

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(Diphenylamino)benzaldehvde

Hongli Wang,* Wenyuan Xu, Bin Zhang, Wenjing Xiao and Hong Wu

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China Correspondence e-mail: hlwang@mail.ccnu.edu.cn

Received 13 November 2008; accepted 12 December 2008

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.153; data-to-parameter ratio = 15.2.

In the title compound, C₁₉H₁₅NO, the N atom adopts an approximately trigonal-planar geometry, lying 0.07 (1) Å from the plane defined by its three neighbouring C atoms. The two phenyl rings and the benzaldehyde group form dihedral angles of 53.0 (1)/47.2 (1) and 29.0 (1) $^{\circ}$, respectively, with this central plane.

Related literature

For details of the synthesis, see: Wang & Zhou (2000). For arylamines, see: Beller (1995); Wang et al. (2005); Yao et al. (2006).

Experimental

Crystal data

$(7) Å^3$
., =
<i>.</i>
ion
1
0.04 mm
i

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.971, T_{\max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.153$ S = 0.912898 reflections

12673 measured reflections 2898 independent reflections 1393 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.087$

191 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2326).

References

Beller, M. (1995). Angew. Chem. Int. Ed. Engl. 34, 1316-1317.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, H., Li, Z., Shao, P., Liang, Y., Wang, H., Qin, J. & Gong, Q. (2005). New J. Chem. 29, 792-798.

Wang, X. & Zhou, Y. (2000). J. Mater. Chem. 10, 2698-2703.

Yao, Y. S., Xiao, J., Wang, X. S., Deng, Z. B. & Zhang, B. W. (2006). Adv. Funct. Mater. 16, 709-714.

supporting information

Acta Cryst. (2009). E65, o149 [doi:10.1107/S1600536808042311]

4-(Diphenylamino)benzaldehyde

Hongli Wang, Wenyuan Xu, Bin Zhang, Wenjing Xiao and Hong Wu

S1. Comment

Arylamine derivatives are common intermediates in the synthesis of many compounds and polymers (Yao *et al.*, 2006; Beller, 1995). We became interested in using the Vilsmeier reaction to obtain the title compound, which is a good intermediate for several compounds (Wang *et al.*, 2005). In the crystal structure (Fig. 1), the bond lengths and angles are within normal ranges.

S2. Experimental

The title compound was synthesised according to the published procedure (Wang & Zhou, 2000) and recrystallized from chloroform.

S3. Refinement

All H atoms were placed in geometrically idealized positions with C—H = 0.93 Å and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure of the title compound showing displacement ellipsoids at 50% probability for non-H atoms.

4-(Diphenylamino)benzaldehyde

Crystal data	
C ₁₉ H ₁₅ NO	F(000) = 576
$M_r = 273.32$	$D_{\rm x} = 1.223 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 843 reflections
a = 12.1188 (8) Å	$\theta = 2.6 - 18.1^{\circ}$
b = 11.4342 (8) Å	$\mu=0.08~\mathrm{mm^{-1}}$
c = 10.9560 (7) Å	T = 292 K
$\beta = 102.082 \ (2)^{\circ}$	Needle, colorless
$V = 1484.53 (17) Å^3$	$0.40 \times 0.10 \times 0.04 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART CCD area-detector	12673 measured reflections
diffractometer	2898 independent reflections
Radiation source: fine-focus sealed tube	1393 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.087$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2000)	$k = -14 \rightarrow 14$
$T_{\min} = 0.971, \ T_{\max} = 0.997$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.153$	$w = 1/[\sigma^2(F_o^2) + (0.0688P)^2]$
S = 0.91	where $P = (F_o^2 + 2F_c^2)/3$
2898 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
191 parameters	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.007 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

				TT + /TT	
	X	<i>y</i>	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
C1	0.7834 (2)	0.14287 (18)	0.0025 (2)	0.0483 (7)	
C2	0.6819 (2)	0.09360 (19)	0.0112 (3)	0.0587 (8)	
H2	0.6307	0.1360	0.0460	0.070*	
C3	0.6555 (2)	-0.0192 (2)	-0.0318 (3)	0.0624 (8)	
H3	0.5864	-0.0520	-0.0266	0.075*	
C4	0.7312 (3)	-0.0821 (2)	-0.0817 (3)	0.0637 (8)	
H4	0.7136	-0.1578	-0.1102	0.076*	
C5	0.8329 (3)	-0.0340 (2)	-0.0896 (3)	0.0659 (8)	
H5	0.8841	-0.0771	-0.1238	0.079*	
C6	0.8601 (2)	0.0793 (2)	-0.0468(2)	0.0574 (7)	
H6	0.9295	0.1116	-0.0514	0.069*	
C7	0.9178 (2)	0.27936 (18)	0.1276 (2)	0.0492 (7)	
C8	0.9540 (2)	0.2101 (2)	0.2309 (3)	0.0645 (8)	
H8	0.9076	0.1514	0.2505	0.077*	
C9	1.0605 (3)	0.2283 (3)	0.3059 (3)	0.0787 (9)	
H9	1.0850	0.1817	0.3759	0.094*	
C10	1.1294 (3)	0.3147 (3)	0.2769 (3)	0.0790 (10)	
H10	1.2007	0.3263	0.3267	0.095*	
C11	1.0929 (3)	0.3832 (2)	0.1750 (3)	0.0811 (10)	
H11	1.1392	0.4421	0.1555	0.097*	
C12	0.9878 (2)	0.3656 (2)	0.1008 (3)	0.0639 (8)	
H12	0.9638	0.4128	0.0312	0.077*	
C13	0.7402 (2)	0.35282 (17)	-0.0019 (2)	0.0475 (6)	

0.6713 (2)	0.34636 (19)	-0.1196 (3)	0.0593 (7)
0.6724	0.2797	-0.1679	0.071*
0.6009 (2)	0.43842 (19)	-0.1657 (3)	0.0612 (8)
0.5539	0.4320	-0.2442	0.073*
0.5989 (2)	0.53936 (19)	-0.0979 (3)	0.0556 (7)
0.6677 (2)	0.5467 (2)	0.0200 (3)	0.0605 (8)
0.6668	0.6142	0.0673	0.073*
0.7375 (2)	0.45501 (19)	0.0682 (3)	0.0577 (7)
0.7830	0.4610	0.1476	0.069*
0.5231 (2)	0.6343 (2)	-0.1488 (3)	0.0772 (9)
0.4757	0.6210	-0.2260	0.093*
0.81100 (18)	0.25939 (15)	0.0479 (2)	0.0567 (6)
0.51528 (17)	0.72793 (15)	-0.1018 (2)	0.0929 (8)
	0.6713 (2) 0.6724 0.6009 (2) 0.5539 0.5989 (2) 0.6677 (2) 0.6668 0.7375 (2) 0.7830 0.5231 (2) 0.4757 0.81100 (18) 0.51528 (17)	0.0713 (2)0.34030 (19)0.67240.27970.6009 (2)0.43842 (19)0.55390.43200.5989 (2)0.53936 (19)0.6677 (2)0.5467 (2)0.66680.61420.7375 (2)0.45501 (19)0.78300.46100.5231 (2)0.6343 (2)0.47570.62100.81100 (18)0.25939 (15)0.51528 (17)0.72793 (15)	0.0713(2) $0.34030(19)$ $-0.1190(3)$ 0.6724 0.2797 -0.1679 $0.6009(2)$ $0.43842(19)$ $-0.1657(3)$ 0.5539 0.4320 -0.2442 $0.5989(2)$ $0.53936(19)$ $-0.0979(3)$ $0.6677(2)$ $0.5467(2)$ $0.0200(3)$ 0.6668 0.6142 0.0673 $0.7375(2)$ $0.45501(19)$ $0.0682(3)$ 0.7830 0.4610 0.1476 $0.5231(2)$ $0.6343(2)$ $-0.1488(3)$ 0.4757 0.6210 -0.2260 $0.81100(18)$ $0.25939(15)$ $0.0479(2)$ $0.51528(17)$ $0.72793(15)$ $-0.1018(2)$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0461 (16)	0.0370 (12)	0.0592 (17)	0.0004 (11)	0.0050 (14)	0.0024 (11)
C2	0.0541 (17)	0.0434 (14)	0.078 (2)	0.0030 (12)	0.0132 (15)	-0.0002 (13)
C3	0.0542 (18)	0.0487 (15)	0.080(2)	-0.0060 (13)	0.0049 (17)	0.0013 (13)
C4	0.070 (2)	0.0444 (14)	0.069 (2)	0.0000 (15)	-0.0034 (17)	-0.0046 (13)
C5	0.077 (2)	0.0587 (17)	0.0599 (19)	0.0171 (15)	0.0085 (17)	-0.0094 (13)
C6	0.0515 (17)	0.0579 (15)	0.0632 (19)	-0.0006 (13)	0.0126 (15)	0.0002 (13)
C7	0.0497 (17)	0.0421 (13)	0.0533 (17)	-0.0006 (12)	0.0052 (14)	-0.0027 (12)
C8	0.063 (2)	0.0678 (17)	0.063 (2)	0.0082 (14)	0.0146 (17)	0.0088 (15)
C9	0.077 (3)	0.102 (2)	0.054 (2)	0.030 (2)	0.0059 (19)	-0.0009 (17)
C10	0.059 (2)	0.091 (2)	0.080 (3)	0.0012 (19)	-0.001 (2)	-0.035 (2)
C11	0.068 (2)	0.0638 (18)	0.105 (3)	-0.0069 (16)	0.004 (2)	-0.0098 (19)
C12	0.0566 (19)	0.0577 (15)	0.073 (2)	-0.0066 (14)	0.0024 (16)	0.0013 (14)
C13	0.0466 (16)	0.0380 (12)	0.0558 (17)	-0.0024 (11)	0.0063 (14)	-0.0006 (11)
C14	0.0660 (19)	0.0441 (14)	0.0625 (19)	0.0027 (12)	0.0010 (16)	-0.0066 (12)
C15	0.0591 (18)	0.0515 (15)	0.0662 (19)	0.0039 (13)	-0.0025 (15)	0.0006 (13)
C16	0.0484 (17)	0.0430 (14)	0.073 (2)	0.0013 (11)	0.0066 (16)	0.0000 (13)
C17	0.0591 (18)	0.0417 (14)	0.081 (2)	-0.0023 (13)	0.0158 (17)	-0.0126 (13)
C18	0.0561 (18)	0.0489 (14)	0.0638 (19)	0.0003 (12)	0.0027 (15)	-0.0047 (13)
C19	0.077 (2)	0.0477 (16)	0.103 (3)	0.0085 (15)	0.0115 (19)	0.0079 (16)
N1	0.0526 (14)	0.0375 (10)	0.0714 (16)	0.0000 (9)	-0.0067 (12)	0.0017 (10)
O1	0.0878 (16)	0.0471 (11)	0.143 (2)	0.0126 (10)	0.0210 (15)	-0.0011 (11)

Geometric parameters (Å, °)

C1—C2	1.375 (3)	C10—C11	1.359 (4)	
C1—C6	1.376 (3)	C10—H10	0.930	
C1—N1	1.437 (3)	C11—C12	1.375 (3)	
C2—C3	1.387 (3)	C11—H11	0.930	
С2—Н2	0.930	C12—H12	0.930	
C3—C4	1.366 (4)	C13—C14	1.383 (3)	
С3—Н3	0.930	C13—C18	1.402 (3)	

C4—C5	1.369 (4)	C13—N1	1.407 (3)
C4—H4	0.930	C14—C15	1.382 (3)
C5—C6	1.394 (3)	C14—H14	0.930
С5—Н5	0.930	C15—C16	1.376 (3)
С6—Н6	0.930	C15H15	0.930
C7 $C12$	1 372 (3)		1.385(4)
C_{1}^{2}	1.372(3) 1.275(2)	$C_{10} = C_{10}$	1.385(4)
C7C8	1.373(3)		1.430(3)
	1.421 (3)		1.381 (3)
C8-C9	1.392 (4)		0.930
С8—Н8	0.930	C18—H18	0.930
C9—C10	1.373 (4)	C19—O1	1.200 (3)
С9—Н9	0.930	С19—Н19	0.930
C2—C1—C6	119.9 (2)	C10-C11-C12	120.2 (3)
C2-C1-N1	120.2 (2)	C10-C11-H11	119.9
C6-C1-N1	119.9 (2)	C12—C11—H11	119.9
C1 - C2 - C3	120.2(2)	C7-C12-C11	121 1 (3)
C1 - C2 - H2	119.9	C7-C12-H12	119 5
$C_3 - C_2 - H_2$	110.0	C_{11} C_{12} H_{12}	119.5
C_{1} C_{2} C_{2}	110.0 (3)	C_{14} C_{12} C_{18}	119.5 118.4(2)
$C_{4} = C_{3} = C_{2}$	119.9 (3)	C14 - C13 - C18	110.4(2)
$C_4 = C_3 = H_3$	120.0	C14 - C13 - N1	121.4(2)
C2—C3—H3	120.0	C18—C13—N1	120.2 (2)
C3_C4_C5	120.2 (2)	015-014-013	120.4 (2)
C3—C4—H4	119.9	C15—C14—H14	119.8
C5—C4—H4	119.9	C13—C14—H14	119.8
C4—C5—C6	120.3 (3)	C16—C15—C14	121.4 (3)
C4—C5—H5	119.9	C16—C15—H15	119.3
С6—С5—Н5	119.9	C14—C15—H15	119.3
C1—C6—C5	119.5 (2)	C15—C16—C17	118.6 (2)
С1—С6—Н6	120.3	C15—C16—C19	120.0 (3)
С5—С6—Н6	120.3	C17—C16—C19	121.3 (2)
C12—C7—C8	119.0 (3)	C18—C17—C16	120.7 (2)
C12—C7—N1	120.6 (2)	С18—С17—Н17	119.6
C8—C7—N1	120.4 (2)	С16—С17—Н17	119.6
C7 - C8 - C9	119.8 (3)	C17 - C18 - C13	1204(3)
C7 - C8 - H8	120.1	C17 - C18 - H18	119.8
C_{1} C_{2} C_{3} H_{3}	120.1	C_{13} C_{18} H_{18}	110.8
$C_{2} = C_{3} = C_{10}$	120.1 120.2(2)	C_{13} C_{10} C_{16}	119.0 126.0(2)
$C_{10} = C_{2} = C_{3}$	120.2 (3)	01 - 010 - 010	120.9 (3)
$C_{10} - C_{9} - H_{9}$	119.9	OI = CI = HI9	110.5
C8-C9-H9	119.9	C10—C19—H19	110.5
	119.7 (3)	C13— $N1$ — $C7$	121.32 (18)
C11—C10—H10	120.1		119.4 (2)
С9—С10—Н10	120.1	C7—N1—C1	118.55 (18)
C6—C1—C2—C3	-1.3 (4)	C14—C15—C16—C19	-179.6 (3)
N1—C1—C2—C3	-179.5 (2)	C15—C16—C17—C18	0.5 (4)
C1—C2—C3—C4	0.7 (4)	C19—C16—C17—C18	178.7 (2)
C2—C3—C4—C5	-0.2 (4)	C16—C17—C18—C13	0.3 (4)

C3—C4—C5—C6	0.1 (4)	C14—C13—C18—C17	-0.2 (4)
C2-C1-C6-C5	1.2 (4)	N1-C13-C18-C17	-179.6 (2)
N1-C1-C6-C5	179.5 (2)	C15—C16—C19—O1	-177.5 (3)
C4—C5—C6—C1	-0.7 (4)	C17—C16—C19—O1	4.4 (5)
С12—С7—С8—С9	-0.1 (4)	C14—C13—N1—C7	146.1 (2)
N1—C7—C8—C9	177.9 (2)	C18—C13—N1—C7	-34.5 (4)
C7—C8—C9—C10	-0.2 (4)	C14—C13—N1—C1	-23.9 (4)
C8—C9—C10—C11	0.5 (4)	C18—C13—N1—C1	155.4 (2)
C9—C10—C11—C12	-0.5 (5)	C12—C7—N1—C13	-42.9 (4)
C8—C7—C12—C11	0.1 (4)	C8—C7—N1—C13	139.1 (2)
N1—C7—C12—C11	-177.9 (2)	C12—C7—N1—C1	127.3 (2)
C10-C11-C12-C7	0.2 (4)	C8—C7—N1—C1	-50.7 (3)
C18—C13—C14—C15	-0.6 (4)	C2-C1-N1-C13	-58.8 (3)
N1—C13—C14—C15	178.8 (2)	C6-C1-N1-C13	123.0 (3)
C13—C14—C15—C16	1.4 (4)	C2-C1-N1-C7	130.9 (3)
C14—C15—C16—C17	-1.4 (4)	C6—C1—N1—C7	-47.4 (3)