metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethanolbis[N'-(3-pyridylmethylene)benzohydrazide]sodium(I) iodide

Lian-Sheng Cui, Han-Dong Yin,* Ming-Lei Yang and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 14 November 2008; accepted 3 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.037; wR factor = 0.104; data-to-parameter ratio = 14.0.

The molecule of the title compound, $[Na(C_{13}H_{11}N_3O)_2(CH_3OH)_2]I$, is non-planar, with the Na atom chelated by the O atoms and the N atoms of two N'-(3-pyridylmethylene)benzohydrazide ligands and both O atoms of two methanol ligands. The asymmetric unit consists of one half-molecule. The Na atom is located on a crystallographic centre of inversion. The six-coordinate Na atom adopts a distorted octahedral coordination. In the crystal structure, inter-molecular N-H···I and O-H···N hydrogen bonds link the molecules into a two-dimensional network.

Related literature

For general background, see: Lindoy *et al.* (1976). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data $[Na(C_{13}H_{11}N_3O)_2(CH_4O)_2]I$ $M_r = 664.47$ Monoclinic, $P2_1/n$ a = 8.6078 (15) Å

b = 13.1842 (16) Å c = 13.2508 (17) Å $\beta = 101.6540 (10)^{\circ}$ $V = 1472.8 (4) \text{ Å}^{3}$

Z = 2Mo $K\alpha$ radiation

 $\mu = 1.15 \text{ mm}^{-1}$

Data collection

7140 measured reflections
2586 independent reflections
1919 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.078$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 185 parameters $wR(F^2) = 0.104$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.69$ e Å $^{-3}$ 2586 reflections $\Delta \rho_{min} = -0.87$ e Å $^{-3}$

T = 298 (2) K

 $0.54 \times 0.43 \times 0.40$ mm

Table 1

Selected geometric parameters (Å, °).

Na1-O1	2.294 (3)	Na1-N2	2.642 (3)
Na1-O2	2.344 (2)		
O1-Na1-O2	86.74 (10)	O2-Na1-N2	88.40 (9)
O1-Na1-N2	65.34 (9)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots I1^i$	0.86	3.03	3.816 (3)	153
$O2-H2\cdots N3^{ii}$	0.82	1.98	2.792 (5)	171

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge the National Natural Science Foundation of China (grant No. 20771053), Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2678).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). *Inorg. Chem.* 15, 1724–1727.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, m38 [doi:10.1107/S1600536808040750]

Dimethanolbis[N'-(3-pyridylmethylene)benzohydrazide]sodium(I) iodide

Lian-Sheng Cui, Han-Dong Yin, Ming-Lei Yang and Da-Qi Wang

S1. Comment

Schiff bases have been known as effective ligands for metal ions in the preparation of dyes for many years, liquid crystals and powerful corrosion inhibitors. Furthermore, they are used in the mechanism of many biochemical processes (Lindoy *et al.*, 1976). We report here the synthesis and crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig.1. The values of the geometric parameters in (I) are normal (Allen *et al.*, 1987) (Table 1). In the crystal structure, there exist two intermolecular N—H···I and O—H···N hydrogen bonds (Table 2). As seen in Fig.2, the molecules are linked into two-dimensional network.

S2. Experimental

A mixture of N'-(3-pyridylmethylene)benzohydrazide (3 mmol) and sodium methoxide (3 mmol) and bismuth iodide(1 mmol) in absolute ethanol (15 ml) was heated under reflux with stirring for 5 h and then filtered. The resulting clear colourless solution was diffused diethyl ether vapor at room temperature for 16 days, after which large colourless block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methylene) or 0.93 Å (aromatic),0.82 Å (hydroxyl) and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound, viewed approximately along the c axis.

Dimethanolbis[N'-(3-pyridylmethylene)benzohydrazide]sodium(I) iodide

Crystal data	
$[Na(C_{13}H_{11}N_{3}O)_{2}(CH_{4}O)_{2}]I$	F(000) = 672.0
$M_r = 664.47$	$D_{\rm x} = 1.494 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3137 reflections
a = 8.6078 (15) Å	$\theta = 2.2 - 27.2^{\circ}$
b = 13.1842 (16) Å	$\mu = 1.15 \text{ mm}^{-1}$
c = 13.2508 (17) Å	T = 298 K
$\beta = 101.654 \ (1)^{\circ}$	Block, colourless
$V = 1472.8 (4) Å^3$	$0.54 \times 0.43 \times 0.40 \text{ mm}$
<i>Z</i> = 2	
Data collection	
Bruker SMART CCD area detector	7140 measured reflections
diffractometer	2586 independent reflections
Radiation source: fine-focus sealed tube	1919 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{ m int}=0.078$
phi and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -15 \rightarrow 12$
$T_{\min} = 0.577, \ T_{\max} = 0.657$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.028P)^2 + 0.7317P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
2586 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
185 parameters	$\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.87 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: SHELXL, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0258 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Na1	0.5000	0.5000	0.0000	0.0383 (5)
I1	0.0000	0.5000	0.5000	0.0439 (2)
N1	0.6395 (4)	0.2735 (2)	0.0500 (2)	0.0384 (8)
H1	0.6445	0.2085	0.0462	0.046*
N2	0.5180 (3)	0.3195 (2)	0.0883 (2)	0.0347 (7)
N3	0.0867 (4)	0.2404 (3)	0.2536 (3)	0.0470 (9)
01	0.7451 (3)	0.42504 (19)	0.0231 (2)	0.0480 (7)
O2	0.4427 (3)	0.4186 (2)	-0.16052 (19)	0.0492 (7)
H2	0.4879	0.3694	-0.1793	0.074*
C1	0.7503 (4)	0.3326 (3)	0.0187 (3)	0.0336 (8)
C2	0.8797 (4)	0.2795 (3)	-0.0193 (3)	0.0319 (8)
C3	0.8939 (5)	0.1758 (3)	-0.0264 (3)	0.0455 (10)
H3	0.8179	0.1337	-0.0075	0.055*
C4	1.0197 (6)	0.1342 (3)	-0.0613 (3)	0.0564 (12)
H4	1.0281	0.0641	-0.0654	0.068*
C5	1.1334 (5)	0.1946 (4)	-0.0902 (3)	0.0526 (11)
Н5	1.2187	0.1658	-0.1131	0.063*
C6	1.1193 (5)	0.2980 (3)	-0.0848 (3)	0.0498 (11)
H6	1.1948	0.3398	-0.1048	0.060*
C7	0.9930 (4)	0.3401 (3)	-0.0497 (3)	0.0424 (9)
H7	0.9842	0.4103	-0.0465	0.051*
C8	0.4330 (5)	0.2585 (3)	0.1286 (3)	0.0382 (9)
H8	0.4564	0.1895	0.1299	0.046*

C9	0.2103 (5)	0.2198 (3)	0.2102 (3)	0.0434 (10)	
Н9	0.2379	0.1522	0.2045	0.052*	
C10	0.3003 (4)	0.2933 (3)	0.1730 (3)	0.0329 (8)	
C11	0.2568 (5)	0.3933 (3)	0.1804 (3)	0.0439 (10)	
H11	0.3129	0.4450	0.1561	0.053*	
C12	0.1293 (5)	0.4150 (3)	0.2242 (3)	0.0487 (10)	
H12	0.0978	0.4819	0.2299	0.058*	
C13	0.0492 (5)	0.3378 (3)	0.2592 (3)	0.0471 (10)	
H13	-0.0368	0.3542	0.2887	0.057*	
C14	0.3307 (7)	0.4569 (4)	-0.2446 (3)	0.0740 (15)	
H14A	0.2857	0.5185	-0.2245	0.111*	
H14B	0.2481	0.4078	-0.2655	0.111*	
H14C	0.3821	0.4705	-0.3011	0.111*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0414 (12)	0.0344 (12)	0.0424 (11)	0.0097 (9)	0.0161 (9)	-0.0003 (9)
I1	0.0536 (3)	0.0320 (3)	0.0480 (3)	0.00088 (16)	0.01502 (17)	-0.00036 (16)
N1	0.0429 (19)	0.0277 (16)	0.0514 (19)	0.0058 (14)	0.0258 (16)	-0.0028 (14)
N2	0.0336 (17)	0.0352 (17)	0.0395 (17)	0.0050 (14)	0.0178 (14)	-0.0020 (13)
N3	0.046 (2)	0.054 (2)	0.047 (2)	-0.0037 (17)	0.0229 (17)	0.0043 (16)
O1	0.0430 (16)	0.0313 (15)	0.0748 (19)	0.0031 (12)	0.0237 (14)	-0.0019 (13)
O2	0.0611 (19)	0.0450 (17)	0.0432 (15)	0.0100 (14)	0.0145 (14)	-0.0067 (13)
C1	0.033 (2)	0.033 (2)	0.0365 (19)	0.0057 (17)	0.0096 (16)	0.0026 (16)
C2	0.034 (2)	0.033 (2)	0.0294 (18)	0.0052 (17)	0.0082 (15)	-0.0014 (15)
C3	0.057 (3)	0.035 (2)	0.052 (2)	0.0053 (19)	0.028 (2)	0.0038 (18)
C4	0.067 (3)	0.044 (3)	0.067 (3)	0.018 (2)	0.035 (2)	0.002 (2)
C5	0.044 (3)	0.069 (3)	0.050 (3)	0.013 (2)	0.024 (2)	-0.006(2)
C6	0.041 (2)	0.064 (3)	0.048 (2)	-0.006 (2)	0.020 (2)	-0.003 (2)
C7	0.042 (2)	0.040 (2)	0.047 (2)	-0.0017 (19)	0.0153 (18)	0.000(2)
C8	0.044 (2)	0.032 (2)	0.042 (2)	0.0015 (17)	0.0164 (19)	0.0000 (16)
С9	0.053 (3)	0.037 (2)	0.044 (2)	-0.004 (2)	0.0186 (19)	0.0010 (19)
C10	0.031 (2)	0.039 (2)	0.0303 (18)	-0.0002 (17)	0.0116 (15)	0.0001 (16)
C11	0.054 (3)	0.037 (2)	0.048 (2)	-0.0022 (19)	0.027 (2)	-0.0001 (18)
C12	0.056 (3)	0.039 (2)	0.058 (3)	0.004 (2)	0.030 (2)	-0.005 (2)
C13	0.041 (2)	0.063 (3)	0.042 (2)	0.001 (2)	0.0216 (18)	-0.003 (2)
C14	0.095 (4)	0.076 (3)	0.049 (3)	0.012 (3)	0.009 (3)	0.007 (3)

Geometric parameters (Å, °)

Na1—O1	2.294 (3)	C4—C5	1.375 (6)	
Na1—O1 ⁱ	2.294 (3)	C4—H4	0.9300	
Na1—O2 ⁱ	2.344 (2)	C5—C6	1.371 (6)	
Na1—O2	2.344 (2)	С5—Н5	0.9300	
Na1—N2	2.642 (3)	C6—C7	1.382 (5)	
Na1—N2 ⁱ	2.642 (3)	С6—Н6	0.9300	
Na1—C1 ⁱ	3.059 (4)	С7—Н7	0.9300	

N1—C1	1.360 (4)	C8—C10	1.461 (5)
N1—N2	1.390 (4)	C8—H8	0.9300
N1—H1	0.8600	C9—C10	1.391 (5)
N2—C8	1.276 (5)	С9—Н9	0.9300
N3—C13	1.330 (5)	C10—C11	1.379 (5)
N3—C9	1.335 (5)	C11—C12	1.371 (5)
01—C1	1.222 (4)	C11—H11	0.9300
O2—C14	1.412 (5)	C12—C13	1.362 (6)
O2—H2	0.8200	C12—H12	0.9300
C1—C2	1.487 (5)	С13—Н13	0.9300
C2—C3	1.377 (5)	C14—H14A	0.9600
C2—C7	1.382 (5)	C14—H14B	0.9600
C3—C4	1.375 (6)	C14—H14C	0.9600
C3—H3	0.9300		0.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	0.7200		
$O1$ —Na1— $O1^i$	180.0	С4—С3—Н3	119.8
01 —Na1— 02^{i}	93.26 (10)	С2—С3—Н3	119.8
$O1^{i}$ Na1 $O2^{i}$	86.74 (10)	C3-C4-C5	121.1 (4)
01—Na1— 02	86.74 (10)	C3—C4—H4	119.5
$O1^{i}$ Na1 $-O2$	93.26 (10)	C5—C4—H4	119.5
$O2^{i}$ —Na1—O2	180.0	C6—C5—C4	119.0 (4)
Ol—Nal—N2	65.34 (9)	С6—С5—Н5	120.5
$O1^{i}$ —Na1—N2	114.66 (9)	C4—C5—H5	120.5
$\Omega^{2^{i}}$ Na1 N2	91.60 (9)	C5—C6—C7	120.0 (4)
O2—Na1—N2	88.40 (9)	С5—С6—Н6	120.0
O1—Na1—N2 ⁱ	114.66 (9)	С7—С6—Н6	120.0
O1 ⁱ —Na1—N2 ⁱ	65.34 (9)	C2—C7—C6	121.0 (4)
$\Omega^{2^{i}}$ Na1 N2 ⁱ	88.40 (9)	С2—С7—Н7	119.5
O2—Na1—N2 ⁱ	91.60 (9)	С6—С7—Н7	119.5
N2—Na1—N2 ⁱ	180.00 (6)	N2—C8—C10	122.1 (3)
O1—Na1—C1 ⁱ	159.30 (9)	N2—C8—H8	118.9
Ol ⁱ —Nal—Cl ⁱ	20.70 (9)	C10—C8—H8	118.9
O2 ⁱ —Na1—C1 ⁱ	76.04 (9)	N3—C9—C10	124.1 (4)
O2—Na1—C1 ⁱ	103.96 (9)	N3—C9—H9	118.0
N2—Na1—C1 ⁱ	131.53 (9)	С10—С9—Н9	118.0
N2 ⁱ —Na1—C1 ⁱ	48.47 (9)	C11—C10—C9	117.5 (3)
C1—N1—N2	119.1 (3)	C11—C10—C8	125.1 (3)
C1—N1—H1	120.4	C9—C10—C8	117.4 (3)
N2—N1—H1	120.4	C12—C11—C10	118.8 (4)
C8—N2—N1	114.5 (3)	C12—C11—H11	120.6
C8—N2—Na1	140.1 (3)	C10—C11—H11	120.6
N1—N2—Na1	102.3 (2)	C13—C12—C11	119.4 (4)
C13—N3—C9	116.3 (3)	C13—C12—H12	120.3
C1-01-Na1	117.7 (2)	C11—C12—H12	120.3
C14—O2—Na1	122.5 (3)	N3—C13—C12	123.9 (4)
С14—О2—Н2	109.5	N3—C13—H13	118.0
Na1—O2—H2	127.7	C12—C13—H13	118.0
O1—C1—N1	121.5 (3)	O2—C14—H14A	109.5

01 - C1 - C2	121 5 (3)	O2—C14—H14B	109 5
N1-C1-C2	1170(3)	H14A— $C14$ — $H14B$	109.5
$C_{3}-C_{2}-C_{7}$	1184(3)	Ω^2 —C14—H14C	109.5
C_{3} C_{2} C_{1}	1250(3)	$H_{14} - C_{14} - H_{14} C_{14}$	109.5
C7-C2-C1	116.6 (3)	H14B— $C14$ — $H14C$	109.5
C4-C3-C2	120 4 (4)	in b cri in c	109.5
01 05 02	120.1(1)		
C1—N1—N2—C8	-170.8 (3)	N2—N1—C1—C2	178.6 (3)
C1—N1—N2—Na1	25.1 (3)	O1—C1—C2—C3	179.9 (4)
O1—Na1—N2—C8	175.8 (4)	N1—C1—C2—C3	1.0 (5)
O1 ⁱ —Na1—N2—C8	-4.2 (4)	O1—C1—C2—C7	-0.2 (5)
O2 ⁱ —Na1—N2—C8	82.9 (4)	N1—C1—C2—C7	-179.1 (3)
O2—Na1—N2—C8	-97.1 (4)	C7—C2—C3—C4	1.1 (6)
C1 ⁱ —Na1—N2—C8	10.2 (4)	C1—C2—C3—C4	-179.0 (4)
O1—Na1—N2—N1	-27.19 (19)	C2—C3—C4—C5	-0.3 (6)
O1 ⁱ —Na1—N2—N1	152.81 (19)	C3—C4—C5—C6	-0.6 (7)
O2 ⁱ —Na1—N2—N1	-120.0 (2)	C4C5C7	0.6 (6)
O2—Na1—N2—N1	60.0 (2)	C3—C2—C7—C6	-1.1 (6)
C1 ⁱ —Na1—N2—N1	167.28 (18)	C1—C2—C7—C6	179.1 (4)
O2 ⁱ —Na1—O1—C1	122.2 (3)	C5—C6—C7—C2	0.2 (6)
O2—Na1—O1—C1	-57.8 (3)	N1-N2-C8-C10	179.9 (3)
N2—Na1—O1—C1	31.9 (3)	Na1—N2—C8—C10	-24.9 (6)
N2 ⁱ —Na1—O1—C1	-148.1 (3)	C13—N3—C9—C10	0.9 (6)
C1 ⁱ —Na1—O1—C1	180.0	N3—C9—C10—C11	-1.0 (6)
O1—Na1—O2—C14	-153.5 (3)	N3—C9—C10—C8	179.3 (4)
O1 ⁱ —Na1—O2—C14	26.5 (3)	N2-C8-C10-C11	-2.9 (6)
N2—Na1—O2—C14	141.2 (3)	N2-C8-C10-C9	176.7 (4)
N2 ⁱ —Na1—O2—C14	-38.8 (3)	C9-C10-C11-C12	0.5 (5)
C1 ⁱ —Na1—O2—C14	8.6 (4)	C8-C10-C11-C12	-179.9 (4)
Na1—O1—C1—N1	-32.3 (4)	C10-C11-C12-C13	0.0 (6)
Na1—O1—C1—C2	148.9 (3)	C9—N3—C13—C12	-0.3 (6)
N2—N1—C1—O1	-0.3 (5)	C11—C12—C13—N3	-0.1 (7)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
N1—H1…I1 ⁱⁱ	0.86	3.03	3.816 (3)	153
O2—H2···N3 ⁱⁱⁱ	0.82	1.98	2.792 (5)	171

Symmetry codes: (ii) -x+1/2, y-1/2, -z+1/2; (iii) x+1/2, -y+1/2, z-1/2.