27	-179.27 (16)
C2-C1-C6-C5	-0.5 (4)	C26—C27—C28—O8	41.5 (4)
C2-C1-C6-C7	178.1 (3)	C22—C27—C28—O8	-137.6 (3)
Cu2—O1—C7—O2	3.1 (4)	C26—C27—C28—O7	-139.2 (3)
Cu2—O1—C7—C6	-174.68 (17)	C22—C27—C28—O7	41.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
O1 <i>W</i> —H1 <i>W</i> 1···O13 ⁱ	0.85	2.35	2.910 (3)	124
$O1W - H2W1 \cdots O2^{ii}$	0.85	1.99	2.838 (3)	175
O2 <i>W</i> —H1 <i>W</i> 2···O9 ⁱⁱⁱ	0.82	2.15	2.927 (3)	158
O2W— $H2W2$ ···O6 ^{iv}	0.85	1.98	2.826 (3)	173
C1—H1A···Cl1 ^v	0.93	2.78	3.417 (3)	127
C4—H4A····O14 ^{vi}	0.93	2.51	3.331 (4)	147
C8—H8 <i>A</i> ···O12 ^v	0.93	2.38	3.269 (4)	159
C18—H18A····O10 ^{vii}	0.93	2.55	3.364 (4)	147
C22—H22A···O16 ^{viii}	0.93	2.36	3.240 (4)	158
C23—H23 A ···O2 W^{i}	0.93	2.51	3.385 (3)	157

Symmetry codes: (i) *x*, -*y*+2, *z*-1/2; (ii) *x*+1, *y*, *z*; (iii) *x*, -*y*+1, *z*+1/2; (iv) *x*-1, *y*, *z*; (v) *x*, -*y*+1, *z*-1/2; (vi) *x*-1, *y*-1, *z*; (vii) *x*+1, *y*+1, *z*; (viii) *x*, -*y*+2, *z*+1/2.