

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-Bis(4-fluoroanilino)-3,3'-(3,6-dioxaoctane-1,8-diyl)diquinazolin-4(3*H*)-one

Xiang Wang,^a* Zuan Ma^b and Yu-Lu Chen^c

^aDepartment of Chemistry, Kaili College, Guizhou 556000, People's Republic of China, ^bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and ^cDepartment of Chemistry, Xianning Vocational and Technical College, Xianning 437100, People's Republic of China Correspondence e-mail: wangx0828@sina.com

Received 10 November 2008; accepted 3 December 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.146; data-to-parameter ratio = 13.6.

In the centrosymmetric title compound, $C_{34}H_{30}F_2N_6O_4$, the dihedral angle between the quinazolinone and fluorobenzene ring planes are 71.00 (2) and 74.94 (2)° and an intramolecular N-H···O interaction stabilizes the conformation. In the crystal, C-H···F and C-H···O links help to establish the packing.

Related literature

For the biological activity of quinazolinones, see: Shiba *et al.* (1997); Ding *et al.*, 2004. For the crystal structures of other fused heterocyclic derivatives, see: Wang *et al.* (2006); Xu *et al.* (2006).

Experimental

Crystal data	
$C_{34}H_{30}F_2N_6O_4$	a = 13.923 (3) Å
$M_r = 624.64$	b = 12.509 (3) Å
Monoclinic, $C2/c$	c = 18.726 (4) Å

$\beta = 97.08 \ (3)^{\circ}$
V = 3236.6 (11) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.982, T_{max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.146$ S = 1.062834 reflections

H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.30 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.16 \text{ e } \text{\AA}^{-3}$

208 parameters

 $R_{\rm int} = 0.0123$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2$ $C16 - H16A \cdots F1^{i}$	0.86 0.97	2.18 2.54	2.7954 (19) 3.388 (2)	128 146
$C16 - H16B \cdots O1^{n}$	0.97	2.43	3.377 (2)	164

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

We thank Dr Xiang-Gao Meng for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2676).

References

- Bruker (2001). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, M. W., Chen, Y. F. & Huang, N. Y. (2004). Eur. J. Org. Chem. pp. 3872– 3878.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS, inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shiba, S. A., El-Khamry, A. A., Shaban, M. E. & Atia, K. S. (1997). *Pharmazie*, **52**, 189–194.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Wang, X., Zheng, A.-H. & Xu, S.-Z. (2006). Acta Cryst. E62, 04791-04792.
- Xu, S.-Z., Hu, Y.-G., Wang, X. & Ding, M.-W. (2006). Acta Cryst. E62, o2229o2230.

 $\mu = 0.10 \text{ mm}^{-1}$ T = 295 (2) K

 $0.20 \times 0.10 \times 0.10$ mm

2834 measured reflections

2834 independent reflections

2263 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, o53 [doi:10.1107/S1600536808040841]

2,2'-Bis(4-fluoroanilino)-3,3'-(3,6-dioxaoctane-1,8-diyl)diquinazolin-4(3H)-one

Xiang Wang, Zuan Ma and Yu-Lu Chen

S1. Comment

Quinazolinones are important heterocycles exhibiting good biological and pharmaceutical activities. Some of these actities inclue antimicrobial, anti-inflammatory, antifungal, anticancer and AMPA receptor antagonistical properties (Shiba *et al.*, 1997 and Ding *et al.*, 2004). In connection with our ongoing heterocyclic synthesis and drug discovery project (Wang *et al.*, 2006; Xu *et al.*, 2006), we obtained the title compound by employing aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with *p*-Flurophenyl isocyanate and subsequent 2-(2-(2-aminoethoxy)ethoxy)eth-oxy)ethanamine under mild conditions. Herein, we present X-ray crystallographic analysis of the title compound, which may be used as a new precursor for obtaining bioactive molecules.

The selected bond lengths and angles are given in parameter see Table 1. In the molecule of the title compound (Fig. 1), the fused rings of quinazolinones are planar, and the phenyl (C1—C6) and (C1a—C6a) rings are twisted with respect to the two quinazolinone ring systems, making dihedral angles of 71.00 (2)° and 74.94 (2)°, respectively. The molecular conformation is stabilized by intermolecular N—H…O and O—H…N hydrogen bonds. In the crystal packing, intramolecular N—H…O and O—H…N hydrogen bonds and intermolecular C—H…F and C—H…O hydrogen bonds (Fig.2, Table 2) link the molecules, helping to stabilize the crystal structure.

S2. Experimental

To a solution of iminophosphorane (1.28 g, 3.0 mmol) in anhydrous THF (10 mL) was added p-Fluorophenyl isocyanate (0.41 g, 3.0 mmol) under nitrogen at room temperature. After standing for 10 h at 273-278K, the solvent was removed under reduced pressure and ethyl sther/petroleum ether (1:2, 10ml) was added to precipitate triphenylphosphine oxide. After filtration the solvent was removed to give the carbodiimide, which were used directly without further purification. To the solution of carbodiimide prepared above was added a solution of 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3 mmol) in THF (10 mL). The mixture was stirred for 10 h at room temperature, concentrated under reduced pressure and the recrystallized from a mixed solvent of methanol and dichloromethane (1:2 v/v) at room temperature to give the title compound.

S3. Refinement

All H atoms were located in difference maps and treated as riding atoms with C—H = 0.93 Å, U_{iso} =1.2 U_{eq} (C) for Csp², C —H = 0.97 Å, U_{iso} = 1.2 U_{eq} (C) for CH₂, N—H = 0.86 Å, U_{iso} = 1.2 U_{eq} (N) for NH.

Figure 1

The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing diagram for title compound, showing the hydrogen bonds stacking interactions.

2,2'-Bis(4-fluoroanilino)-3,3'-(3,6-dioxaoctane-1,8- diyl)diquinazolin-4(3H)-one

C₃₄H₃₀F₂N₆O₄ $M_r = 624.64$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.923 (3) Å b = 12.509 (3) Å c = 18.726 (4) Å $\beta = 97.08$ (3)° V = 3236.6 (11) Å³ Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans F(000) = 1304 $D_x = 1.282 \text{ Mg m}^{-3}$ Melting point: 415 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3566 reflections $\theta = 2.2-28.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.20 \times 0.10 \times 0.10 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.982$, $T_{\max} = 0.991$ 2834 measured reflections 2834 independent reflections 2263 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.012$
$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.2^\circ$
$h = -16 \rightarrow 16$

Refinement

negmentent	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.146$	$w = 1/[\sigma^2(F_o^2) + (0.0807P)^2 + 0.8957P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
2834 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
208 parameters	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008)
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0028 (9)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $k = 0 \rightarrow 14$ $l = 0 \rightarrow 22$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.24654 (14)	0.79492 (18)	0.12370 (9)	0.0755 (6)	
C2	0.24527 (18)	0.85820 (18)	0.18204 (11)	0.0885 (7)	
H2	0.2639	0.9295	0.1808	0.106*	
C3	0.21577 (17)	0.81506 (16)	0.24356 (10)	0.0807 (6)	
H3	0.2140	0.8575	0.2841	0.097*	
C4	0.18901 (12)	0.70941 (14)	0.24493 (8)	0.0605 (4)	
C5	0.19174 (14)	0.64790 (16)	0.18485 (9)	0.0705 (5)	
H5	0.1740	0.5763	0.1858	0.085*	
C6	0.22039 (15)	0.69037 (18)	0.12292 (9)	0.0771 (6)	
H6	0.2218	0.6487	0.0819	0.093*	
C7	0.21556 (14)	0.65123 (13)	0.36984 (9)	0.0621 (4)	
C8	0.36454 (15)	0.65449 (13)	0.43630 (9)	0.0675 (5)	
C9	0.46390 (16)	0.67547 (17)	0.44028 (11)	0.0822 (6)	
H9	0.4893	0.7023	0.4003	0.099*	
C10	0.52371 (19)	0.65675 (19)	0.50253 (12)	0.0928 (7)	
H10	0.5895	0.6713	0.5044	0.111*	
C11	0.4878 (2)	0.61653 (19)	0.56277 (12)	0.0948 (7)	
H11	0.5292	0.6041	0.6048	0.114*	
C12	0.3909 (2)	0.59501 (16)	0.56025 (10)	0.0852 (6)	
H12	0.3666	0.5682	0.6007	0.102*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C13	0.32810 (15)	0.61330 (13)	0.49687 (9)	0.0680 (5)	
C14	0.22605 (15)	0.58965 (14)	0.49317 (9)	0.0704 (5)	
C15	0.06541 (15)	0.60240 (16)	0.42379 (11)	0.0761 (6)	
H15A	0.0350	0.6577	0.3924	0.091*	
H15B	0.0468	0.6141	0.4714	0.091*	
C16	0.02768 (14)	0.49650 (16)	0.39706 (11)	0.0774 (6)	
H16A	0.0650	0.4397	0.4225	0.093*	
H16B	-0.0393	0.4887	0.4055	0.093*	
C17	-0.00666 (15)	0.39575 (15)	0.28882 (13)	0.0858 (6)	
H17A	-0.0751	0.3931	0.2939	0.103*	
H17B	0.0241	0.3331	0.3121	0.103*	
F1	0.27593 (11)	0.83760 (13)	0.06324 (6)	0.1146 (6)	
N1	0.15482 (12)	0.66559 (12)	0.30729 (7)	0.0698 (4)	
H1	0.0949	0.6478	0.3056	0.084*	
N2	0.17129 (11)	0.61347 (11)	0.42748 (7)	0.0639 (4)	
N7	0.30664 (12)	0.67140 (12)	0.37194 (7)	0.0676 (4)	
01	0.18667 (12)	0.55312 (13)	0.54259 (7)	0.0937 (5)	
O2	0.03497 (9)	0.48969 (9)	0.32193 (7)	0.0748 (4)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0723 (11)	0.1035 (15)	0.0487 (9)	-0.0327 (10)	-0.0003 (8)	0.0192 (9)
C2	0.1115 (17)	0.0794 (13)	0.0736 (12)	-0.0417 (12)	0.0075 (11)	0.0167 (10)
C3	0.1106 (16)	0.0716 (12)	0.0617 (10)	-0.0257 (11)	0.0181 (10)	0.0020 (9)
C4	0.0631 (10)	0.0661 (10)	0.0522 (9)	-0.0140 (8)	0.0069 (7)	0.0097 (7)
C5	0.0824 (12)	0.0691 (11)	0.0603 (10)	-0.0180 (9)	0.0098 (9)	0.0049 (8)
C6	0.0859 (13)	0.0933 (14)	0.0526 (10)	-0.0194 (11)	0.0099 (9)	0.0005 (9)
C7	0.0863 (12)	0.0520 (9)	0.0514 (9)	-0.0073 (8)	0.0223 (8)	0.0021 (7)
C8	0.0941 (13)	0.0543 (10)	0.0550 (9)	-0.0094 (9)	0.0121 (9)	-0.0040 (7)
C9	0.0958 (15)	0.0788 (13)	0.0710 (12)	-0.0233 (11)	0.0065 (11)	-0.0028 (9)
C10	0.1032 (17)	0.0882 (15)	0.0835 (14)	-0.0154 (12)	-0.0025 (12)	-0.0092 (11)
C11	0.118 (2)	0.0860 (15)	0.0751 (14)	-0.0010 (14)	-0.0111 (13)	-0.0055 (11)
C12	0.128 (2)	0.0717 (12)	0.0567 (10)	0.0069 (12)	0.0138 (11)	0.0024 (9)
C13	0.0973 (14)	0.0537 (9)	0.0548 (9)	0.0057 (9)	0.0162 (9)	-0.0011 (7)
C14	0.1018 (15)	0.0591 (10)	0.0550 (9)	0.0125 (9)	0.0286 (9)	0.0075 (8)
C15	0.0861 (13)	0.0765 (12)	0.0737 (11)	0.0247 (10)	0.0416 (10)	0.0188 (9)
C16	0.0625 (11)	0.0819 (13)	0.0943 (13)	0.0092 (9)	0.0359 (10)	0.0323 (10)
C17	0.0731 (12)	0.0562 (10)	0.1317 (18)	-0.0043 (9)	0.0273 (12)	0.0129 (10)
F1	0.1282 (11)	0.1552 (13)	0.0596 (7)	-0.0636 (9)	0.0091 (7)	0.0307 (7)
N1	0.0761 (10)	0.0793 (10)	0.0556 (8)	-0.0195 (8)	0.0152 (7)	0.0120 (7)
N2	0.0824 (10)	0.0582 (8)	0.0561 (8)	0.0061 (7)	0.0290 (7)	0.0089 (6)
N7	0.0820 (11)	0.0696 (9)	0.0527 (8)	-0.0186 (8)	0.0142 (7)	0.0019 (6)
O1	0.1137 (11)	0.1071 (11)	0.0679 (8)	0.0187 (9)	0.0419 (8)	0.0301 (8)
O2	0.0723 (8)	0.0614 (7)	0.0970 (10)	-0.0068 (6)	0.0353 (7)	0.0114 (6)

Geometric parameters (Å, °)

C1—C2	1.351 (3)	C10—H10	0.9300
C1—C6	1.357 (3)	C11—C12	1.371 (3)
C1—F1	1.3597 (19)	C11—H11	0.9300
C2—C3	1.380 (3)	C12—C13	1.403 (3)
C2—H2	0.9300	C12—H12	0.9300
C3—C4	1.374 (3)	C13—C14	1.445 (3)
С3—Н3	0.9300	C14—O1	1.221 (2)
C4—C5	1.368 (2)	C14—N2	1.397 (2)
C4—N1	1.4239 (19)	C15—N2	1.474 (2)
C5—C6	1.379 (2)	C15—C16	1.489 (3)
С5—Н5	0.9300	C15—H15A	0.9700
С6—Н6	0.9300	C15—H15B	0.9700
C7—N7	1.289 (2)	C16—O2	1.426 (2)
C7—N1	1.369 (2)	C16—H16A	0.9700
C7—N2	1.390 (2)	C16—H16B	0.9700
C8—N7	1.381 (2)	C17—O2	1.419 (2)
C8—C13	1.397 (2)	C17—C17 ⁱ	1.488 (5)
C8—C9	1.401 (3)	C17—H17A	0.9700
C9—C10	1.367 (3)	C17—H17B	0.9700
С9—Н9	0.9300	N1—H1	0.8600
C10—C11	1.384 (3)		
C2—C1—C6	122.90 (16)	C11—C12—H12	119.8
C2—C1—F1	118.59 (19)	C13—C12—H12	119.8
C6—C1—F1	118.50 (19)	C8—C13—C12	119.8 (2)
C1—C2—C3	118.74 (19)	C8—C13—C14	119.35 (17)
C1—C2—H2	120.6	C12—C13—C14	120.89 (18)
С3—С2—Н2	120.6	O1—C14—N2	119.99 (19)
C4—C3—C2	120.08 (19)	O1—C14—C13	124.83 (18)
С4—С3—Н3	120.0	N2-C14-C13	115.17 (15)
С2—С3—Н3	120.0	N2-C15-C16	114.13 (15)
C5—C4—C3	119.38 (16)	N2—C15—H15A	108.7
C5—C4—N1	120.27 (15)	C16—C15—H15A	108.7
C3—C4—N1	120.29 (16)	N2—C15—H15B	108.7
C4—C5—C6	121.04 (18)	C16—C15—H15B	108.7
C4—C5—H5	119.5	H15A—C15—H15B	107.6
С6—С5—Н5	119.5	O2—C16—C15	108.66 (14)
C1—C6—C5	117.86 (18)	O2—C16—H16A	110.0
С1—С6—Н6	121.1	C15—C16—H16A	110.0
С5—С6—Н6	121.1	O2-C16-H16B	110.0
N7—C7—N1	120.14 (14)	C15—C16—H16B	110.0
N7—C7—N2	124.86 (16)	H16A—C16—H16B	108.3
N1—C7—N2	115.00 (16)	O2-C17-C17 ⁱ	109.48 (13)
N7—C8—C13	122.25 (18)	O2—C17—H17A	109.8
N7—C8—C9	118.96 (17)	C17 ⁱ —C17—H17A	109.8
С13—С8—С9	118.75 (18)	O2—C17—H17B	109.8

C10—C9—C8	120.5 (2)	C17 ⁱ —C17—H17B	109.8
С10—С9—Н9	119.8	H17A—C17—H17B	108.2
С8—С9—Н9	119.8	C7—N1—C4	121.22 (15)
C9—C10—C11	120.9 (2)	C7—N1—H1	119.4
С9—С10—Н10	119.5	C4—N1—H1	119.4
C11—C10—H10	119.5	C7—N2—C14	120.67 (16)
C12—C11—C10	119.8 (2)	C7—N2—C15	122.16 (15)
C12—C11—H11	120.1	C14—N2—C15	117.09 (14)
C10—C11—H11	120.1	C7—N7—C8	117.59 (15)
C11—C12—C13	120.3 (2)	C17—O2—C16	113.94 (14)
C6_C1_C2_C3	-0.3(4)	C8 - C13 - C14 - N2	-15(2)
$F_1 - C_1 - C_2 - C_3$	-179.8(2)	C12 - C13 - C14 - N2	178 81 (16)
C1 - C2 - C3 - C4	0.4(4)	$N_2 - C_{15} - C_{16} - O_2$	$-71\ 71\ (19)$
$C_2 - C_3 - C_4 - C_5$	-0.1(3)	N7-C7-N1-C4	-42(3)
$C_2 - C_3 - C_4 - N_1$	-177.47(19)	N2-C7-N1-C4	176.50 (15)
C3—C4—C5—C6	-0.4 (3)	C5-C4-N1-C7	113.3 (2)
N1—C4—C5—C6	176.98 (17)	C3—C4—N1—C7	-69.4 (2)
C2—C1—C6—C5	-0.2 (3)	N7—C7—N2—C14	-2.9(3)
F1—C1—C6—C5	179.32 (17)	N1—C7—N2—C14	176.34 (15)
C4—C5—C6—C1	0.5 (3)	N7—C7—N2—C15	173.61 (17)
N7—C8—C9—C10	-178.14 (18)	N1—C7—N2—C15	-7.1 (2)
C13—C8—C9—C10	-0.5 (3)	O1—C14—N2—C7	-177.52 (16)
C8—C9—C10—C11	0.2 (3)	C13—C14—N2—C7	3.6 (2)
C9—C10—C11—C12	0.0 (4)	O1—C14—N2—C15	5.8 (3)
C10-C11-C12-C13	0.2 (3)	C13—C14—N2—C15	-173.17 (15)
N7—C8—C13—C12	178.24 (16)	C16—C15—N2—C7	89.7 (2)
C9—C8—C13—C12	0.7 (3)	C16—C15—N2—C14	-93.65 (19)
N7—C8—C13—C14	-1.5 (3)	N1—C7—N7—C8	-179.41 (15)
C9—C8—C13—C14	-179.00 (17)	N2—C7—N7—C8	-0.2 (3)
C11—C12—C13—C8	-0.5 (3)	C13—C8—N7—C7	2.4 (3)
C11-C12-C13-C14	179.17 (19)	C9—C8—N7—C7	179.87 (17)
C8-C13-C14-O1	179.66 (17)	C17 ⁱ —C17—O2—C16	-178.87 (17)
C12-C13-C14-O1	-0.1 (3)	C15—C16—O2—C17	-174.79 (15)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O2	0.86	2.18	2.7954 (19)	128
C16—H16A…F1 ⁱⁱ	0.97	2.54	3.388 (2)	146
C16—H16B…O1 ⁱⁱⁱ	0.97	2.43	3.377 (2)	164

Symmetry codes: (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x, -y+1, -z+1.