Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Dichloroacetyl-r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one

M. Thenmozhi,^a S. Ponnuswamy,^b V. Mohanraj,^b R. Vijayalakshmi^c and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India, and ^cDepartment of Chemistry, Queen Mary's College (Autonomous), Chennai 600 004, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 15 November 2008; accepted 27 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.184; data-to-parameter ratio = 25.1.

In the title compound, C₂₃H₂₅Cl₂NO₄, the piperidine ring adopts a distorted boat conformation. Inversion-related molecules are linked into centrosymmetric $R_2^2(16)$ dimers by paired $C-H\cdots O$ hydrogen bonds, and the dimers are connected via $C-H \cdots O$ hydrogen bonds into a chain running along [101].

Related literature

For general background, see: Eller et al.(2002); Ribeiro da Silva et al. (2007). For hybridization, see: Beddoes et al. (1986) For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

29354 measured reflections

 $R_{\rm int} = 0.031$

6905 independent reflections

4138 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{23}H_{25}Cl_2NO_4$	V = 4508.5 (3) Å ³
$M_r = 450.34$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 23.6295 (9) Å	$\mu = 0.32 \text{ mm}^{-1}$
b = 10.3999 (4) Å	T = 293 (2) K
c = 19.2617 (9) Å	$0.30 \times 0.25 \times 0.20$ mm
$\beta = 107.734 \ (1)^{\circ}$	

Data collection

Bruker Kappa APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.911, T_{\max} = 0.939$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	275 parameters
$wR(F^2) = 0.184$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
6905 reflections	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C6-H6···O1 ⁱ	0.98	2.30	3.216 (2)	155
C13−H13···O3 ⁱⁱ	0.93	2.58	3.453 (3)	155

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

SP thanks the UGC, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2726).

References

- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Eller, K., Henkes, E., Rossbacher, R. & Hoke, H. (2002). Amines, Aliphatic, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 1, p. 379. Weinheim: Wiley-VCH Verlag.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Ribeiro da Silva, M. A. V. & Cabral, J. I. T. A. (2007). J. Therm. Anal. Calorim. 90 865-871
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2009). E65, o11 [doi:10.1107/S1600536808040063]

1-Dichloroacetyl-r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one

M. Thenmozhi, S. Ponnuswamy, V. Mohanraj, R. Vijayalakshmi and M. N. Ponnuswamy

S1. Comment

The piperidine compounds are used in chemical industry for the synthesis of pharmacological drugs, either as reactants, solvents or being units of molecular chemical structure of the final compounds. These compounds have significant biological importance with more environmental impact (Ribeiro da Silva *et al.*, 2007). A significant industrial application of piperidine is for the production of dipiperidinyl dithiuram tetrasulfide, which is used as a rubber vulcanization accelerator (Eller *et al.*, 2002).

The piperidine ring adopts a distorted boat conformation, with puckering parameters (Cremer & Pople, 1975) $q_2 = 0.606$ (2) Å, $q_3 = 0.127$ (2) Å, and $\varphi = 77.5$ (2)°, and asymmetry parameter $\Delta_s(C2) = 18.26$ (17)° (Nardelli, 1983). The torsion angles C13—C12—O2—C15 [2.6 (3)°] and C20—C21—O4—C24 [-11.7 (3)°] indicate that the methoxy groups are almost coplanar with the attached rings (Fig.1). The sum of the bond angles around atom N1 (359.4°) of the piperidine ring is in accordance with *sp*² hybridization (Beddoes *et al.*, 1986). The best plane through the piperidine ring (N1/C3/C4/C6) and methoxyphenyl ring (C9—C14) are orthogonal to one another, with a dihedral angle of 87.18 (7)°, whereas, the other methoxyphenyl ring (C18—C23) is oriented at an angle of 54.47 (7)°.

The molecules at positions (x, y, z) and (1 - x, 1 - y, 1 - z) are linked through a pair of C13—H13···O3 hydrogen bonds forming a cyclic centrosymmetric $R_2^2(16)$ dimer (Bernstein *et al.*, 1995). The dimers are linked by intermolecular C6— H6···O1 hydrogen bonds (Table 1) into a chain running along the [101] (Fig.2).

S2. Experimental

To the solution of r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one (2 g) in benzene (25 ml), triethylamine (2.0 ml) and dichloroacetyl chloride (1.40 ml) were added and allowed to reflux on a water bath for 5 h. The course of the reaction was monitored by TLC. The solution was concentrated and the resulting mass was crystallized from ethanol.

S3. Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2-1.5$ (methyl) $U_{eq}(C)$.

Figure 1 The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the molecules viewed down b axis. Hydrogen bonds are shown as dashed lines.

1-Dichloroacetyl-r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one

Crystal data

C₂₃H₂₅Cl₂NO₄ $M_r = 450.34$ Monoclinic, C2/c Hall symbol: -C 2yc a = 23.6295 (9) Å b = 10.3999 (4) Å c = 19.2617 (9) Å $\beta = 107.734$ (1)° V = 4508.5 (3) Å³ Z = 8

Data collection

Bruker Kappa APEXII area-detector	29354 measured reflections
diffractometer	6905 independent reflections
Radiation source: fine-focus sealed tube	4138 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
ω and φ scans	$\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -32 \rightarrow 33$
(SADABS; Sheldrick, 2001)	$k = -14 \rightarrow 14$
$T_{\min} = 0.911, T_{\max} = 0.939$	$l = -27 \rightarrow 27$

F(000) = 1888

 $\theta = 2.2 - 30.6^{\circ}$

 $\mu = 0.32 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.25 \times 0.20$ mm

T = 293 K

 $D_{\rm x} = 1.327 {\rm Mg} {\rm m}^{-3}$

Melting point = 377-379 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6905 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.184$	neighbouring sites
S = 1.01	H-atom parameters constrained
6905 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0869P)^2 + 2.9239P]$
275 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.63 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.18029 (3)	0.52254 (7)	0.14172 (4)	0.0790 (2)
C12	0.26274 (4)	0.62339 (11)	0.07261 (4)	0.1127 (4)
01	0.26407 (7)	0.74756 (16)	0.21261 (9)	0.0635 (4)
O2	0.56012 (6)	0.89254 (16)	0.36906 (9)	0.0604 (4)

O3	0.37036 (9)	0.4204 (2)	0.48165 (10)	0.0798 (6)
O4	0.48349 (7)	0.30777 (15)	0.10880 (9)	0.0592 (4)
N1	0.31916 (6)	0.58476 (15)	0.27717 (8)	0.0402 (3)
C2	0.33601 (8)	0.66580 (19)	0.34377 (10)	0.0407 (4)
H2	0.3092	0.7400	0.3325	0.049*
C3	0.32172 (8)	0.5947 (2)	0.40675 (11)	0.0481 (5)
C4	0.35641 (9)	0.4707 (2)	0.42265 (12)	0.0530 (5)
C5	0.37393 (9)	0.4121 (2)	0.36076 (12)	0.0521 (5)
H5A	0.3721	0.3194	0.3651	0.063*
H5B	0.4151	0.4343	0.3676	0.063*
C6	0.33818 (8)	0.44832 (19)	0.28249 (11)	0.0435 (4)
H6	0.3023	0.3950	0.2685	0.052*
C7	0.28061 (8)	0.6362 (2)	0.21725 (11)	0.0460 (4)
C8	0.25568 (9)	0.5486 (2)	0.15090 (12)	0.0550 (5)
H8	0.2771	0.4665	0.1587	0.066*
С9	0.39837 (8)	0.72041 (18)	0.35651 (10)	0.0402 (4)
C10	0.40476 (8)	0.81147 (19)	0.30699 (10)	0.0431 (4)
H10	0.3716	0.8357	0.2689	0.052*
C11	0.45865 (9)	0.8669 (2)	0.31249 (11)	0.0476 (5)
H11	0.4616	0.9282	0.2786	0.057*
C12	0.50864 (8)	0.83169 (19)	0.36834 (11)	0.0453 (4)
C13	0.50374 (8)	0.7419 (2)	0.41826 (11)	0.0475 (5)
H13	0.5371	0.7176	0.4560	0.057*
C14	0.44863 (8)	0.6872 (2)	0.41224 (11)	0.0474 (5)
H14	0.4456	0.6268	0.4466	0.057*
C15	0.61272 (11)	0.8573 (4)	0.4232 (2)	0.1002 (11)
H15A	0.6096	0.8793	0.4703	0.150*
H15B	0.6457	0.9022	0.4154	0.150*
H15C	0.6188	0.7663	0.4210	0.150*
C16	0.25568 (9)	0.5548 (3)	0.38209 (14)	0.0630 (6)
H16A	0.2487	0.4941	0.3428	0.095*
H16B	0.2313	0.6293	0.3659	0.095*
H16C	0.2459	0.5160	0.4222	0.095*
C17	0.33296 (11)	0.6809 (3)	0.47360 (12)	0.0646 (6)
H17A	0.3258	0.6332	0.5128	0.097*
H17B	0.3067	0.7536	0.4621	0.097*
H17C	0.3734	0.7101	0.4881	0.097*
C18	0.37492 (8)	0.41315 (18)	0.23272 (11)	0.0416 (4)
C19	0.37935 (9)	0.2855 (2)	0.21607 (12)	0.0498 (5)
H19	0.3576	0.2247	0.2326	0.060*
C20	0.41538 (9)	0.2454 (2)	0.17531 (12)	0.0507 (5)
H20	0.4180	0.1587	0.1650	0.061*
C21	0.44721 (8)	0.3353 (2)	0.15026 (11)	0.0458 (4)
C22	0.44278 (9)	0.4630 (2)	0.16603 (13)	0.0533 (5)
H22	0.4640	0.5240	0.1488	0.064*
C23	0.40738 (9)	0.5018 (2)	0.20705 (13)	0.0508 (5)
H23	0.4052	0.5885	0.2177	0.061*
C24	0.49748 (14)	0.1779 (2)	0.10196 (17)	0.0750 (7)
		× /		× 7

supporting information

H24A	0.5128	0.1402	0.1495	0.113*
H24B	0.5269	0.1721	0.0770	0.113*
H24C	0.4623	0.1326	0.0747	0.113*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0512 (3)	0.0880 (5)	0.0926 (5)	-0.0197 (3)	0.0140 (3)	0.0036 (4)
Cl2	0.1188 (7)	0.1699 (10)	0.0577 (4)	-0.0632 (6)	0.0394 (4)	-0.0210 (5)
01	0.0641 (9)	0.0589 (10)	0.0558 (9)	0.0225 (8)	0.0008 (7)	0.0010 (7)
O2	0.0427 (7)	0.0669 (10)	0.0689 (10)	-0.0084 (7)	0.0130 (7)	0.0073 (8)
O3	0.0847 (13)	0.0963 (14)	0.0611 (11)	0.0211 (11)	0.0265 (9)	0.0364 (10)
O4	0.0632 (9)	0.0547 (9)	0.0686 (10)	0.0045 (7)	0.0332 (8)	-0.0007 (8)
N1	0.0348 (7)	0.0415 (8)	0.0421 (8)	0.0034 (6)	0.0087 (6)	0.0038 (7)
C2	0.0355 (8)	0.0449 (10)	0.0413 (9)	0.0042 (7)	0.0110 (7)	0.0027 (8)
C3	0.0389 (9)	0.0617 (13)	0.0448 (10)	0.0023 (8)	0.0146 (8)	0.0073 (9)
C4	0.0407 (9)	0.0641 (14)	0.0543 (12)	0.0010 (9)	0.0148 (9)	0.0185 (10)
C5	0.0486 (10)	0.0480 (12)	0.0609 (13)	0.0096 (9)	0.0183 (9)	0.0164 (10)
C6	0.0369 (8)	0.0398 (10)	0.0541 (11)	-0.0008(7)	0.0143 (8)	0.0053 (8)
C7	0.0381 (9)	0.0522 (12)	0.0449 (10)	0.0084 (8)	0.0084 (8)	0.0022 (9)
C8	0.0396 (9)	0.0657 (14)	0.0514 (12)	0.0050 (9)	0.0015 (8)	-0.0046 (10)
C9	0.0384 (8)	0.0412 (10)	0.0408 (9)	0.0021 (7)	0.0117 (7)	0.0000 (8)
C10	0.0394 (9)	0.0470 (11)	0.0412 (9)	0.0023 (8)	0.0097 (7)	0.0009 (8)
C11	0.0477 (10)	0.0495 (11)	0.0462 (11)	-0.0009 (8)	0.0151 (8)	0.0052 (9)
C12	0.0398 (9)	0.0460 (11)	0.0505 (11)	-0.0016 (8)	0.0145 (8)	-0.0059 (9)
C13	0.0386 (9)	0.0509 (12)	0.0479 (11)	0.0033 (8)	0.0057 (8)	0.0023 (9)
C14	0.0426 (9)	0.0511 (12)	0.0457 (10)	0.0006 (8)	0.0093 (8)	0.0080 (9)
C15	0.0412 (12)	0.117 (3)	0.126 (3)	-0.0143 (14)	0.0005 (14)	0.044 (2)
C16	0.0400 (10)	0.0862 (18)	0.0664 (14)	-0.0007 (10)	0.0214 (10)	0.0106 (13)
C17	0.0607 (13)	0.0883 (18)	0.0478 (12)	0.0039 (12)	0.0212 (10)	0.0006 (12)
C18	0.0352 (8)	0.0387 (10)	0.0502 (10)	0.0000 (7)	0.0119 (7)	0.0025 (8)
C19	0.0501 (10)	0.0419 (11)	0.0592 (12)	-0.0088(8)	0.0193 (9)	0.0019 (9)
C20	0.0554 (11)	0.0383 (11)	0.0584 (12)	-0.0018 (9)	0.0172 (10)	-0.0034 (9)
C21	0.0419 (9)	0.0483 (11)	0.0463 (10)	0.0025 (8)	0.0122 (8)	0.0024 (9)
C22	0.0521 (11)	0.0441 (11)	0.0693 (14)	-0.0048 (9)	0.0268 (10)	0.0041 (10)
C23	0.0504 (11)	0.0363 (10)	0.0708 (14)	-0.0005 (8)	0.0258 (10)	0.0009 (9)
C24	0.0880 (18)	0.0611 (16)	0.0897 (19)	0.0135 (13)	0.0475 (16)	-0.0023 (14)

Geometric parameters (Å, °)

C11—C8	1.757 (2)	C11—C12	1.383 (3)	
Cl2—C8	1.749 (2)	C11—H11	0.93	
O1—C7	1.217 (2)	C12—C13	1.370 (3)	
O2—C12	1.368 (2)	C13—C14	1.393 (3)	
O2—C15	1.406 (3)	C13—H13	0.93	
O3—C4	1.202 (3)	C14—H14	0.93	
O4—C21	1.368 (2)	C15—H15A	0.96	
O4—C24	1.406 (3)	C15—H15B	0.96	

N1—C7	1.344 (2)	C15—H15C	0.96
N1—C6	1.483 (2)	C16—H16A	0.96
N1—C2	1.484 (2)	C16—H16B	0.96
C2—C9	1.528 (2)	C16—H16C	0.96
C2—C3	1.544 (3)	С17—Н17А	0.96
С2—Н2	0.98	С17—Н17В	0.96
C3—C4	1.508 (3)	С17—Н17С	0.96
C3—C17	1.524 (3)	C18—C19	1.377 (3)
C3—C16	1 543 (3)	C18—C23	1 383 (3)
C4-C5	1 505 (3)	C19 - C20	1.383(3)
C5—C6	1 534 (3)	C19—H19	0.93
C5—H5A	0.97	C_{20} C_{21}	1 376 (3)
C5_H5B	0.97	C_{20} H_{20}	0.93
C6 C18	1 521 (3)	C_{20} C_{21} C_{22}	1.373(3)
C6 H6	0.08	$C_{21} = C_{22}$	1.373(3)
C_{0}	0.98	$C_{22} = C_{23}$	1.374 (3)
$C^{\circ} = U^{\circ}$	1.555 (5)	C22—II22	0.93
C_{8}	0.98	С25—Н25	0.93
C9C14	1.380 (3)	C24—H24A	0.96
C9—C10	1.385 (3)	C24—H24B	0.96
	1.372 (3)	C24—H24C	0.96
C10—H10	0.93		
C12 O2 C15	117 00 (10)	02 C12 C11	115 57 (18)
$C_{12} = 02 = C_{13}$	117.59 (19)	C_{13} C_{12} C_{11}	119.45 (18)
$C_{21} = 0_{4} = 0_{24}$	123 51 (16)	C12 - C12 - C14	119.78 (18)
C7 N1 C2	125.51(10) 116.70(15)	$C_{12} = C_{13} = C_{14}$	120.1
$C_{1} = N_{1} = C_{2}$	110.70(15)	$C_{12} = C_{13} = H_{13}$	120.1
$C_0 = N_1 = C_2$	119.19(13) 100.07(14)	$C_{14} = C_{13} = 1113$	120.1 121.55(10)
N1 = C2 = C3	109.97(14) 100.00(16)	$C_{9} = C_{14} = C_{15}$	121.33 (19)
N1 = C2 = C3	109.99(10) 119.90(16)	C_{9} C_{14} H_{14}	119.2
$C_{9} - C_{2} - C_{3}$	116.69 (10)	C13 - C14 - H14	119.2
$N1 - C_2 - H_2$	105.7	$O_2 = C_{15} = H_{15} P_{15}$	109.5
$C_2 = C_2 = H_2$	105.7		109.5
$C_3 = C_2 = H_2$	105.7	HISA—CIS—HISB	109.5
C4 = C3 = C17	112.76 (18)		109.5
C4 - C3 - C16	105.59 (19)	HI5A—CI5—HI5C	109.5
C1/-C3-C16	108.54 (17)	HISB—CIS—HISC	109.5
C4 - C3 - C2	109.49 (15)	C3—C16—H16A	109.5
C17—C3—C2	111.01 (18)	C3—C16—H16B	109.5
C16—C3—C2	109.25 (17)	H16A—C16—H16B	109.5
O3—C4—C5	120.7 (2)	C3—C16—H16C	109.5
O3—C4—C3	122.7 (2)	H16A—C16—H16C	109.5
C5—C4—C3	116.68 (17)	H16B—C16—H16C	109.5
C4—C5—C6	118.50 (17)	С3—С17—Н17А	109.5
C4—C5—H5A	107.7	С3—С17—Н17В	109.5
C6—C5—H5A	107.7	H17A—C17—H17B	109.5
C4—C5—H5B	107.7	C3—C17—H17C	109.5
C6—C5—H5B	107.7	H17A—C17—H17C	109.5
H5A—C5—H5B	107.1	H17B—C17—H17C	109.5

N1-C6-C18	113.94 (15)	C19—C18—C23	117.99 (18)
N1—C6—C5	111.57 (16)	C19—C18—C6	118.50 (17)
C18—C6—C5	108.14 (15)	C23—C18—C6	123.37 (18)
N1—C6—H6	107.6	C18—C19—C20	121.69 (18)
С18—С6—Н6	107.6	С18—С19—Н19	119.2
С5—С6—Н6	107.6	С20—С19—Н19	119.2
O1—C7—N1	124.06 (19)	C21—C20—C19	119.30 (19)
O1—C7—C8	118.08 (18)	C21—C20—H20	120.3
N1—C7—C8	117.85 (18)	C19-C20-H20	120.3
C7—C8—Cl2	109.96 (16)	Q4—C21—C22	115.80 (18)
C7—C8—Cl1	107.21 (15)	04-C21-C20	124.66 (19)
$C_1^2 - C_8 - C_{11}$	10,21(12) 110,00(12)	C^{22} C^{21} C^{20}	121.00(19) 11954(18)
C7-C8-H8	109.9	$C_{22} = C_{21} = C_{23}$	120.75(19)
$C_{12} - C_{8} - H_{8}$	109.9	$C_{21} = C_{22} = C_{23}$	119.6
C12 = C0 = H8	109.9	C_{23} C_{22} H_{22}	119.6
C_{14} C_{9} C_{10}	117 29 (17)	$C_{22} = C_{23} = C_{18}$	120.72 (19)
$C_{14} = C_{9} = C_{10}$	117.29(17) 126.23(17)	$C_{22} = C_{23} = C_{18}$	120.72 (19)
$C_{14} = C_{9} = C_{2}$	120.23(17) 116.48(16)	$C_{22} = C_{23} = H_{23}$	119.0
$C_{10} - C_{9} - C_{2}$	110.46(10) 121.94(19)	$C_{18} = C_{23} = H_{23}$	119.0
$C_{11} = C_{10} = C_{3}$	121.04 (10)	O4 = C24 = H24R	109.5
$C_{11} = C_{10} = H_{10}$	119.1	$U_4 - U_2 + U_2 $	109.5
$C_{2} = C_{10} = H_{10}$	119.1	$H_24A - C_24 - H_24B$	109.5
C10-C11-C12	120.10 (19)	$U_4 - U_2 - H_2 + U_2 $	109.5
CIO-CII-HII	120.0	$H_24A - C_24 - H_24C$	109.5
	120.0	H24B—C24—H24C	109.5
02-012-013	124.98 (18)		
C7—N1—C2—C9	-104 12 (18)	N1—C2—C9—C14	-110.8(2)
$C_{6}-N_{1}-C_{2}-C_{9}$	84 47 (19)	C_{3} C_{2} C_{9} C_{14}	17 3 (3)
C7-N1-C2-C3	123 10 (17)	N1 - C2 - C9 - C10	689(2)
C6-N1-C2-C3	-48.31(19)	C_{3} C_{2} C_{9} C_{10}	-163.05(18)
N1 - C2 - C3 - C4	60.4(2)	$C_{14} - C_{9} - C_{10} - C_{11}$	01(3)
C9-C2-C3-C4	-67.6(2)	C_{2}^{-} C_{9}^{-} C_{10}^{-} C_{11}^{-}	-179.62(18)
N1 - C2 - C3 - C17	$-174\ 47\ (15)$	$C_{2} = C_{10} = C_{11} = C_{12}$	04(3)
$C_{9}-C_{2}-C_{3}-C_{17}$	57 5 (2)	$C_{15} = 0^{2} = C_{12} = C_{13}$	26(3)
$N1 - C^2 - C^3 - C^{16}$	-54.8(2)	$C_{15} = 02 = C_{12} = C_{13}$	-177.9(3)
$C_{2}^{0} - C_{2}^{2} - C_{3}^{2} - C_{16}^{16}$	177.18(18)	C_{10} C_{11} C_{12} C	-179.95(18)
$C_{17} = C_{2} = C_{10} = C_{10}$	20 1 (3)	$C_{10} = C_{11} = C_{12} = C_{2}$	-0.5(3)
$C_{1}^{-} C_{3}^{-} C_{4}^{-} C_{3}^{-}$	-80.2(3)	$C_{10} = C_{11} = C_{12} = C_{13}$	170 43 (10)
$C_{10} = C_{10} = C_{10} = C_{10}$	153.2(3)	$C_{11} = C_{12} = C_{13} = C_{14}$	1/9.43(19)
$C_2 = C_3 = C_4 = C_5$	-150.11(10)	$C_{11} = C_{12} = C_{13} = C_{14}$	-0.6(3)
$C_{1} = C_{3} = C_{4} = C_{5}$	150.11(19)	$C_{10} = C_{9} = C_{14} = C_{13}$	170,11,(18)
$C_1 C_2 C_3 C_4 C_5$	-260(2)	$C_2 = C_7 = C_{14} = C_{15}$	1/7.11(10)
$C_2 - C_3 - C_4 - C_5$	20.0(2)	C_{12} C_{13} C_{14} C_{9} C_{10} $C_$	-160.22(17)
$C_{3} = C_{4} = C_{5} = C_{6}$	-22.2(2)	$C_{5} = C_{6} = C_{10} = C_{10}$	100.22(17)
$C_{7} = V_{1} = C_{7} = C_{7}$	22.3(3)	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $	(3.1(2))
$C_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	122.54(17)	1N1 - C0 - C10 - C23	24.2(3)
$\begin{array}{c} C_2 \\ \hline \\ C_7 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	-122.54(17)	$C_{2} = C_{1}^{2} = C_{1}^{2} = C_{2}^{2}$	-100.5(2)
C = NI = C = C = C	-1/0.53(1/)	$C_{23} = C_{18} = C_{19} = C_{20}$	0.4 (3)
C2-NI-C6-C5	0.3 (2)	Co-C18-C19-C20	-1/3.39(19)

C4—C5—C6—N1	36.3 (2)	C18—C19—C20—C21	-0.5 (3)
C4—C5—C6—C18	162.32 (18)	C24—O4—C21—C22	169.2 (2)
C6—N1—C7—O1	178.95 (18)	C24—O4—C21—C20	-11.7 (3)
C2-N1-C7-O1	7.9 (3)	C19—C20—C21—O4	-179.0 (2)
C6—N1—C7—C8	-0.6 (3)	C19—C20—C21—C22	0.0 (3)
C2—N1—C7—C8	-171.63 (16)	O4—C21—C22—C23	179.7 (2)
O1—C7—C8—Cl2	49.9 (2)	C20—C21—C22—C23	0.6 (3)
N1—C7—C8—Cl2	-130.51 (17)	C21—C22—C23—C18	-0.7 (4)
O1—C7—C8—Cl1	-69.7 (2)	C19—C18—C23—C22	0.2 (3)
N1—C7—C8—Cl1	109.92 (18)	C6-C18-C23-C22	175.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A	
C6—H6…O1 ⁱ	0.98	2.30	3.216 (2)	155	
C13—H13…O3 ⁱⁱ	0.93	2.58	3.453 (3)	155	

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1, -y+1, -z+1.