organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dehydrobrachylaenolide: an eudesmanetype sesquiterpene lactone

M. Rademeyer,^a* F. R. van Heerden^b and M. M. van der Merwe^c

^aDepartment of Chemistry, University of Pretoria, Pretoria 0002, South Africa, ^bSchool of Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scotsville 3209, South Africa, and ^cBiosciences, CSIR, Pretoria, South Africa, and, School of Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scotsville 3209, South Africa Correspondence e-mail: melanie rademever@up ac za

Received 26 November 2008; accepted 12 December 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.095; data-to-parameter ratio = 14.1.

The three-ring eudesmanolide, C₁₅H₁₆O₃, is a natural product isolated from Dicoma anomala Sond. (Asteraceae). The compound contains an endo-exo cross conjugated methylenecyclohexenone ring with an envelope conformation transfused with cyclohexane and *trans*-annelated with an α methylene γ -lactone. The absolute structure was assigned by optical rotation measurements compared to those from the synthetic compound with known stereochemistry. The crystal packing is consolidated by $C-H \cdots O$ interactions.

Related literature

For NMR studies of this compound, see: Bohlmann & Zdero, (1982); Grass et al. (2004). For the chemical synthesis and confirmation of the absolute structure, see: Higuchi et al. (2003).

Experimental

Crystal data

C15H16O3 $V = 1233.67 (12) \text{ Å}^3$ $M_r = 244.28$ Z = 4Orthorhombic, $P2_12_12_1$ Mo $K\alpha$ radiation a = 9.5648 (6) Å $\mu = 0.09 \text{ mm}^{-3}$ T = 150 (2) K b = 11.1631 (6) Å c = 11.5542 (6) Å $0.50 \times 0.50 \times 0.40 \text{ mm}$

Data collection

Oxford Diffraction Excalibur2 CCD	12604 measured reflections
diffractometer	2294 independent reflection
Absorption correction: multi-scan	1988 reflections with $I > 2\sigma$
(Blessing, 1995)	$R_{\rm int} = 0.016$
$T_{\min} = 0.909, \ T_{\max} = 0.963$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	163 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
2294 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

independent reflections

reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$C6-H6\cdots O1^{i}$ 0.98 2.39 3.360 (2) 171	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14 - III4A \cdots O1 \qquad 0.90 \qquad 2.37 \qquad 5.393 (2) \qquad 143$	$C6-H6\cdotsO1^{i}$ $C14-H14A\cdotsO1^{i}$	0.98 0.96	2.39 2.57	3.360 (2) 3.393 (2)	171 143

Symmetry code: (i) $-x + \frac{3}{2}, -y, z - \frac{1}{2}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

We thank the National Drug Development Platform (NDDP) and the NRF for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2330).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bohlmann, F. & Zdero, C. (1982). Phytochemistry, 21, 647-651.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Grass, S., Zidorn, C., Ellmerer, E. P. & Stuppner, H. (2004). Chem. Biodivers. 1, 353-360.
- Higuchi, Y., Shimota, F., Koyanagi, R., Suda, K., Mitsui, T., Kataoka, T., Nagai, K. & Ando, M. (2003). J. Nat. Prod. 66, 588-594.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2009). E65, o196 [doi:10.1107/S1600536808042402]

Dehydrobrachylaenolide: an eudesmane-type sesquiterpene lactone

M. Rademeyer, F. R. van Heerden and M. M. van der Merwe

S1. Comment

The title compound, a sesquiterpene lactone dehydrobrachylaenolide, was isolated from *Dicoma anomala* Sond (Asteraceae). These bi-functional *exo-endo* cross conjugated dienones are of importance as synthetic intermediates in the preparation of biologically active natural products (Higuchi *et al.*, 2003). NMR studies of the compound have been reported previously (Bohlmann & Zdero, 1982; Grass *et al.*, 2004) and the absolute stereochemistry has been confirmed as 3-oxoeudesma-1,4(15),11 (13)-triene-12,6a-olide by chemical synthesis (Higuchi *et al.*, 2003). Here we report the crystal structure. Although the absolute structure could not be elucidated by X-ray diffraction, unambiguous assignment of stereochemistry was made on the basis of the value of optical rotation ($[\alpha]^{24}_{D}+68^{\circ}$ (c 1/2, CHCl₃)) which is identical to that of the synthetic compound ($[\alpha]^{24}_{D}+67.9^{\circ}$ (c 0.16, CHCl₃)) (Bohlmann & Zdero, 1982).

The molecular geometry and labelling scheme are shown in Fig. 1. The methylenecyclohexenone ring adopts an envelope conformation, with the C5 atom out of the plane of the ring by approximately 0.7 Å. The γ -lactone ring is twisted on C6—C7, while the cyclohexane ring adopts a chair conformation. An axial position is occupied by methyl group C14, and the methylene carbon atom C15 is in the equatorial position. A weak intramolecular interaction is formed between C15—H15B···O2. Fig. 2 illustrates the molecular packing viewed down the *c* axis. Weak intermolecular hydrogen bonds are present between atoms C6—H6···O1ⁱ and and C14—H14···O1ⁱ [symmetry code (i): 1/2 - *x*, 1 - *y*, 1/2 + *z*].

S2. Experimental

The compound was isolated from *Dicoma anomala* Sond (Asteraceae), and recrystallized from propanol at room temperature.

S3. Refinement

H atoms were placed geometrically and refined in idealized positions in the riding-model approximation, with C—H = 0.93-0.98 Å with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged as equivalent data.

Figure 1

Molecular structure showing displacement ellipsoids at 50% probability for all atoms.

Dehydrobrachylaenolide

Crystal data

C₁₅H₁₆O₃ $M_r = 244.28$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.5648 (6) Å b = 11.1631 (6) Å c = 11.5542 (6) Å V = 1233.67 (12) Å³ Z = 4

Data collection

Oxford Diffraction Excalibur2 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.909, T_{\max} = 0.963$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.095$ S = 1.052294 reflections 163 parameters 0 restraints F(000) = 520 $D_x = 1.315 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8167 reflections $\theta = 4.0-31.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.50 \times 0.50 \times 0.40 \text{ mm}$

12604 measured reflections 2294 independent reflections 1988 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 31.9^\circ$, $\theta_{min} = 4.0^\circ$ $h = -13 \rightarrow 13$ $k = -15 \rightarrow 16$ $l = -16 \rightarrow 17$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0708P)^2]$	$\Delta ho_{ m max} = 0.31 \ m e \ m \AA^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement	parameters ((A^2)
				F	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C4	0.86180 (14)	0.08184 (11)	1.24094 (11)	0.0237 (2)	
O2	0.87541 (10)	0.20733 (7)	1.00141 (7)	0.0245 (2)	
C7	1.04877 (12)	0.07144 (11)	0.94161 (10)	0.0210 (2)	
H7	1.1253	0.1211	0.9714	0.025*	
C8	1.10043 (14)	-0.05782 (12)	0.94001 (11)	0.0246 (3)	
H8A	1.1798	-0.0657	0.8883	0.029*	
H8B	1.0268	-0.1109	0.9136	0.029*	
C9	1.14347 (13)	-0.08979 (11)	1.06503 (11)	0.0245 (2)	
H9A	1.1717	-0.1732	1.0675	0.029*	
H9B	1.2238	-0.0416	1.0866	0.029*	
03	0.85244 (12)	0.31953 (9)	0.84156 (9)	0.0372 (3)	
C14	0.90759 (14)	-0.16252 (11)	1.13671 (12)	0.0270 (3)	
H14A	0.8694	-0.1540	1.0603	0.041*	
H14B	0.8354	-0.1493	1.1930	0.041*	
H14C	0.9447	-0.2419	1.1458	0.041*	
C6	0.92565 (13)	0.08521 (10)	1.02492 (10)	0.0197 (2)	
H6	0.8525	0.0278	1.0037	0.024*	
C3	0.90807 (15)	0.04878 (12)	1.36063 (11)	0.0274 (3)	
01	0.84841 (13)	0.08529 (10)	1.44767 (9)	0.0385 (3)	
C11	0.98993 (14)	0.13415 (11)	0.83767 (11)	0.0234 (2)	
C1	1.08111 (15)	-0.08814 (12)	1.27617 (12)	0.0279 (3)	
H1	1.1553	-0.1409	1.2867	0.033*	
C5	0.97025 (12)	0.06224 (10)	1.14800 (10)	0.0197 (2)	
Н5	1.0491	0.1156	1.1647	0.024*	
C10	1.02589 (13)	-0.06954 (10)	1.15444 (10)	0.0213 (2)	
C15	0.73174 (15)	0.12080 (12)	1.22442 (14)	0.0321 (3)	
H15A	0.6708	0.1272	1.2868	0.039*	
H15B	0.7019	0.1416	1.1505	0.039*	
C13	1.00061 (16)	0.11111 (13)	0.72528 (11)	0.0303 (3)	
H13A	0.9501	0.1564	0.6722	0.036*	
H13B	1.0586	0.0497	0.6996	0.036*	
C12	0.89936 (14)	0.23105 (11)	0.88715 (11)	0.0263 (3)	

supporting information

C2	1.02875 (16)	-0.03277(13)	1.36888 (11)	0.0304 (3)	
H2	1.0696	-0.0460	1.4408	0.036*	
H2	1.0696	-0.0460	1.4408	0.036*	

Atomic displacement parameters $(Å^2)$

люти	nome asplacement parameters (A)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
C4	0.0291 (6)	0.0164 (5)	0.0257 (5)	-0.0021 (5)	0.0069 (5)	0.0005 (4)	
O2	0.0309 (5)	0.0174 (4)	0.0253 (4)	0.0031 (3)	0.0029 (4)	0.0023 (3)	
C7	0.0202 (5)	0.0206 (5)	0.0221 (5)	-0.0010 (4)	0.0013 (4)	-0.0030 (4)	
C8	0.0239 (6)	0.0254 (6)	0.0244 (5)	0.0037 (5)	0.0003 (5)	-0.0048 (5)	
C9	0.0200 (5)	0.0245 (6)	0.0289 (6)	0.0036 (5)	-0.0014 (5)	-0.0027 (4)	
O3	0.0499 (7)	0.0262 (5)	0.0356 (5)	0.0061 (5)	0.0000 (5)	0.0081 (4)	
C14	0.0277 (6)	0.0168 (5)	0.0366 (6)	-0.0020 (5)	-0.0027 (5)	0.0014 (5)	
C6	0.0195 (5)	0.0148 (5)	0.0248 (5)	0.0006 (4)	0.0012 (4)	-0.0001 (4)	
C3	0.0330 (6)	0.0233 (6)	0.0259 (5)	-0.0079 (5)	0.0076 (5)	0.0017 (5)	
01	0.0493 (6)	0.0366 (6)	0.0297 (5)	-0.0062 (5)	0.0165 (5)	-0.0008(4)	
C11	0.0233 (6)	0.0207 (5)	0.0261 (5)	-0.0040 (4)	0.0015 (5)	0.0001 (4)	
C1	0.0288 (6)	0.0252 (6)	0.0297 (6)	0.0015 (5)	-0.0043 (5)	0.0036 (5)	
C5	0.0202 (5)	0.0171 (5)	0.0217 (5)	-0.0007 (4)	0.0021 (4)	-0.0002 (4)	
C10	0.0212 (5)	0.0186 (5)	0.0241 (5)	0.0011 (4)	-0.0022 (4)	0.0000 (4)	
C15	0.0310(7)	0.0263 (6)	0.0391 (7)	0.0033 (5)	0.0129 (6)	0.0040 (6)	
C13	0.0314 (6)	0.0337 (7)	0.0257 (6)	-0.0050 (6)	0.0028 (6)	0.0006 (5)	
C12	0.0303 (6)	0.0219 (6)	0.0266 (6)	-0.0028 (5)	-0.0002 (5)	0.0019 (4)	
C2	0.0358 (7)	0.0301 (6)	0.0253 (6)	-0.0048 (5)	-0.0011 (5)	0.0048 (5)	

Geometric parameters (Å, °)

C4—C15	1.332 (2)	C14—H14B	0.960
C4—C3	1.4982 (18)	C14—H14C	0.960
C4—C5	1.5090 (16)	C6—C5	1.5067 (16)
O2—C12	1.3659 (15)	С6—Н6	0.980
O2—C6	1.4708 (14)	C3—O1	1.2260 (16)
C7—C11	1.4997 (17)	C3—C2	1.473 (2)
С7—С8	1.5253 (18)	C11—C13	1.3278 (18)
С7—С6	1.5287 (16)	C11—C12	1.4991 (18)
С7—Н7	0.980	C1—C2	1.334 (2)
С8—С9	1.5439 (18)	C1—C10	1.5167 (17)
C8—H8A	0.970	C1—H1	0.930
C8—H8B	0.970	C5—C10	1.5662 (15)
C9—C10	1.5437 (17)	С5—Н5	0.980
С9—Н9А	0.970	C15—H15A	0.930
С9—Н9В	0.970	C15—H15B	0.930
O3—C12	1.2059 (16)	C13—H13A	0.930
C14—C10	1.5490 (17)	C13—H13B	0.930
C14—H14A	0.960	C2—H2	0.930
C15—C4—C3	119.26 (12)	Q1—C3—C2	121.14 (13)
C15—C4—C5	125.99 (12)	01—C3—C4	122.53 (13)

C3—C4—C5	114.71 (11)	C2—C3—C4	116.32 (11)
C12—O2—C6	107.66 (9)	C13—C11—C12	123.86 (13)
C11—C7—C8	123.60 (10)	C13—C11—C7	131.60 (13)
C11—C7—C6	99.69 (10)	C12—C11—C7	104.38 (10)
C8—C7—C6	110.63 (10)	C2-C1-C10	123.39 (12)
С11—С7—Н7	107.3	C2—C1—H1	118.3
С8—С7—Н7	107.3	C10—C1—H1	118.3
С6—С7—Н7	107.3	C6—C5—C4	116.89 (10)
C7—C8—C9	107.08 (10)	C6—C5—C10	107.51 (9)
С7—С8—Н8А	110.3	C4—C5—C10	109.63 (9)
С9—С8—Н8А	110.3	С6—С5—Н5	107.5
С7—С8—Н8В	110.3	С4—С5—Н5	107.5
С9—С8—Н8В	110.3	С10—С5—Н5	107.5
H8A—C8—H8B	108.6	C1—C10—C9	110.29 (10)
С10—С9—С8	113.46 (10)	C1-C10-C14	106.58 (10)
С10—С9—Н9А	108.9	C9—C10—C14	110.22 (10)
С8—С9—Н9А	108.9	C1-C10-C5	106.91 (10)
С10—С9—Н9В	108.9	C9—C10—C5	110.69 (9)
С8—С9—Н9В	108.9	C14—C10—C5	112.02 (9)
H9A—C9—H9B	107.7	C4—C15—H15A	120.0
C10—C14—H14A	109.5	C4—C15—H15B	120.0
C10—C14—H14B	109.5	H15A—C15—H15B	120.0
H14A—C14—H14B	109.5	C11—C13—H13A	120.0
C10—C14—H14C	109.5	C11—C13—H13B	120.0
H14A—C14—H14C	109.5	H13A—C13—H13B	120.0
H14B— $C14$ — $H14C$	109.5	03-C12-02	121.23(12)
02	115 13 (9)	03-C12-C11	121.25(12) 129.75(13)
02 - C6 - C7	103 21 (9)	02-C12-C11	109.00(10)
$C_{2} = C_{0} = C_{1}$	111.05(10)	C1 - C2 - C3	109.00(10) 121.90(12)
02 - C6 - H6	109.1	C1 - C2 - H2	119.1
C5-C6-H6	109.1	$C_3 - C_2 - H_2$	119.1
C7—C6—H6	109.1	05 02 112	119.1
	107.1		
C11—C7—C8—C9	-176.53 (11)	C15—C4—C5—C10	-124.67 (13)
C6-C7-C8-C9	-58.75 (13)	$C_{3}-C_{4}-C_{5}-C_{10}$	52.90 (13)
C7-C8-C9-C10	55.27 (14)	$C_2 - C_1 - C_1 - C_9$	151.41 (13)
C12-02-C6-C5	153.05 (11)	C2-C1-C10-C14	-88.95(15)
$C_{12} = 0^2 = C_{6} = C_{7}$	31.88 (12)	C_{2} C_{1} C_{10} C_{5}	31.01 (17)
$C_{11} = C_{7} = C_{6} = O_{7}^{2}$	-3939(11)	$C_{8} - C_{9} - C_{10} - C_{1}$	-173.06(11)
C8-C7-C6-O2	-171 01 (9)	C8-C9-C10-C14	69 52 (13)
$C_{11} = C_{7} = C_{6} = C_{5}$	-16329(9)	C8-C9-C10-C5	-54.96(13)
C8-C7-C6-C5	65 10 (12)	C6-C5-C10-C1	175 55 (10)
$C_{15} - C_{4} - C_{3} - O_{1}$	-20.6(2)	C4-C5-C10-C1	-5642(12)
(5-(4-(3-0))	161 68 (12)	C6-C5-C10-C9	55 39 (12)
$C_{15} - C_{4} - C_{3} - C_{2}$	158 27 (13)	C4-C5-C10-C9	-17657(12)
$C_{13} - C_{7} - C_{3} - C_{2}$	-10.48(16)	$C_{4} = C_{5} = C_{10} = C_{5}$	-68.06(12)
$C_{3} - C_{4} - C_{3} - C_{2}$	-10.4(2)	$C_{4} = C_{5} = C_{10} = C_{14}$	50.00(12)
$C_{0} = C_{1} = C_{13}$	-19.4(2)	$C_{4} - C_{3} - C_{10} - C_{14}$	JY.YO (12)
0 - 0 / - 0 11 - 013	-142.26 (15)	0 - 02 - 012 - 03	1/0./0(12)

C8—C7—C11—C12 C6—C7—C11—C12 O2—C6—C5—C4 C7—C6—C5—C4 O2—C6—C5—C10 C7—C6—C5—C10 C15—C4—C5—C6	155.99 (11) 33.14 (12) 58.69 (14) 175.49 (10) -177.59 (9) -60.79 (12) -2.05 (18)	C6-O2-C12-C11 C13-C11-C12-O3 C7-C11-C12-O3 C13-C11-C12-O2 C7-C11-C12-O2 C7-C11-C12-O2 C10-C1-C2-C3 O1-C3-C2-C1	-10.45 (13) -21.0 (2) 163.19 (14) 160.33 (12) -15.53 (13) 2.2 (2) 169.28 (13)
C7—C6—C5—C10	-60.79 (12)	C10-C1-C2-C3	2.2 (2)
C15—C4—C5—C6	-2.05 (18)	O1-C3-C2-C1	169.28 (13)
C3—C4—C5—C6	175.53 (10)	C4-C3-C2-C1	-9.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6…O1 ⁱ	0.98	2.39	3.360 (2)	171
C14— $H14A$ ···O1 ⁱ	0.96	2.57	3.393 (2)	143

Symmetry code: (i) -x+3/2, -y, z-1/2.