

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4-Methyl-2-[(*E*)-phenyl(1,2,3,4-tetrahydro-1-naphthylimino)methyl]phenol

## Guang-You Zhang,<sup>a</sup> Ting Yang,<sup>a</sup>\* Bao-Wang Xu,<sup>b</sup> Di-Juan Chen<sup>a</sup> and Wan-Hui Wang<sup>c</sup>

<sup>a</sup>School of Chemistry, Jinan University, Jinan 250022, People's Republic of China, <sup>b</sup>Oilu Pharmaceutical Co. Ltd. Shandong, Jinan 250100, People's Republic of China. and Craduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan

Correspondence e-mail: yangting365@hotmail.com

Received 17 September 2008; accepted 21 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.128; data-to-parameter ratio = 14.6.

In the crystal structure of the title compound,  $C_{24}H_{23}NO$ , the phenyl ring makes dihedral angles of 81.53 (11) and  $75.35 (12)^{\circ}$ , respectively, with the methyl-substituted and the fused benzene rings. The dihedral angle between the two benzene rings is  $71.10 (10)^{\circ}$ . There is an intramolecular O- $H \cdot \cdot \cdot N$  hydrogen bond.

#### **Related literature**

For related structures, see: Elmali & Eleman (1998); Elmali et al. (1998). For general background, see: Bernaldi et al. (1996); Cavell et al. (2002); Desimani et al. (1995); Jacobsen et al. (1997); Kureshy et al. (1996); Nakayama et al. (2004); Takenaka et al. (2002); Varlamov et al. (2003).



(2) Å

#### **Experimental**

| Crystal data                       |                  |
|------------------------------------|------------------|
| C <sub>24</sub> H <sub>23</sub> NO | a = 10.121 (3) Å |
| $M_r = 341.43$                     | b = 10.370 (2) Å |
| Triclinic, $P\overline{1}$         | c = 10.482 (2) Å |

| $\alpha = 95.181 \ (3)^{\circ}$ | Mo $K\alpha$ radiation       |
|---------------------------------|------------------------------|
| $\beta = 112.830 \ (3)^{\circ}$ | $\mu = 0.07 \text{ mm}^{-1}$ |

 $\mu = 0.07 \text{ mm}^{-1}$ T = 298 (2) K  $0.41 \times 0.21 \times 0.20$  mm

## Data collection

 $\gamma = 106.243 (4)^{\circ}$ 

Z = 2

V = 948.7 (4) Å<sup>3</sup>

| Bruker SMART CCD area-detector | 3467 independent reflections           |
|--------------------------------|----------------------------------------|
| diffractometer                 | 2220 reflections with $I > 2\sigma(I)$ |
| Absorption correction: none    | $R_{\rm int} = 0.015$                  |
| 5027 measured reflections      |                                        |
|                                |                                        |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 237 parameters  $wR(F^2) = 0.128$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$ 3467 reflections

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$ | D-H  | Н···А | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------|------|-------|--------------|---------------------------|
| O1-H1···N1             | 0.82 | 1.81  | 2.541 (2)    | 147                       |

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Natural Science Foundation of Shandong Province China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2336).

#### References

- Bernaldi, A., Colombo, G. & Seolastico, C. (1996). Tetrahedron Lett. 37, 8921-8924
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cavell, R. G., Aparna, K., Kamalesh Babu, R. P. & Wang, Q. (2002). J. Mol. Catal. A. Chem. 189, 137-138.
- Desimani, G., Dasi, G., Paita, G., Quadrelle, P. & Righille, P. (1995). Tetrahedron, 51, 4131–4144.
- Elmali, A. & Eleman, Y. (1998). J. Mol. Struct. 442, 31-37.
- Elmali, A., Eleman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct. 443, 123-130.
- Jacobsen, E. N., Kakiuch, F., Konsler, R. G., Larrow, J. F. & Tokunaga, M. (1997). Tetrahedron Lett. 38, 773-776.
- Kureshy, R., Khan, M. & Abdi, S. (1996). J. Mol. Catal. A. Chem. 189, 137-138. Nakayama, Y., Bando, H., Sonobe, Y. & Fujita, T. (2004). J. Mol. Catal. A. Chem. 213, 141-142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299-8305. Varlamov, A. V., Zubkov, F. I., Boltukhina, E. V., Sidorenko, N. V. & Borisov, R. S. (2003). Tetrahedron Lett. 44, 3641-3643.

# supporting information

Acta Cryst. (2008). E64, o2007 [doi:10.1107/S1600536808030316]

# 4-Methyl-2-[(*E*)-phenyl(1,2,3,4-tetrahydro-1-naphthylimino)methyl]phenol

## Guang-You Zhang, Ting Yang, Bao-Wang Xu, Di-Juan Chen and Wan-Hui Wang

### S1. Comment

The synthesis of Schiff bases with a variety of functionalities is an important subject of research because this class of compounds are easily synthesized and have been widely used as ligands in the formation of almost all metal ions and asymmetric reactions (Elmali & Eleman, 1998; Elmali *et al.*, 1998; Cavell *et al.*, 2002; Nakayama *et al.*, 2004; Varlamov *et al.*, 2003; Takenaka *et al.*, 2002; Desimani *et al.*, 1995; Bernaldi *et al.*, 1996; Kureshy *et al.*, 1996; Jacobsen *et al.*, 1997).

In this paper, we report the molecular structure of 4-methyl-2-[(E)-phenyl(1,2,3,4-tetrahydronaphthalen-1-ylimino)methyl]phenol, (I), which was initially prepared to test its catalytic activity. The Schiff base was prepared by conventional condensation of 1,2,3,4-tetrahydronaphthalen-1-amine with (2-hydroxy-5-methylphenyl)(phenyl)methanone in methanol.

There is an intramolecular O1—H1…N1 hydrogen bond (Table 1). Phenol atom O1 acts as a hydrogen-bond donor to atom N1, with O1… N1= 2.541 (2) Å, which indicates a comparatively strong intramolecular hydrogen bond. This distance is significantly shorter than the sum (3.07 Å) of the van der Waals radii for N and O atoms. The O1—H1…N1 hydrogen bond in (I) completes a six-membered ring (C11/C18/C24/O1/H1/N1), which increases the stability of this compound. However, no aromatic  $\pi$ - $\pi$  stacking interactions are present in the structure of (I).

The C12—C17 and C18—C24 aromatic rings are approximately vertical, the dihedral angle between their planes being  $81.53 (11)^\circ$ ; the dihedral angle between the planes of the C4—C9 and C12—C17 aromatic rings is 75.35 (12)°, while that between the C4—C9 and C19—C24 planes is 71.1 (10)°.

## **S2. Experimental**

1,2,3,4-Tetrahydronaphthalen-1-amine (0.9 mmol) and (2-hydroxy-5-methylphenyl)(phenyl)methanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, the yellow solid was obtained. Single crystals suitable for X-ray diffraction were grown by slow evaporation from an ethanol solution at room temperature.

## **S3. Refinement**

All H atoms were included in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å, aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, methylene C—H = 0.97 Å and methine C—H = 0.98 Å, and with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C, O)$ .



## Figure 1

The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.



## Figure 2

A packing diagram of (I), view down the b axis, showing the O1—H1…N1 hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted.

## 4-Methyl-2-[(*E*)-phenyl(1,2,3,4-tetrahydro-1-naphthylimino)methyl]phenol

| Crystal data                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{24}H_{23}NO$ $M_r = 341.43$ Triclinic, P1<br>Hall symbol: -P 1<br>a = 10.121 (3) Å<br>b = 10.370 (2) Å<br>c = 10.482 (2) Å<br>a = 95.181 (3)°<br>$\beta = 112.830$ (3)°<br>$\gamma = 106.243$ (4)°<br>V = 948.7 (4) Å <sup>3</sup> | Z = 2<br>F(000) = 364<br>$D_x = 1.195 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 1182 reflections<br>$\theta = 2.3-23.4^{\circ}$<br>$\mu = 0.07 \text{ mm}^{-1}$<br>T = 298  K<br>Block, yellow<br>$0.41 \times 0.21 \times 0.20 \text{ mm}$ |
| <ul> <li>Data collection</li> <li>Bruker SMART APEX2 CCD area-detector diffractometer</li> <li>Radiation source: fine-focus sealed tube</li> <li>Graphite monochromator φ and ω scans</li> </ul>                                       | 5027 measured reflections<br>3467 independent reflections<br>2220 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.015$<br>$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$                                                                                                                |

| h = | -11→12 |  |
|-----|--------|--|
| k = | -9→12  |  |

#### Refinement

| Secondary atom site location: difference Fourier           |
|------------------------------------------------------------|
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H-atom parameters constrained                              |
| $w = 1/[\sigma^2(F_o^2) + (0.0565P)^2 + 0.046P]$           |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| $\Delta \rho_{\rm max} = 0.13 \text{ e}  \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

 $l = -12 \rightarrow 12$ 

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | X            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| C1  | 0.1262 (2)   | 0.4914 (2)   | 0.3438 (2)   | 0.0635 (5)                  |
| H1A | 0.1775       | 0.4751       | 0.4372       | 0.076*                      |
| H1B | 0.1420       | 0.4344       | 0.2763       | 0.076*                      |
| C2  | -0.0430 (2)  | 0.4527 (2)   | 0.3033 (2)   | 0.0674 (6)                  |
| H2A | -0.0832      | 0.3591       | 0.3121       | 0.081*                      |
| H2B | -0.0595      | 0.5138       | 0.3668       | 0.081*                      |
| C3  | -0.1248 (2)  | 0.4641 (2)   | 0.1520 (2)   | 0.0668 (6)                  |
| H3A | -0.1229      | 0.3917       | 0.0880       | 0.080*                      |
| H3B | -0.2307      | 0.4505       | 0.1305       | 0.080*                      |
| C4  | -0.0538 (2)  | 0.60102 (18) | 0.12713 (18) | 0.0504 (5)                  |
| C5  | -0.1381 (2)  | 0.6473 (2)   | 0.0128 (2)   | 0.0628 (5)                  |
| H5  | -0.2384      | 0.5927       | -0.0470      | 0.075*                      |
| C6  | -0.0767 (3)  | 0.7713 (2)   | -0.0136 (2)  | 0.0746 (6)                  |
| H6  | -0.1352      | 0.8004       | -0.0905      | 0.089*                      |
| C7  | 0.0713 (3)   | 0.8527 (2)   | 0.0731 (2)   | 0.0760 (6)                  |
| H7  | 0.1138       | 0.9368       | 0.0549       | 0.091*                      |
| C8  | 0.1561 (2)   | 0.8091 (2)   | 0.1869 (2)   | 0.0643 (5)                  |
| H8  | 0.2563       | 0.8648       | 0.2459       | 0.077*                      |
| С9  | 0.0960 (2)   | 0.68399 (18) | 0.21587 (18) | 0.0492 (4)                  |
| C10 | 0.19315 (19) | 0.64187 (19) | 0.34485 (18) | 0.0529 (5)                  |
| H10 | 0.2032       | 0.6984       | 0.4305       | 0.063*                      |
| C11 | 0.4687 (2)   | 0.72766 (17) | 0.46336 (18) | 0.0485 (4)                  |

| C12  | 0.47002 (19) | 0.76700 (19) | 0.60484 (18) | 0.0495 (4) |
|------|--------------|--------------|--------------|------------|
| C13  | 0.4491 (2)   | 0.8879 (2)   | 0.6440 (2)   | 0.0685 (6) |
| H13  | 0.4349       | 0.9471       | 0.5823       | 0.082*     |
| C14  | 0.4492 (3)   | 0.9210 (3)   | 0.7741 (3)   | 0.0938 (8) |
| H14  | 0.4349       | 1.0024       | 0.7999       | 0.113*     |
| C15  | 0.4702 (3)   | 0.8349 (4)   | 0.8654 (3)   | 0.0999 (9) |
| H15  | 0.4707       | 0.8582       | 0.9534       | 0.120*     |
| C16  | 0.4906 (2)   | 0.7147 (3)   | 0.8285 (2)   | 0.0863 (7) |
| H16  | 0.5039       | 0.6559       | 0.8907       | 0.104*     |
| C17  | 0.4912 (2)   | 0.6809 (2)   | 0.6982 (2)   | 0.0656 (6) |
| H17  | 0.5061       | 0.5995       | 0.6733       | 0.079*     |
| C18  | 0.61531 (19) | 0.75267 (17) | 0.45517 (19) | 0.0489 (4) |
| C19  | 0.7536 (2)   | 0.81930 (18) | 0.5754 (2)   | 0.0547 (5) |
| H19  | 0.7509       | 0.8483       | 0.6606       | 0.066*     |
| C20  | 0.8942 (2)   | 0.8440 (2)   | 0.5731 (2)   | 0.0609 (5) |
| C21  | 1.0404 (2)   | 0.9151 (2)   | 0.7060 (2)   | 0.0814 (7) |
| H21A | 1.0535       | 0.8547       | 0.7706       | 0.122*     |
| H21B | 1.0357       | 0.9978       | 0.7502       | 0.122*     |
| H21C | 1.1250       | 0.9379       | 0.6816       | 0.122*     |
| C22  | 0.8940 (3)   | 0.7998 (2)   | 0.4443 (3)   | 0.0730 (6) |
| H22  | 0.9868       | 0.8141       | 0.4397       | 0.088*     |
| C23  | 0.7608 (3)   | 0.7353 (2)   | 0.3232 (3)   | 0.0747 (6) |
| H23  | 0.7649       | 0.7068       | 0.2385       | 0.090*     |
| C24  | 0.6212 (2)   | 0.7125 (2)   | 0.3262 (2)   | 0.0592 (5) |
| N1   | 0.34550 (17) | 0.67080 (15) | 0.34810 (15) | 0.0552 (4) |
| 01   | 0.49367 (17) | 0.65077 (17) | 0.20388 (15) | 0.0813 (5) |
| H1   | 0.4183       | 0.6450       | 0.2182       | 0.122*     |
|      |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|            | <b>r r</b> 11                             | 1.722                    | 1 733                      | <b>T</b> 712               | 1713                       | T 723                      |
|------------|-------------------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|            | U"                                        | $U^{22}$                 | 033                        | $U^{12}$                   | 013                        | U <sup>25</sup>            |
| C1         | 0.0662 (13)                               | 0.0706 (14)              | 0.0607 (13)                | 0.0295 (11)                | 0.0287 (11)                | 0.0228 (10)                |
| C2         | 0.0667 (14)                               | 0.0671 (13)              | 0.0752 (14)                | 0.0204 (10)                | 0.0374 (11)                | 0.0244 (11)                |
| C3         | 0.0538 (12)                               | 0.0704 (14)              | 0.0669 (14)                | 0.0124 (10)                | 0.0241 (10)                | 0.0094 (10)                |
| C4         | 0.0490 (11)                               | 0.0586 (12)              | 0.0431 (10)                | 0.0193 (9)                 | 0.0203 (9)                 | 0.0052 (8)                 |
| C5         | 0.0535 (12)                               | 0.0779 (15)              | 0.0499 (12)                | 0.0257 (11)                | 0.0147 (10)                | 0.0070 (10)                |
| C6         | 0.0799 (16)                               | 0.0851 (17)              | 0.0579 (13)                | 0.0412 (14)                | 0.0188 (12)                | 0.0217 (12)                |
| C7         | 0.0871 (17)                               | 0.0626 (14)              | 0.0782 (15)                | 0.0278 (12)                | 0.0320 (14)                | 0.0266 (12)                |
| C8         | 0.0586 (12)                               | 0.0538 (13)              | 0.0659 (13)                | 0.0134 (10)                | 0.0171 (10)                | 0.0102 (10)                |
| C9         | 0.0486 (11)                               | 0.0530 (11)              | 0.0436 (10)                | 0.0189 (9)                 | 0.0179 (8)                 | 0.0053 (8)                 |
| C10        | 0.0490 (11)                               | 0.0632 (13)              | 0.0457 (10)                | 0.0216 (9)                 | 0.0189 (9)                 | 0.0081 (9)                 |
| C11        | 0.0509 (11)                               | 0.0511 (11)              | 0.0477 (11)                | 0.0221 (8)                 | 0.0218 (9)                 | 0.0132 (8)                 |
| C12        | 0.0383 (10)                               | 0.0594 (12)              | 0.0466 (10)                | 0.0142 (8)                 | 0.0166 (8)                 | 0.0084 (9)                 |
| C13        | 0.0674 (14)                               | 0.0650 (14)              | 0.0663 (14)                | 0.0160 (10)                | 0.0296 (11)                | 0.0015 (10)                |
| C14        | 0.0892 (18)                               | 0.098 (2)                | 0.0801 (18)                | 0.0179 (14)                | 0.0410 (15)                | -0.0227 (15)               |
| C15        | 0.0812 (18)                               | 0.146 (3)                | 0.0532 (15)                | 0.0165 (17)                | 0.0319 (13)                | -0.0062 (17)               |
| C16        | 0.0619 (15)                               | 0.134 (2)                | 0.0597 (15)                | 0.0237 (14)                | 0.0266 (12)                | 0.0350 (15)                |
| C17        | 0.0585 (13)                               | 0.0866 (15)              | 0.0605 (13)                | 0.0296 (11)                | 0.0294 (10)                | 0.0264 (11)                |
| C16<br>C17 | 0.0612 (13)<br>0.0619 (15)<br>0.0585 (13) | 0.134 (2)<br>0.0866 (15) | 0.0597 (15)<br>0.0605 (13) | 0.0237 (14)<br>0.0296 (11) | 0.0266 (12)<br>0.0294 (10) | 0.0350 (17)<br>0.0264 (11) |

# supporting information

| C18 | 0.0505 (11) | 0.0514 (11) | 0.0546 (11) | 0.0239 (9)  | 0.0267 (9)  | 0.0182 (8)  |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C19 | 0.0558 (12) | 0.0598 (12) | 0.0603 (12) | 0.0262 (9)  | 0.0307 (10) | 0.0227 (9)  |
| C20 | 0.0527 (12) | 0.0612 (12) | 0.0824 (15) | 0.0251 (10) | 0.0359 (11) | 0.0316 (11) |
| C21 | 0.0521 (13) | 0.0895 (17) | 0.1002 (18) | 0.0228 (12) | 0.0291 (13) | 0.0329 (13) |
| C22 | 0.0632 (15) | 0.0807 (15) | 0.1012 (18) | 0.0317 (12) | 0.0543 (14) | 0.0319 (13) |
| C23 | 0.0822 (16) | 0.0838 (16) | 0.0843 (16) | 0.0341 (13) | 0.0577 (14) | 0.0206 (13) |
| C24 | 0.0635 (13) | 0.0644 (13) | 0.0600 (13) | 0.0256 (10) | 0.0344 (11) | 0.0149 (10) |
| N1  | 0.0512 (9)  | 0.0688 (10) | 0.0468 (9)  | 0.0252 (8)  | 0.0197 (8)  | 0.0108 (7)  |
| 01  | 0.0767 (10) | 0.1065 (12) | 0.0592 (9)  | 0.0281 (9)  | 0.0338 (8)  | 0.0020 (8)  |
|     |             |             |             |             |             |             |

Geometric parameters (Å, °)

| C1—C10     | 1.514 (3)   | C12—C17     | 1.379 (2)   |  |
|------------|-------------|-------------|-------------|--|
| C1—C2      | 1.515 (3)   | C12—C13     | 1.382 (3)   |  |
| C1—H1A     | 0.9700      | C13—C14     | 1.375 (3)   |  |
| C1—H1B     | 0.9700      | C13—H13     | 0.9300      |  |
| С2—С3      | 1.511 (3)   | C14—C15     | 1.365 (4)   |  |
| C2—H2A     | 0.9700      | C14—H14     | 0.9300      |  |
| C2—H2B     | 0.9700      | C15—C16     | 1.365 (4)   |  |
| C3—C4      | 1.498 (3)   | C15—H15     | 0.9300      |  |
| С3—НЗА     | 0.9700      | C16—C17     | 1.382 (3)   |  |
| С3—Н3В     | 0.9700      | C16—H16     | 0.9300      |  |
| C4—C5      | 1.391 (2)   | C17—H17     | 0.9300      |  |
| C4—C9      | 1.392 (2)   | C18—C19     | 1.399 (2)   |  |
| C5—C6      | 1.366 (3)   | C18—C24     | 1.407 (3)   |  |
| С5—Н5      | 0.9300      | C19—C20     | 1.383 (3)   |  |
| С6—С7      | 1.371 (3)   | C19—H19     | 0.9300      |  |
| С6—Н6      | 0.9300      | C20—C22     | 1.385 (3)   |  |
| С7—С8      | 1.374 (3)   | C20—C21     | 1.509 (3)   |  |
| С7—Н7      | 0.9300      | C21—H21A    | 0.9600      |  |
| С8—С9      | 1.385 (2)   | C21—H21B    | 0.9600      |  |
| С8—Н8      | 0.9300      | C21—H21C    | 0.9600      |  |
| C9—C10     | 1.517 (2)   | C22—C23     | 1.375 (3)   |  |
| C10—N1     | 1.472 (2)   | C22—H22     | 0.9300      |  |
| С10—Н10    | 0.9800      | C23—C24     | 1.380 (3)   |  |
| C11—N1     | 1.286 (2)   | C23—H23     | 0.9300      |  |
| C11-C18    | 1.471 (2)   | C24—O1      | 1.351 (2)   |  |
| C11—C12    | 1.496 (2)   | 01—H1       | 0.8200      |  |
| C10—C1—C2  | 110.10 (15) | C17—C12—C13 | 118.94 (19) |  |
| C10-C1-H1A | 109.6       | C17—C12—C11 | 119.75 (17) |  |
| C2—C1—H1A  | 109.6       | C13—C12—C11 | 121.31 (17) |  |
| C10-C1-H1B | 109.6       | C14—C13—C12 | 120.2 (2)   |  |
| C2—C1—H1B  | 109.6       | C14—C13—H13 | 119.9       |  |
| H1A—C1—H1B | 108.2       | C12—C13—H13 | 119.9       |  |
| C3—C2—C1   | 109.48 (17) | C15—C14—C13 | 120.2 (2)   |  |
| C3—C2—H2A  | 109.8       | C15—C14—H14 | 119.9       |  |
| C1—C2—H2A  | 109.8       | C13—C14—H14 | 119.9       |  |

| C3—C2—H2B                   | 109.8                    | C14—C15—C16                               | 120.5 (2)                |
|-----------------------------|--------------------------|-------------------------------------------|--------------------------|
| C1—C2—H2B                   | 109.8                    | C14—C15—H15                               | 119.8                    |
| $H^2A - C^2 - H^2B$         | 108.2                    | C16—C15—H15                               | 119.8                    |
| C4-C3-C2                    | 112.22 (16)              | $C_{15}$ $C_{16}$ $C_{17}$                | 119.6 (2)                |
| C4-C3-H3A                   | 109.2                    | $C_{15} - C_{16} - H_{16}$                | 120.2                    |
| $C_2 - C_3 - H_3 A$         | 109.2                    | $C_{17}$ $C_{16}$ $H_{16}$                | 120.2                    |
| C4-C3-H3B                   | 109.2                    | $C_{12}$ $C_{17}$ $C_{16}$ $C_{16}$       | 120.2<br>120.5(2)        |
| $C_2 - C_3 - H_3B$          | 109.2                    | $C_{12}$ $C_{17}$ $H_{17}$                | 110.8                    |
| $H_{3A} = C_3 = H_{3B}$     | 107.0                    | $C_{12} = C_{17} = H_{17}$                | 110.8                    |
| $C_5 C_4 C_9$               | 118 63 (18)              | $C_{10} = C_{17} = M_{17}$                | 117.86 (17)              |
| $C_{5} = C_{4} = C_{5}^{3}$ | 110.88 (18)              | $C_{10} = C_{10} = C_{24}$                | 120.89 (16)              |
| $C_{2}$                     | 121 40 (16)              | $C_{10}^{24} = C_{10}^{18} = C_{11}^{11}$ | 120.09(10)<br>121.24(16) |
| $C_{2} = C_{1} = C_{2}$     | 121.49(10)<br>121.44(10) | $C_{24} = C_{18} = C_{11}$                | 121.24(10)<br>122.06(18) |
| $C_{0} = C_{3} = C_{4}$     | 121.44 (19)              | $C_{20} = C_{19} = C_{18}$                | 122.90 (18)              |
| $C_0 = C_5 = H_5$           | 119.5                    | $C_{20} = C_{19} = H_{10}$                | 118.5                    |
| $C_4 = C_5 = C_6 = C_7$     | 119.5                    | $C_{10} = C_{19} = H_{19}$                | 117.00 (10)              |
| $C_{5} = C_{6} = C_{7}$     | 120.02 (19)              | C19 - C20 - C22                           | 117.00 (19)              |
| $C_{2}$                     | 120.0                    | C19 - C20 - C21                           | 121.0(2)                 |
| C/-Cb-Hb                    | 120.0                    | $C_{22} = C_{20} = C_{21}$                | 121.95 (19)              |
|                             | 119.4 (2)                | C20—C21—H2IA                              | 109.5                    |
| C6-C/-H7                    | 120.3                    | C20—C21—H21B                              | 109.5                    |
| C8—C/—H7                    | 120.3                    | H21A—C21—H21B                             | 109.5                    |
| C7—C8—C9                    | 121.49 (19)              | С20—С21—Н21С                              | 109.5                    |
| С7—С8—Н8                    | 119.3                    | H21A—C21—H21C                             | 109.5                    |
| С9—С8—Н8                    | 119.3                    | H21B—C21—H21C                             | 109.5                    |
| C8—C9—C4                    | 118.98 (17)              | C23—C22—C20                               | 121.99 (19)              |
| C8—C9—C10                   | 119.51 (16)              | C23—C22—H22                               | 119.0                    |
| C4—C9—C10                   | 121.50 (17)              | C20—C22—H22                               | 119.0                    |
| N1-C10-C1                   | 110.00 (14)              | C22—C23—C24                               | 120.6 (2)                |
| N1—C10—C9                   | 107.72 (15)              | С22—С23—Н23                               | 119.7                    |
| C1—C10—C9                   | 112.97 (15)              | С24—С23—Н23                               | 119.7                    |
| N1-C10-H10                  | 108.7                    | O1—C24—C23                                | 118.30 (19)              |
| C1C10H10                    | 108.7                    | O1—C24—C18                                | 122.10 (17)              |
| С9—С10—Н10                  | 108.7                    | C23—C24—C18                               | 119.60 (19)              |
| N1-C11-C18                  | 117.95 (16)              | C11—N1—C10                                | 122.17 (15)              |
| N1-C11-C12                  | 123.35 (16)              | C24—O1—H1                                 | 109.5                    |
| C18—C11—C12                 | 118.69 (15)              |                                           |                          |
|                             |                          |                                           |                          |
| C10—C1—C2—C3                | 65.2 (2)                 | C12—C13—C14—C15                           | 0.1 (3)                  |
| C1—C2—C3—C4                 | -51.8 (2)                | C13—C14—C15—C16                           | -0.4 (4)                 |
| C2—C3—C4—C5                 | -159.33 (17)             | C14—C15—C16—C17                           | 0.6 (4)                  |
| C2—C3—C4—C9                 | 20.9 (3)                 | C13—C12—C17—C16                           | 0.4 (3)                  |
| C9—C4—C5—C6                 | 0.2 (3)                  | C11—C12—C17—C16                           | -179.06 (17)             |
| C3—C4—C5—C6                 | -179.57 (18)             | C15—C16—C17—C12                           | -0.6 (3)                 |
| C4—C5—C6—C7                 | 0.3 (3)                  | N1-C11-C18-C19                            | 177.33 (16)              |
| C5—C6—C7—C8                 | -0.6 (3)                 | C12-C11-C18-C19                           | -3.8 (2)                 |
| C6—C7—C8—C9                 | 0.4 (3)                  | N1-C11-C18-C24                            | -1.7 (2)                 |
| C7—C8—C9—C4                 | 0.0 (3)                  | C12-C11-C18-C24                           | 177.24 (16)              |
| C7—C8—C9—C10                | -178.60 (18)             | C24—C18—C19—C20                           | -1.6 (3)                 |

| C5—C4—C9—C8     | -0.3 (3)     | C11—C18—C19—C20 | 179.42 (15)  |
|-----------------|--------------|-----------------|--------------|
| C3—C4—C9—C8     | 179.40 (17)  | C18—C19—C20—C22 | 0.2 (3)      |
| C5—C4—C9—C10    | 178.29 (16)  | C18—C19—C20—C21 | -179.38 (17) |
| C3—C4—C9—C10    | -2.0 (3)     | C19—C20—C22—C23 | 0.6 (3)      |
| C2-C1-C10-N1    | -165.74 (15) | C21—C20—C22—C23 | -179.87 (19) |
| C2-C1-C10-C9    | -45.3 (2)    | C20—C22—C23—C24 | 0.1 (3)      |
| C8—C9—C10—N1    | -45.2 (2)    | C22—C23—C24—O1  | 178.91 (19)  |
| C4C9C10N1       | 136.15 (17)  | C22—C23—C24—C18 | -1.5 (3)     |
| C8—C9—C10—C1    | -166.94 (16) | C19—C18—C24—O1  | -178.26 (16) |
| C4—C9—C10—C1    | 14.5 (2)     | C11—C18—C24—O1  | 0.8 (3)      |
| N1-C11-C12-C17  | 98.4 (2)     | C19—C18—C24—C23 | 2.2 (3)      |
| C18—C11—C12—C17 | -80.5 (2)    | C11—C18—C24—C23 | -178.77 (16) |
| N1-C11-C12-C13  | -81.1 (2)    | C18—C11—N1—C10  | -179.77 (14) |
| C18—C11—C12—C13 | 100.0 (2)    | C12-C11-N1-C10  | 1.4 (3)      |
| C17—C12—C13—C14 | -0.2 (3)     | C1-C10-N1-C11   | -100.19 (19) |
| C11—C12—C13—C14 | 179.30 (18)  | C9-C10-N1-C11   | 136.28 (16)  |
|                 |              |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|----------|-------------|-------|-----------|-------------------------|
| 01—H1…N1 | 0.82        | 1.81  | 2.541 (2) | 147                     |