organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane 3,9-dioxide

Zai-Ying Rao,^a Xin Xiao,^a* Yun-Qiang Zhang,^a Sai-Feng Xue^b and Zhu Tao^b

^aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and ^bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China

Correspondence e-mail: gyhxxiaoxin@163.com

Received 30 October 2008; accepted 9 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.078; data-to-parameter ratio = 6.8.

The asymmetric unit of the title compound, $C_5H_8O_6S_2$, consists of two spiro[5.5]undecane molecules. The nonplanar six-membered rings adopt chair conformations. In the crystal structure, weak intermolecular $C-H \cdots O$ interactions, together with close $O \cdot \cdot \cdot S$ contacts in the range 3.308 (3)-3.315 (3) Å, stabilize the packing.

Related literature

For background to the use of the title compound in the synthesis of pesticides, see: Jermy & Pandurangan (2005). For ring conformation puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

 $C_5H_8O_6S_2$ $M_r = 228.25$ Orthorhombic, Pbn2₁ a = 6.0489 (5) Å b = 12.8431 (11) Å c = 21.5830 (18) Å

V = 1676.7 (2) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.63 \text{ mm}^{-1}$ T = 293 (2) K $0.25 \times 0.23 \times 0.19 \text{ mm}$

Data collection

```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\rm min} = 0.858, T_{\rm max} = 0.890
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.078$	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.07	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
1604 reflections	Absolute structure: Flack (1983),
235 parameters	with 1497 Friedel pairs
1 restraint	Flack parameter: 0.09 (9)

8878 measured reflections

 $R_{\rm int} = 0.028$

1604 independent reflections

1531 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$C2 - H2A \cdots O6^{i} C10 - H10A \cdots O9^{i} C3 - H3B \cdots O3^{ii} C9 - H9A \cdots O2^{iii}$	0.97 0.97 0.97 0.97	2.53 2.57 2.71 2.72	3.343 (4) 3.375 (4) 3.610 (4) 3.635 (4)	141 141 155 159

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge the Natural Science Foundation of China (grant No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (grant No. 2007-005) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2669).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jermy, B. R. & Pandurangan, A. (2005). Appl. Catal. A, 295, 185-192.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o36 [doi:10.1107/S1600536808036891]

2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane 3,9-dioxide

Zai-Ying Rao, Xin Xiao, Yun-Qiang Zhang, Sai-Feng Xue and Zhu Tao

S1. Comment

As part of our ongoing investigation into pentaerythritol compounds, we present an important intermediate in the synthesis of pesticides (Jermy & Pandurangan, 2005). The crystal structure determination of (I) has been carried out in order to elucidate the molecular conformation.

The crystal structure of the title compound, (I), consists of two spiro[5,5]undecane molecules (Fig. 1), in which the bond lengths are within normal ranges (Allen *et al.*, 1987). The four six-membered rings are not planar and adopt chair conformations, with a total puckering amplitude, Q_T , of 0.607 (2) Å.

In the crystal structure, weak intermolecular C—H···O interactions, Table 1, together with close O5···S2 [$d_{0\cdots S} = 3.315$ (3)] and O6···S3 [$d_{0\cdots S} = 3.308$ (3)] contacts stabilize the packing.

S2. Experimental

A solution of thionyl chloride 30 ml (13.6 g 0.1 mol) in CH₂Cl₂ (30 ml) was added to a stirred solution of pentaerythritol (13.6 g 0.1 mol) in CH₂Cl₂ (50 ml) at room temperature for 24 h, and was then heated to reflux for 5 h. The resulting solution was evaporated to dryness under reduced pressure and the white product washed with warm water, the mixture filtered and the residue dissolved in 80 ml boiling distilled water then cooled. Single crystals of (I) were obtained after several days.

S3. Refinement

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with $U_{iso}(H) = 1.2U_{eq}(O)$. All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and $U_{iso}(H) = 1.2-1.5U_{eq}(C,N)$.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane 3,9-dioxide

Crystal data

C₅H₈O₆S₂ $M_r = 228.25$ Orthorhombic, $Pbn2_1$ Hall symbol: P 2c -2ab a = 6.0489 (5) Å b = 12.8431 (11) Å c = 21.5830 (18) Å V = 1676.7 (2) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.858, T_{\max} = 0.890$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.078$ S = 1.071604 reflections 235 parameters F(000) = 944 $D_x = 1.808 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1606 reflections $\theta = 1.9-25.5^{\circ}$ $\mu = 0.63 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.25 \times 0.23 \times 0.19 \text{ mm}$

8878 measured reflections 1604 independent reflections 1531 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -7 \rightarrow 7$ $k = -15 \rightarrow 15$ $l = -25 \rightarrow 25$

 restraint
 Primary atom site location: structure-invariant direct methods
 Secondary atom site location: difference Fourier map
 Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.284P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$

Special details

 $\Delta \rho_{\min} = -0.41$ e Å⁻³ Absolute structure: Flack (1983), with 1497 Friedel pairs Absolute structure parameter: 0.09 (9)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
$\overline{C1}$	0 5760 (5)	0.8962 (2)	-0.21898 (13)	0.0267.(6)	
C2	0.3243(5)	0.8902(2)	-0.21098(16)	0.0220(7)	
62 H2A	0.2803	0.9325	-0.1756	0.038*	
H2B	0.2525	0.9189	-0.2475	0.038*	
C3	0.6435 (5)	0.8264 (3)	-0.27315(14)	0.0336 (7)	
H3A	0.5837	0.8547	-0.3113	0.040*	
H3B	0.8033	0.8258	-0.2767	0.040*	
C4	0.6446 (5)	1.0070 (2)	-0.23563 (14)	0.0331 (7)	
H4A	0.8011	1.0084	-0.2453	0.040*	
H4B	0.5641	1.0296	-0.2721	0.040*	
C5	0.6937 (6)	0.8619 (3)	-0.15935 (16)	0.0332 (7)	
H5A	0.6417	0.7934	-0.1472	0.040*	
H5B	0.8516	0.8576	-0.1667	0.040*	
C6	0.0841 (5)	0.8707 (2)	0.04429 (13)	0.0282 (6)	
C7	0.1496 (6)	0.7587 (3)	0.06034 (15)	0.0380 (7)	
H7A	0.3062	0.7561	0.0699	0.046*	
H7B	0.0689	0.7363	0.0968	0.046*	
C8	0.2024 (6)	0.9046 (3)	-0.01531 (15)	0.0317 (7)	
H8A	0.1525	0.9734	-0.0273	0.038*	
H8B	0.3605	0.9077	-0.0081	0.038*	
C9	0.1562 (5)	0.9395 (3)	0.09843 (15)	0.0366 (7)	
H9A	0.0991	0.9107	0.1368	0.044*	
H9B	0.3163	0.9397	0.1010	0.044*	
C10	-0.1658 (5)	0.8766 (2)	0.03668 (16)	0.0344 (7)	
H10A	-0.2105	0.8358	0.0010	0.041*	
H10B	-0.2372	0.8477	0.0731	0.041*	
01	0.2555 (4)	0.7835 (2)	-0.20175 (13)	0.0391 (6)	
O2	0.5638 (4)	0.72017 (16)	-0.26492 (13)	0.0393 (6)	
O3	0.1990 (5)	0.7482 (2)	-0.31274 (14)	0.0511 (7)	
O4	0.6503 (4)	0.93608 (18)	-0.10970 (10)	0.0384 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

05	0.6001 (4)	1.07751 (17)	-0.18509 (11)	0.0383 (5)	
O6	0.9676 (4)	1.0477 (2)	-0.13830 (14)	0.0483 (7)	
07	0.1022 (4)	0.68874 (18)	0.00930 (12)	0.0414 (6)	
08	0.1555 (4)	0.83071 (19)	-0.06494 (10)	0.0380 (5)	
09	0.4707 (4)	0.7194 (2)	-0.03627 (15)	0.0532 (7)	
O10	0.0777 (4)	1.04518 (17)	0.09141 (13)	0.0430 (6)	
011	-0.2349 (4)	0.9845 (2)	0.02836 (13)	0.0424 (6)	
012	-0.2837 (5)	1.0115 (2)	0.13974 (14)	0.0618 (9)	
S1	0.73630 (15)	1.05361 (7)	-0.12165 (4)	0.0379 (2)	
S2	0.29956 (16)	0.70421 (6)	-0.25830 (4)	0.0384 (2)	
S3	0.24084 (16)	0.71310(7)	-0.05390 (5)	0.0399 (2)	
S4	-0.18731 (16)	1.06085 (7)	0.08585 (5)	0.0446 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0256 (15)	0.0307 (15)	0.0239 (14)	0.0010 (11)	0.0020 (11)	-0.0003 (11)
C2	0.0286 (17)	0.0333 (17)	0.0340 (17)	0.0035 (12)	0.0030 (13)	-0.0055 (13)
C3	0.0327 (16)	0.0354 (17)	0.0325 (17)	0.0003 (13)	0.0040 (12)	-0.0063 (12)
C4	0.0368 (17)	0.0334 (17)	0.0292 (14)	-0.0013 (13)	0.0011 (14)	0.0015 (12)
C5	0.0360 (17)	0.0324 (15)	0.0311 (16)	0.0027 (13)	-0.0013 (14)	0.0006 (14)
C6	0.0305 (16)	0.0303 (16)	0.0240 (14)	-0.0022 (12)	0.0025 (12)	-0.0006 (11)
C7	0.0466 (19)	0.0381 (18)	0.0295 (15)	-0.0005 (15)	0.0001 (15)	0.0056 (14)
C8	0.0369 (18)	0.0316 (16)	0.0265 (15)	-0.0014 (13)	0.0059 (12)	-0.0014 (12)
C9	0.0383 (18)	0.0416 (17)	0.0298 (16)	-0.0040 (14)	-0.0015 (14)	-0.0038 (14)
C10	0.0281 (17)	0.0380 (18)	0.0370 (17)	-0.0043 (13)	0.0031 (14)	-0.0091 (14)
01	0.0367 (14)	0.0426 (14)	0.0380 (14)	-0.0083 (9)	0.0122 (9)	-0.0059 (11)
O2	0.0417 (14)	0.0312 (12)	0.0451 (13)	0.0043 (9)	0.0050 (11)	-0.0058 (10)
O3	0.0535 (16)	0.0548 (17)	0.0450 (15)	-0.0016 (13)	-0.0126 (12)	-0.0107 (12)
O4	0.0460 (14)	0.0413 (12)	0.0278 (11)	-0.0029 (11)	0.0013 (10)	-0.0014 (10)
O5	0.0423 (13)	0.0308 (12)	0.0418 (12)	0.0034 (9)	-0.0036 (11)	-0.0016 (10)
O6	0.0351 (13)	0.0505 (14)	0.0594 (17)	-0.0048 (11)	-0.0049 (12)	-0.0102 (12)
O7	0.0505 (15)	0.0306 (12)	0.0432 (13)	-0.0041 (10)	0.0035 (12)	-0.0017 (10)
08	0.0489 (14)	0.0418 (13)	0.0232 (10)	0.0043 (10)	0.0018 (10)	-0.0021 (9)
09	0.0399 (15)	0.0535 (16)	0.0663 (19)	0.0066 (12)	0.0044 (14)	-0.0147 (13)
O10	0.0471 (14)	0.0375 (12)	0.0445 (14)	-0.0105 (10)	0.0045 (13)	-0.0094 (10)
O11	0.0392 (15)	0.0431 (14)	0.0450 (15)	0.0095 (10)	-0.0050 (10)	-0.0082 (12)
O12	0.071 (2)	0.0582 (19)	0.056 (2)	-0.0121 (15)	0.0297 (15)	-0.0165 (15)
S1	0.0379 (5)	0.0403 (4)	0.0355 (5)	0.0005 (4)	-0.0027(3)	-0.0106 (4)
S2	0.0431 (4)	0.0326 (4)	0.0397 (5)	-0.0040 (3)	0.0036 (4)	-0.0059 (4)
S3	0.0417 (5)	0.0397 (5)	0.0382 (5)	0.0028 (3)	0.0022 (3)	-0.0106 (4)
S4	0.0476 (5)	0.0371 (5)	0.0492 (6)	0.0018 (4)	0.0103 (5)	-0.0122 (4)

Geometric parameters (Å, °)

C1—C4	1.526 (4)	С7—Н7В	0.9700
C1—C3	1.528 (4)	C8—O8	1.458 (4)
C1—C2	1.534 (4)	C8—H8A	0.9700

C1—C5	1.535 (4)	C8—H8B	0.9700
C2—O1	1.454 (4)	C9—O10	1.446 (4)
C2—H2A	0.9700	С9—Н9А	0.9700
C2—H2B	0.9700	С9—Н9В	0.9700
C3—O2	1.458 (4)	C10—O11	1.458 (4)
С3—НЗА	0.9700	C10—H10A	0.9700
С3—Н3В	0.9700	C10—H10B	0.9700
C4—O5	1.443 (4)	O1—S2	1.612 (3)
C4—H4A	0.9700	O2—S2	1.618 (3)
C4—H4B	0.9700	O3—S2	1.439 (3)
C5—O4	1.458 (4)	O4—S1	1.617 (2)
C5—H5A	0.9700	O5—S1	1.627 (3)
С5—Н5В	0.9700	O6—S1	1.446 (3)
C6—C10	1.522 (4)	O7—S3	1.632 (3)
C6—C9	1.528 (4)	O8—S3	1.614 (3)
C6—C7	1.532 (4)	O9—S3	1.444 (3)
C6—C8	1.535 (4)	010-84	1.620 (3)
C7—O7	1.450 (4)	011—\$4	1.608 (3)
С7—Н7А	0.9700	012—84	1.447 (3)
C4—C1—C3	107.1 (2)	С6—С7—Н7В	109.4
C4—C1—C2	109.8 (2)	H7A—C7—H7B	108.0
C3—C1—C2	108.9 (2)	O8—C8—C6	109.9 (2)
C4—C1—C5	109.8 (2)	O8—C8—H8A	109.7
C3—C1—C5	110.5 (2)	C6—C8—H8A	109.7
C2—C1—C5	110.7 (3)	O8—C8—H8B	109.7
O1—C2—C1	110.0 (2)	C6—C8—H8B	109.7
O1—C2—H2A	109.7	H8A—C8—H8B	108.2
C1—C2—H2A	109.7	O10—C9—C6	111.6 (3)
O1—C2—H2B	109.7	О10—С9—Н9А	109.3
C1—C2—H2B	109.7	С6—С9—Н9А	109.3
H2A—C2—H2B	108.2	О10—С9—Н9В	109.3
O2—C3—C1	111.5 (2)	С6—С9—Н9В	109.3
O2—C3—H3A	109.3	H9A—C9—H9B	108.0
С1—С3—НЗА	109.3	O11—C10—C6	110.2 (2)
O2—C3—H3B	109.3	O11—C10—H10A	109.6
С1—С3—Н3В	109.3	C6C10H10A	109.6
НЗА—СЗ—НЗВ	108.0	O11—C10—H10B	109.6
O5—C4—C1	110.9 (2)	C6—C10—H10B	109.6
O5—C4—H4A	109.5	H10A—C10—H10B	108.1
C1—C4—H4A	109.5	C2—O1—S2	116.6 (2)
O5—C4—H4B	109.5	C3—O2—S2	117.12 (19)
C1—C4—H4B	109.5	C5—O4—S1	115.8 (2)
H4A—C4—H4B	108.0	C4—O5—S1	115.05 (18)
O4—C5—C1	110.2 (2)	C7—O7—S3	114.5 (2)
O4—C5—H5A	109.6	C8—O8—S3	116.0 (2)
C1—C5—H5A	109.6	C9—O10—S4	116.69 (19)
O4—C5—H5B	109.6	C10—O11—S4	115.7 (2)

C1—C5—H5B	109.6	O6—S1—O4	107.55 (15)
H5A—C5—H5B	108.1	O6—S1—O5	106.90 (16)
C10—C6—C9	109.7 (3)	O4—S1—O5	98.48 (12)
C10—C6—C7	109.1 (3)	O3—S2—O1	107.47 (16)
C9—C6—C7	107.2 (3)	O3—S2—O2	107.21 (16)
C10—C6—C8	111.0 (3)	O1—S2—O2	98.65 (12)
C9—C6—C8	110.1 (2)	O9—S3—O8	107.12 (14)
C7—C6—C8	109.6 (3)	O9—S3—O7	106.59 (18)
O7—C7—C6	111.0 (3)	O8—S3—O7	97.95 (13)
O7—C7—H7A	109.4	O12—S4—O11	106.32 (16)
С6—С7—Н7А	109.4	O12—S4—O10	106.55 (18)
О7—С7—Н7В	109.4	O11—S4—O10	99.11 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2A···O6 ⁱ	0.97	2.53	3.343 (4)	141
C10—H10A····O9 ⁱ	0.97	2.57	3.375 (4)	141
C3—H3 <i>B</i> ···O3 ⁱⁱ	0.97	2.71	3.610 (4)	155
C9—H9A···O2 ⁱⁱⁱ	0.97	2.72	3.635 (4)	159

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1/2, -*y*+3/2, *z*+1/2.