organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(2-Hydroxyethyl)-2-(*p*-tolylamino)quinazolin-4(3*H*)-one

Gui-Fu Zhang,^a Zuan Ma^b and Xu-Hong Yang^a*

^aDepartment of Chemistry and Life Science, Xianning College, Xianning 4371000, Hubei, People's Republic of China, and ^bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, Hubei, People's Republic of China Correspondence e-mail: xhyang8875301@yahoo.com.cn

Received 30 November 2008; accepted 1 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.017 Å; *R* factor = 0.046; *wR* factor = 0.138; data-to-parameter ratio = 14.3.

In the title compound, $C_{17}H_{17}N_3O_2$, the quinazolinone ring system is essentially planar. The benzene ring is twisted with respect to it by a dihedral angle of 32.7 (5)°. The molecular conformation is stabilized by an N-H···O hydrogen bond, and the crystal structure is stabilized by intermolecular O-H···N interactions.

Related literature

For the biological properties of quinazolinone derivatives, see: Pandeya *et al.* (1999); Shiba *et al.* (1997), Malamas & Millen (1991); Mannschreck *et al.* (1984); Kung *et al.* (1999); Bartroli *et al.* (1998); Palmer *et al.* (1997); Tsou *et al.* (2001); Matsuno *et al.* (2002). For the synthesis, see: Yang *et al.* (2008). For related structures, see: Hu *et al.* (2006); Qu *et al.* (2008); Zeng *et al.* (2008); Sun *et al.* (2008).

Experimental

Crystal data

$C_{17}H_{17}N_3O_2$	
$M_r = 295.34$	
Monoclinic, $P2_1/n$	
a = 7.8589 (2) Å	

b = 19.1706 (5) Å c = 10.6696 (3) Å $\beta = 111.082 (3)^{\circ}$ $V = 1499.89 (8) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) *T*_{min} = 0.981, *T*_{max} = 0.993

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.138$ S = 1.072938 reflections 206 parameters 2 restraints T = 298 (2) K $0.10 \times 0.10 \times 0.08$ mm

15404 measured reflections 2938 independent reflections 2074 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.23 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.17 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1 <i>D</i> ···N3 ⁱ N1−H1···O1	0.88 (15) 0.87 (7)	2.09 (15) 1.98 (8)	2.882 (12) 2.806 (12)	149 (13) 160 (12)

Symmetry code: (i) -x + 2, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors are grateful to Xianning College for financial support of this work and for providing laboratory and analytical facilities. The authors also acknowledge Dr Xiang-Gao Meng, Central China Normal University Whuhan, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2827).

References

- Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M. & Garcia-Rafanell, J. F. (1998). J. Med. Chem. 41, 1869–1882.
- Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.
- Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705–4713.
- Malamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492-1503.
- Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381–383.
- Matsuno, K. et al. (2002). J. Med. Chem. 45, 3057-3066.
- Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519–1529.
- Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. D. (1999). Pharm. Acta Helv. 74, 11–17.
- Qu, Y.-N., Pan, L.-R. & Hu, Y.-G. (2008). Acta Cryst. E64, o137.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). *Pharmazie*, 52, 189–194.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sun, Y., Zeng, G.-P. & Hu, Y.-G. (2008). Acta Cryst. E64, 0311-0312.
- Tsou, H. E., Mamuya, N., Johnson, B. D., Reich, M. F., Gruber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E.,

Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719–2734.

- Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.
- Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, 0535.

supporting information

Acta Cryst. (2009). E65, o34-o35 [doi:10.1107/S1600536808040440]

3-(2-Hydroxyethyl)-2-(p-tolylamino)quinazolin-4(3H)-one

Gui-Fu Zhang, Zuan Ma and Xu-Hong Yang

S1. Comment

The synthesis of derivatives of quinazolinone has been the focus of great interest. This is due, in part, to the broad spectrum of biological properties of these compounds. Some of these activities include antimicrobial (Pandeya *et al.*, 1999; Shiba *et al.*, 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck *et al.*, 1984), antibacterial (Kung *et al.*, 1999), antifungal (Bartroli *et al.*, 1998), protein tyrosine kinase inhibitors (Palmer *et al.*, 1997), EGFR inhibitors (Tsou *et al.*, 2001) and PDGFR phosphorylation inhibitors (Matsuno *et al.*, 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. The compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. The bond lengths and angles are unexceptional. The quinazolinone ring system is almost planar, with a maximum deviation of 0.037Å for N2; the phenyl ring is twisted with respect to it, with a dihedral angle of 32.7 (5)°. Intramolecular N—H…O and intermolecular O—H…N hydrogen bonds (Fig. 2 and Table 2) stabilize the molecular conformation and the crystal structure.

S2. Experimental

To a solution of 1-(4-methyl-phenyl)- 3-(2-ethoxycarbonylphenyl) carbodiimide (3 mmol) in THF (15 ml) was added 2aminoethanol (3 mmol). After the reaction mixture was allowed to stand for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 4 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. The product was recrystallized from methanol-dichloromethane (1:1 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction.

S3. Refinement

All H atoms were located in difference maps. Those bonded to C were treated as riding atoms with C—H = 0.93 Å, $U_{iso}=1.2U_{eq}$ (C) for Csp^2 , C—H = 0.97 Å, $U_{iso}=1.2U_{eq}$ (C) for CH₂. The coordinates of the H atoms bonded to N and O were refined with a distance restraint of O—H = 0.88 (2)Å and $U_{iso}=1.2U_{eq}$ (O, N).

Figure 1

View of the molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound, showing the hydrogen bonds as dashed lines.

3-(2-Hydroxyethyl)-2-(p-tolylamino)quinazolin-4(3H)-one

Crystal data

C₁₇H₁₇N₃O₂ $M_r = 295.34$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.8589 (2) Å b = 19.1706 (5) Å c = 10.6696 (3) Å $\beta = 111.082$ (3)° V = 1499.89 (8) Å³ Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{\min} = 0.981, T_{\max} = 0.993$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.138$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
2938 reflections	and constrained refinement
206 parameters	$w = 1/[\sigma^2(F_o^2) + (0.081P)^2 + 0.012P]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

F(000) = 624

 $\theta = 2.3 - 23.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Block, colorless

 $0.10 \times 0.10 \times 0.08 \text{ mm}$

15404 measured reflections 2938 independent reflections

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

2074 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.037$

 $h = -9 \rightarrow 9$

 $k = -23 \rightarrow 23$

 $l = -13 \rightarrow 11$

 $D_{\rm x} = 1.308 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2754 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.713 (2)	0.6964 (7)	0.4651 (16)	0.077 (5)	
0.5917	0.6810	0.4512	0.116*	
0.7975	0.6738	0.5432	0.116*	
	x 0.713 (2) 0.5917 0.7975	x y 0.713 (2) 0.6964 (7) 0.5917 0.6810 0.7975 0.6738	x y z 0.713 (2) 0.6964 (7) 0.4651 (16) 0.5917 0.6810 0.4512 0.7975 0.6738 0.5432	xyz U_{iso}^*/U_{eq} 0.713 (2)0.6964 (7)0.4651 (16)0.077 (5)0.59170.68100.45120.116*0.79750.67380.54320.116*

H1C	0.7434	0.6846	0.3881	0.116*
C2	0.7255 (16)	0.7741 (6)	0.4853 (13)	0.053 (3)
C3	0.6939 (17)	0.8197 (6)	0.3785 (13)	0.056 (3)
H3	0.6602	0.8019	0.2918	0.068*
C4	0.7113 (16)	0.8908 (6)	0.3978 (11)	0.050 (3)
H4	0.6892	0.9202	0.3243	0.060*
C5	0.7611 (14)	0.9190 (5)	0.5253 (11)	0.042 (3)
C6	0.7883 (15)	0.8745 (6)	0.6330 (12)	0.048 (3)
H6	0.8185	0.8924	0.7193	0.058*
C7	0.7703 (16)	0.8033 (6)	0.6116 (13)	0.053 (3)
H7	0.7891	0.7740	0.6848	0.063*
C8	0.8785 (14)	1.0302 (5)	0.6438 (11)	0.041 (3)
С9	0.9600 (16)	1.1474 (6)	0.7315 (11)	0.047 (3)
C10	1.0902 (15)	1.1136 (6)	0.8487 (11)	0.044 (3)
C11	1.1021 (15)	1.0410 (6)	0.8529 (11)	0.044 (3)
C12	1.2277 (17)	1.0094 (7)	0.9662 (12)	0.059 (3)
H12	1.2365	0.9610	0.9711	0.070*
C13	1.3379 (19)	1.0490 (8)	1.0699 (13)	0.066 (4)
H13	1.4213	1.0272	1.1448	0.080*
C14	1.3277 (19)	1.1213 (7)	1.0656 (12)	0.064 (4)
H14	1.4040	1.1478	1.1366	0.077*
C15	1.2045 (18)	1.1529 (7)	0.9560 (12)	0.057 (3)
H15	1.1965	1.2013	0.9528	0.068*
C16	0.7068 (16)	1.1345 (6)	0.5175 (11)	0.049 (3)
H16A	0.6734	1.1787	0.5463	0.058*
H16B	0.5999	1.1047	0.4912	0.058*
C17	0.7589 (16)	1.1470 (6)	0.3967 (11)	0.051 (3)
H17A	0.6786	1.1817	0.3390	0.061*
H17B	0.8828	1.1645	0.4253	0.061*
N1	0.7697 (13)	0.9925 (5)	0.5361 (9)	0.048 (3)
H1	0.737 (16)	1.015 (6)	0.461 (9)	0.057*
N2	0.8506 (12)	1.1022 (4)	0.6320 (9)	0.042 (2)
N3	0.9966 (12)	0.9998 (5)	0.7464 (9)	0.046 (2)
01	0.7451 (12)	1.0832 (4)	0.3238 (8)	0.055 (2)
H1D	0.84 (2)	1.074 (7)	0.306 (15)	0.083*
O2	0.9394 (12)	1.2106 (4)	0.7163 (9)	0.064 (3)
	· · ·			

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.090 (11)	0.048 (8)	0.099 (12)	-0.014 (7)	0.040 (10)	-0.019 (7)
C2	0.049 (7)	0.045 (7)	0.068 (8)	-0.010 (5)	0.025 (6)	-0.011 (6)
C3	0.064 (8)	0.056 (7)	0.054 (8)	-0.018 (6)	0.028 (7)	-0.018 (6)
C4	0.052 (7)	0.051 (7)	0.046 (7)	-0.011 (5)	0.018 (6)	-0.003 (5)
C5	0.037 (6)	0.040 (6)	0.046 (6)	-0.009 (4)	0.013 (5)	-0.003 (5)
C6	0.051 (7)	0.047 (7)	0.046 (6)	-0.010 (5)	0.016 (6)	-0.006 (5)
C7	0.052 (8)	0.045 (7)	0.059 (8)	-0.008(5)	0.018 (6)	0.004 (5)
C8	0.041 (6)	0.037 (6)	0.044 (6)	-0.003 (5)	0.015 (5)	-0.004 (5)

C9	0.056 (7)	0.038 (6)	0.051 (7)	-0.001 (5)	0.025 (6)	-0.008 (5)
C10	0.049 (7)	0.041 (6)	0.043 (6)	-0.004(5)	0.020 (5)	-0.007 (5)
C11	0.045 (7)	0.045 (6)	0.040 (6)	-0.003 (5)	0.013 (5)	-0.006 (5)
C12	0.066 (8)	0.052 (7)	0.047 (7)	0.001 (6)	0.007 (6)	0.000 (5)
C13	0.065 (9)	0.075 (9)	0.045 (7)	-0.002(7)	0.002 (7)	-0.005 (6)
C14	0.070 (9)	0.070 (9)	0.044 (7)	-0.016 (7)	0.010(7)	-0.015 (6)
C15	0.069 (9)	0.049 (7)	0.052 (7)	-0.011 (6)	0.022 (7)	-0.014 (6)
C16	0.043 (7)	0.044 (6)	0.055 (7)	0.009 (5)	0.013 (6)	0.001 (5)
C17	0.052 (7)	0.043 (6)	0.047 (7)	0.005 (5)	0.007 (6)	0.003 (5)
N1	0.052 (6)	0.040 (5)	0.041 (5)	-0.005 (4)	0.006 (5)	0.000 (4)
N2	0.043 (5)	0.037 (5)	0.044 (5)	0.003 (4)	0.014 (4)	-0.001 (4)
N3	0.050 (6)	0.037 (5)	0.043 (5)	-0.001 (4)	0.007 (5)	-0.003 (4)
01	0.060 (6)	0.053 (5)	0.049 (5)	0.005 (4)	0.015 (4)	-0.003 (4)
O2	0.083 (7)	0.035 (5)	0.069 (6)	0.005 (4)	0.020 (5)	-0.006 (4)

Geometric parameters (Å, °)

C1—C2	1.505 (17)	C10-C11	1.394 (15)
C1—H1A	0.9600	C10—C15	1.394 (15)
C1—H1B	0.9600	C11—N3	1.388 (14)
C1—H1C	0.9600	C11—C12	1.395 (16)
C2—C7	1.382 (17)	C12—C13	1.365 (17)
С2—С3	1.385 (18)	C12—H12	0.9300
C3—C4	1.380 (16)	C13—C14	1.387 (19)
С3—Н3	0.9300	C13—H13	0.9300
C4—C5	1.383 (15)	C14—C15	1.363 (18)
C4—H4	0.9300	C14—H14	0.9300
С5—С6	1.384 (15)	C15—H15	0.9300
C5—N1	1.414 (13)	C16—N2	1.470 (14)
С6—С7	1.383 (15)	C16—C17	1.506 (16)
С6—Н6	0.9300	C16—H16A	0.9700
С7—Н7	0.9300	C16—H16B	0.9700
C8—N3	1.292 (14)	C17—O1	1.432 (13)
C8—N1	1.366 (14)	C17—H17A	0.9700
C8—N2	1.395 (13)	C17—H17B	0.9700
С9—О2	1.225 (13)	N1—H1	0.87 (7)
C9—N2	1.401 (14)	O1—H1D	0.88 (15)
C9—C10	1.452 (16)		
C2—C1—H1A	109.5	N3—C11—C12	119.3 (10)
C2—C1—H1B	109.5	C10—C11—C12	118.7 (10)
H1A—C1—H1B	109.5	C13—C12—C11	120.4 (12)
C2—C1—H1C	109.5	C13—C12—H12	119.8
H1A—C1—H1C	109.5	C11—C12—H12	119.8
H1B—C1—H1C	109.5	C12—C13—C14	121.1 (12)
С7—С2—С3	117.0 (11)	C12—C13—H13	119.5
C7—C2—C1	121.4 (12)	C14—C13—H13	119.5
C3—C2—C1	121.5 (12)	C15—C14—C13	119.2 (11)

G1 G2 G2	101 4 (11)	C17 C14 1114	100 4
C4—C3—C2	121.4 (11)		120.4
С4—С3—Н3	119.3	C13—C14—H14	120.4
С2—С3—Н3	119.3	C14—C15—C10	120.8 (12)
C3—C4—C5	120.7 (11)	C14—C15—H15	119.6
C3—C4—H4	119.6	C10—C15—H15	119.6
C5—C4—H4	119.6	N2—C16—C17	114.5 (9)
C4—C5—C6	118.7 (10)	N2—C16—H16A	108.6
C4—C5—N1	117.2 (10)	C17—C16—H16A	108.6
C6—C5—N1	123.9 (10)	N2—C16—H16B	108.6
C7—C6—C5	119.6 (11)	C17—C16—H16B	108.6
С7—С6—Н6	120.2	H16A—C16—H16B	107.6
С5—С6—Н6	120.2	O1—C17—C16	109.8 (9)
C2—C7—C6	122.4 (11)	O1—C17—H17A	109.7
С2—С7—Н7	118.8	C16—C17—H17A	109.7
С6—С7—Н7	118.8	O1—C17—H17B	109.7
N3—C8—N1	121.1 (10)	C16—C17—H17B	109.7
N3-C8-N2	124.4 (9)	H17A—C17—H17B	108.2
N1-C8-N2	114 6 (9)	C8-N1-C5	126 3 (9)
02-09-N2	119.7 (11)	C8—N1—H1	113 (9)
02 - C9 - C10	125.0(10)	C5N1H1	116 (8)
$N_{2} - C_{9} - C_{10}$	125.0(10) 115.3(10)	C_{8} N2 C_{9}	120.6(9)
C_{11} C_{10} C_{15}	119.8 (11)	$C_8 N_2 C_16$	120.0(9) 122.7(9)
$C_{11} = C_{10} = C_{13}$	119.0(11) 110.4(0)	$C_{0} = N_{2} = C_{10}$	122.7(9)
C15 C10 C9	119.4(9)	C_{2} N2 C_{11}	110.0(9)
15 - 10 - 09	120.8(11) 121.0(10)	C_{0} C_{17} $C_$	118.2 (9)
N3-C11-C10	121.9 (10)	CI/—OI—HID	113 (10)
~~ ~~ ~~ ~	(10)		a (a)
C7—C2—C3—C4	1.7 (18)	C13—C14—C15—C10	0(2)
C1—C2—C3—C4	-177.7 (11)	C11—C10—C15—C14	-0.2 (18)
C2—C3—C4—C5	0.0 (18)	C9—C10—C15—C14	-179.5 (11)
C3—C4—C5—C6	-1.8 (17)	N2—C16—C17—O1	79.0 (12)
C3—C4—C5—N1	-177.9 (10)	N3—C8—N1—C5	4.7 (17)
C4—C5—C6—C7	1.8 (16)	N2—C8—N1—C5	-175.6 (9)
N1-C5-C6-C7	177.6 (10)	C4—C5—N1—C8	-152.1 (11)
C3—C2—C7—C6	-1.7 (18)	C6-C5-N1-C8	32.0 (17)
C1—C2—C7—C6	177.7 (11)	N3—C8—N2—C9	3.5 (15)
C5—C6—C7—C2	-0.1 (17)	N1—C8—N2—C9	-176.3 (9)
O2—C9—C10—C11	-179.1 (10)	N3—C8—N2—C16	-175.9 (10)
N2-C9-C10-C11	2.0 (14)	N1-C8-N2-C16	4.3 (14)
O2—C9—C10—C15	0.2 (17)	O2—C9—N2—C8	176.4 (10)
N2-C9-C10-C15	-178.7(10)	C10—C9—N2—C8	-4.6 (14)
C15-C10-C11-N3	-177.3(10)	02-C9-N2-C16	-41(15)
C9-C10-C11-N3	20(15)	C10-C9-N2-C16	174 9 (9)
C_{15} C_{10} C_{11} C_{12}	0.8(16)	C17 - C16 - N2 - C8	-84.7(12)
$C_{10} = C_{10} = C_{11} = C_{12}$	-179.9(10)	C17 - C16 - N2 - C9	95.9(12)
$N_{3} = C_{10} = C_{11} = C_{12}$	177 A (12)	N1 C8 N2 C11	-170.6(0)
13 - 011 - 012 - 013	-0.7(12)	$\frac{1}{10} - \frac{1}{10} $	1/3.0(9)
$C_{10} - C_{11} - C_{12} - C_{13}$	-0.7(18)	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	0.7(10)
C12 - C12 - C13 - C14	0(2)	C10 - C11 - N3 - C8	-3.4(10)
C12—C13—C14—C15	0(2)	C12—C11—N3—C8	178.5 (10)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>D</i> ····N3 ⁱ	0.88 (15)	2.09 (15)	2.882 (12)	149 (13)
N1—H1…O1	0.87 (7)	1.98 (8)	2.806 (12)	160 (12)

Symmetry code: (i) -x+2, -y+2, -z+1.