

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*R*)-2-Cinnamoylamino-*N*-[5-(4methoxyphenyl)-1,3,4-thiadiazol-2-yl]propanamide

Shao-Hua Li,^{a,b} Gang Li,^b Hui-Ming Huang,^b Guo-Gang Tu^b* and Cheng-Mei Liu^a‡

^aState Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, JiangXi, People's Republic of China, and ^bDepartment of Pharmacy, NanChang University Medical College, 330006 Nanchang, JiangXi, People's Republic of China

Correspondence e-mail: tugg199@yahoo.com

Received 29 July 2008; accepted 30 August 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.039; *wR* factor = 0.098; data-to-parameter ratio = 6.7.

The asymmetric unit of the title compound, $C_{21}H_{20}N_4O_3S$, contains two independent molecules. The dihedral angles between the two benzene rings are 47.6 (1) and 30.2 (1)°, the corresponding values between the *p*-methoxybenzene and thiadiazol rings are 12.3 (1) and 24.7 (1)°, respectively, for the two molecules. The conformations of the N–H and C=O bonds are *anti* with respect to each other. The enone groups show a *trans* configuration. The crystal structure is stabilized by N–H···O and N–H···N interactions. The absolute structure could not be determined from the X-ray data but the absolute configuration has been assigned by reference to an unchanging chiral centre in the synthetic procedure.

Related literature

For 1,3,4-thiadiazole scaffold compounds and their biological activity, see: Tu *et al.* (2008). For the synthesis, see: Foroumadi *et al.* (1999); Levy & Palmer (1942); Song *et al.* (1992). For related structures, see: Fun *et al.* (2008); Gowda *et al.* (2008) Thiruvalluvar *et al.* (2008).

Experimental

Crystal data C₂₁H₂₀N₄O₃S

 $M_r = 408.48$

•	
organic	compounds
o game	compound

Triclinic, P1	V = 1090.8 (5) Å ³
a = 9.082 (3) Å	Z = 2
b = 9.849 (3) Å	Mo $K\alpha$ radiation
c = 13.644 (4) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\alpha = 79.587 \ (4)^{\circ}$	T = 296 (2) K
$\beta = 83.253 \ (4)^{\circ}$	$0.35 \times 0.24 \times 0.06 \text{ mm}$
$\gamma = 65.458 \ (4)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector	3553 independent reflections
diffractometer	2735 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.022$
6219 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	3 restraints
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$
3553 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$
528 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots O4$	0.86	2.10	2.960 (4)	177
$N4-H4A\cdots N6^{i}$	0.86	2.17	3.016 (5)	168
$N7-H7A\cdots O1^{ii}$	0.86	2.09	2.944 (4)	171
$N8-H8\cdots N2$	0.86	2.20	3.036 (5)	165

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *APEX2*; software used to prepare material for publication: *APEX2* and *publCIF* (Westrip, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2079).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch. 49, 1035–1038.
- Fun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, 0956–0957.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, 0950.
- Levy, M. & Palmer, A. H. (1942). J. Biol. Chem. 146, 493-495.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). *Phytochemistry*, **31**, 823–826.
- Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263.
- Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). *Bioorg. Med. Chem.* 16, 6663–6668.

Westrip, S. P. (2008). publCIF. In preparation.

 $[\]ddagger Additional \ correspondence \ author, e-mail: lishaohua0131@yahoo.com.cn.$

supporting information

Acta Cryst. (2008). E64, o1887 [doi:10.1107/S1600536808027803]

(2*R*)-2-Cinnamoylamino-*N*-[5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl]propanamide

Shao-Hua Li, Gang Li, Hui-Ming Huang, Guo-Gang Tu and Cheng-Mei Liu

S1. Comment

In our previous work, 1,3,4-thiadiazole scaffold compounds and their biological activity have been studied (Tu *et al.*, 2008). In view of the importance of these organic materials, the title compound (Fig. 1) was synthesized (Foroumadi *et al.*, 1999; Levy & Palmer 1942; Song *et al.*, 1992) and its crystal structure is reported here. The asymmetric unit of the title compound, $C_{21}H_{20}N_4O_3S$, contains two independent molecules. The dihedral angles between the *p*-methoxybenzene and thiadiazol rings is 12.2 (1) ° and 24.7 (1)°, the corresponding values between the two benzene rings are measured to 47.6 (1)° and 30.2 (1)°, respectively, for the two molecules. The conformations of the N—H and C=O bonds are anti with respect to each other. The enone groups are *trans* configurated. Bond lengths and angles are in normal ranges and comparable to those in related structures (Gowda *et al.*, 2008; Fun *et al.*, 2008; Thiruvalluvar *et al.*, 2008). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds forming a three-dimensional network (Table 1, Figure 2).

S2. Experimental

N,N-Dicyclohexylcarbodiimide (5.7 mmol) was added to a cooled solution of N-cinnamoyl-D-alanine (5.6 mmol) and *N*-hydroxysuccinimide (5.6 mmol) in freshly distilled dioxane (30 ml). The reaction mixture was stirred overnight at room temperature. The insoluble material was filtered off and washed with cold dioxane. 2-Amino-5-(4-methoxyphenyl)-1,3,4-thiadiazole (5.5 mmol) was added to the filtrate and the reaction mixture was stirred for 48 hr at room temperature. The solvent was removed under reduced pressure. The residual was dissolved in EtOAc and the insoluble material was filtered off. The filtrate was washed successively with saturated Na_2CO_3 solution (20 ml, *x* 3), water (20 ml, *x* 1), 0.1 *M* HCl (20 ml, *x* 3) and water (20 ml, *x* 1). The organic layer was evaporated *in vacuo* and the residue was recrystallized from methanol (30 ml), yield: 35.2%. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model using *SHELXL97* default values ($U_{iso}(H) = 1.2$ $U_{eq}(C)$ for CH and CH₂ groups and $U_{iso}(H) = 1.5 U_{eq}(C)$ for CH₃). Refinement with all data (Friedel opposites not merged) led to an unsuitably large error of the Flack parameter. The final refinement was therefore performed with a data set with merged Friedel pairs, hence the calculated Flack parameter is meaningless. The absolute configuration is nevertheless undoubtly as described since enantiomerically pure starting compounds were used and the reaction conditions are not condidered to lead to racemisation or inversion.

Figure 1

Molecular structure of the two independent molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of title compound, viewed along the *a* axis with hydrogen bonds drawn as dashed lines.

(2R)-2-Cinnamoylamino-N-[5-(4-methoxyphenyl) -1,3,4-thiadiazol-2-yl]propanamide

Crystal data	
$C_{21}H_{20}N_4O_3S$	Z = 2
$M_r = 408.48$	F(000) = 428
Triclinic, P1	$D_{\rm x} = 1.244 {\rm Mg} {\rm m}^{-3}$
Hall symbol: P 1	Melting point: 450 K
a = 9.082 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.849(3) Å	Cell parameters from 2616 reflections
c = 13.644 (4) Å	$\theta = 2.3 - 25.0^{\circ}$
$\alpha = 79.587 \ (4)^{\circ}$	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 83.253 (4)^{\circ}$	T = 296 K
$y = 65.458 (4)^{\circ}$	Bolck, colourles
V = 1090.8 (5) Å ³	$0.35\times0.25\times0.06~mm$

Data collection

Bruker APEXII CCD area-detector diffractometer	2735 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.3^\circ$
Graphite monochromator	$h = -10 \rightarrow 10$
phi and ω scans	$k = -11 \rightarrow 11$
6219 measured reflections	$l = -16 \rightarrow 16$
3553 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 0.94	H-atom parameters constrained
3553 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2]$
528 parameters	where $P = (F_0^2 + 2F_c^2)/3$
3 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. # SQUEEZE RESULTS (APPEND TO CIF) loop__platon_squeeze_void_nr_platon_squeeze_void_average_x_platon_squeeze_void_average_z_platon_squeeze_void_volume_platon_squeeze_void_count_electrons 1 0.151 0.591 0.943 19.4 0.7 2 0.269 -0.200 0.408 64.4 11.5

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	12	7	17:*/17	
	<i>A</i>	<i>y</i>	2	O Iso / O eq	
C1	-1.0057 (8)	0.2529 (9)	0.5939 (8)	0.166 (4)	
H1A	-0.9914	0.3381	0.6089	0.249*	
H1B	-1.0630	0.2174	0.6489	0.249*	
H1C	-1.0669	0.2824	0.5351	0.249*	
C2	-0.7380 (5)	0.1750 (6)	0.5178 (4)	0.0752 (13)	
C3	-0.7671 (6)	0.3158 (6)	0.4658 (4)	0.0792 (15)	
H3	-0.8694	0.3938	0.4689	0.095*	
C4	-0.6419 (5)	0.3393 (5)	0.4090 (4)	0.0699 (12)	
H4	-0.6612	0.4347	0.3736	0.084*	
C5	-0.4885 (5)	0.2259 (5)	0.4028 (3)	0.0527 (10)	
C6	-0.4629 (5)	0.0841 (5)	0.4548 (3)	0.0623 (11)	
H6	-0.3611	0.0056	0.4508	0.075*	
C7	-0.5874 (6)	0.0576 (6)	0.5131 (4)	0.0764 (13)	
H7	-0.5694	-0.0377	0.5483	0.092*	
C8	-0.3565 (5)	0.2565 (5)	0.3439 (3)	0.0534 (10)	

C9	-0.1214 (5)	0.2590 (5)	0.2508 (3)	0.0532 (10)
C10	0.1343 (5)	0.1053 (4)	0.1705 (3)	0.0510 (10)
C11	0.2964 (5)	0.1100 (5)	0.1366 (3)	0.0565 (10)
H11	0.2780	0.2140	0.1076	0.068*
C12	0.3982 (6)	0.0670(7)	0.2263 (4)	0.0879 (16)
H12A	0.4259	-0.0374	0.2523	0.132*
H12B	0.3379	0.1281	0.2767	0.132*
H12C	0 4954	0.0831	0.2068	0.132*
C13	0.4459(4)	0.0663(4)	-0.0225(3)	0.0483(9)
C14	0.1199(1) 0.5593(5)	-0.0498(5)	-0.0819(3)	0.0544(10)
H14	0.5798	-0.1511	-0.0612	0.065*
C15	0.5790	-0.0082(5)	-0.1650(3)	0.0589 (10)
U15	0.5054	0.0002 (5)	-0.1866	0.0309(10)
C16	0.3934	-0.1055(5)	-0.2260(3)	0.071°
C10 C17	0.7003(3)	0.1055(5)	0.2200(3)	0.0009(11)
C17	0.8302 (0)	-0.2307(0)	-0.1942 (4)	0.0855 (15)
HI/	0.8253	-0.3019	-0.1323	0.102*
	0.9750(7)	-0.3400 (7)	-0.2534 (5)	0.106 (2)
HI8	1.0335	-0.4416	-0.2305	0.128*
C19	1.0168 (7)	-0.2809 (8)	-0.3434 (5)	0.0972 (18)
H19	1.1035	-0.3401	-0.3816	0.117*
C20	0.9305 (7)	-0.1341 (8)	-0.3774 (4)	0.0917 (17)
H20	0.9566	-0.0923	-0.4401	0.110*
C21	0.8028 (6)	-0.0446 (6)	-0.3194 (3)	0.0773 (14)
H21	0.7454	0.0567	-0.3433	0.093*
C22	1.1903 (8)	-0.0712 (8)	-0.1755 (6)	0.115 (2)
H22A	1.1687	-0.1288	-0.1153	0.173*
H22B	1.2980	-0.1256	-0.2015	0.173*
H22C	1.1135	-0.0544	-0.2238	0.173*
C23	1.0387 (5)	0.1557 (6)	-0.1050 (4)	0.0679 (12)
C24	1.0413 (5)	0.2832 (6)	-0.0771 (4)	0.0708 (13)
H24	1.1329	0.3043	-0.0914	0.085*
C25	0.9095 (5)	0.3767 (5)	-0.0289(4)	0.0643 (11)
H25	0.9130	0.4609	-0.0092	0.077*
C26	0.7698 (5)	0.3508 (5)	-0.0081(3)	0.0543 (10)
C27	0.7702 (5)	0.2255 (5)	-0.0358(4)	0.0681 (12)
H27	0.6773	0.2062	-0.0227	0.082*
C28	0 9036 (6)	0.1251 (6)	-0.0830(4)	0.0763(13)
H28	0.9016	0.0383	-0.0994	0.092*
C29	0.6258 (5)	0.4600(4)	0.0389(3)	0.052
C30	0.0250(5) 0.3751(5)	0.4000 (4)	0.0309(3) 0.1151(3)	0.0537(10) 0.0549(10)
C31	0.3751(5) 0.1007(5)	0.6007(5)	0.1191(3) 0.1795(3)	0.0349(10)
C32	-0.0580(5)	0.0158(4) 0.7268(4)	0.1775(3) 0.2076(3)	0.0400(9)
U32	-0.0476	0.7208 (4)	0.2070 (5)	0.0519(10)
C22	-0.1544(6)	0.8095	0.2323 0.1142 (4)	0.002°
U22 A	-0.1650	0.7907 (0)	0.1143 (4)	0.0040(13)
пээд 1122р	-0.1030	0.279	0.0649	0.12/*
пээв	-0.0993	0.8578	0.1201	0.12/*
нээс	-0.2601	0.8041	0.1301	$0.12/^{*}$
C34	-0.1692 (5)	0.6921 (5)	0.3768 (3)	0.0572(10)

C35	-0.2660 (5)	0.6200 (5)	0.4430 (3)	0.0636 (11)
H35	-0.3026	0.5591	0.4171	0.076*
C36	-0.3019 (5)	0.6389 (5)	0.5363 (3)	0.0638 (11)
H36	-0.2649	0.7022	0.5589	0.077*
C37	-0.3926 (5)	0.5732 (5)	0.6091 (3)	0.0626 (11)
C38	-0.4185 (7)	0.6053 (7)	0.7051 (4)	0.0899 (16)
H38	-0.3807	0.6716	0.7228	0.108*
C39	-0.5020 (8)	0.5383 (9)	0.7766 (4)	0.105 (2)
H39	-0.5189	0.5604	0.8415	0.126*
C40	-0.5591 (7)	0.4401 (7)	0.7516 (5)	0.0953 (18)
H40	-0.6158	0.3970	0.7988	0.114*
C41	-0.5316 (8)	0.4077 (7)	0.6580 (5)	0.0948 (17)
H41	-0.5690	0.3408	0.6408	0.114*
C42	-0.4493 (6)	0.4714 (6)	0.5874 (4)	0.0807 (14)
H42	-0.4310	0.4459	0.5233	0.097*
N1	-0.3581 (4)	0.3920 (4)	0.3237 (3)	0.0643 (9)
N2	-0.2200 (4)	0.3929 (4)	0.2696 (3)	0.0641 (9)
N3	0.0283 (4)	0.2369 (4)	0.2044 (2)	0.0555 (8)
H3A	0.0578	0.3109	0.1960	0.067*
N4	0.3805 (4)	0.0138 (4)	0.0618 (2)	0.0556 (8)
H4A	0.3890	-0.0778	0.0710	0.067*
N5	0.6130 (4)	0.5942 (4)	0.0479 (3)	0.0669 (10)
N6	0.4668 (4)	0.6790 (4)	0.0918 (3)	0.0668 (10)
N7	0.2200 (4)	0.6771 (4)	0.1557 (3)	0.0567 (8)
H7A	0.1911	0.7681	0.1667	0.068*
N8	-0.1393 (4)	0.6583 (4)	0.2839 (3)	0.0603 (9)
H8	-0.1699	0.5930	0.2693	0.072*
01	0.1002 (3)	-0.0005 (3)	0.1732 (2)	0.0627 (8)
O2	0.4184 (3)	0.2007 (3)	-0.0448 (2)	0.0634 (7)
O4	0.1420 (3)	0.4837 (3)	0.1726 (2)	0.0652 (8)
05	-0.1232 (5)	0.7795 (4)	0.4039 (2)	0.0849 (10)
03	-0.8515 (5)	0.1357 (5)	0.5771 (4)	0.1156 (15)
O6	1.1766 (4)	0.0707 (4)	-0.1543 (3)	0.0913 (11)
S1	-0.18753 (12)	0.11853 (11)	0.29467 (8)	0.0607 (3)
S2	0.45630 (12)	0.42627 (11)	0.08513 (8)	0.0581 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.080 (4)	0.109 (6)	0.259 (10)	-0.022 (4)	0.080 (6)	0.002 (6)
C2	0.050 (3)	0.069 (3)	0.102 (3)	-0.025 (2)	0.016 (2)	-0.012 (3)
C3	0.051 (3)	0.057 (3)	0.119 (4)	-0.020 (2)	0.010 (3)	-0.001 (3)
C4	0.062 (3)	0.054 (3)	0.090 (3)	-0.023 (2)	0.012 (2)	-0.009(2)
C5	0.051 (2)	0.052 (2)	0.062 (2)	-0.027 (2)	0.0095 (18)	-0.0178 (19)
C6	0.053 (2)	0.052 (2)	0.076 (3)	-0.018 (2)	0.011 (2)	-0.013 (2)
C7	0.065 (3)	0.064 (3)	0.093 (3)	-0.028 (2)	0.014 (2)	-0.001 (2)
C8	0.056 (2)	0.057 (3)	0.058 (2)	-0.033 (2)	0.0139 (18)	-0.0210 (19)
C9	0.060 (2)	0.052 (2)	0.059 (2)	-0.033 (2)	0.0153 (18)	-0.0218 (18)

C10	0.060(2)	0.042 (2)	0.057 (2)	-0.029(2)	0.0127 (19)	-0.0136 (18)
C11	0.063 (2)	0.049 (2)	0.068 (3)	-0.033 (2)	0.019 (2)	-0.023 (2)
C12	0.074 (3)	0.113 (5)	0.086 (4)	-0.040(3)	0.009 (3)	-0.039(3)
C13	0.048 (2)	0.047 (2)	0.056 (2)	-0.0267 (19)	0.0089 (17)	-0.0127 (18)
C14	0.049 (2)	0.052 (2)	0.065 (3)	-0.0241 (19)	0.0119 (19)	-0.0139 (19)
C15	0.054 (2)	0.059 (3)	0.067 (3)	-0.027 (2)	0.0130 (19)	-0.015 (2)
C16	0.058 (2)	0.067 (3)	0.060 (2)	-0.027(2)	0.0108 (19)	-0.020(2)
C17	0.082 (3)	0.079 (4)	0.075 (3)	-0.020(3)	0.022 (3)	-0.011 (3)
C18	0.091 (4)	0.089 (4)	0.104 (4)	-0.010(3)	0.036 (3)	-0.020(3)
C19	0.084 (4)	0.097 (5)	0.096 (4)	-0.022(3)	0.030 (3)	-0.036(3)
C20	0.094 (4)	0.114 (5)	0.067 (3)	-0.045 (4)	0.033 (3)	-0.029(3)
C21	0.071 (3)	0.082 (3)	0.070 (3)	-0.028(3)	0.023 (2)	-0.012(2)
C22	0.077 (4)	0.108 (5)	0.150 (6)	-0.013 (3)	0.020 (4)	-0.066 (4)
C23	0.053 (2)	0.066 (3)	0.077 (3)	-0.015 (2)	0.006 (2)	-0.018(2)
C24	0.050 (3)	0.067 (3)	0.096 (3)	-0.029(2)	0.013 (2)	-0.010(3)
C25	0.053(2)	0.050(2)	0.095(3)	-0.025(2)	0.007(2)	-0.018(2)
C26	0.046(2)	0.048(2)	0.070(3)	-0.0207(19)	0.0022(19)	-0.011(2)
C27	0.051(2)	0.060(3)	0.096(3)	-0.024(2)	0.009(2)	-0.021(2)
C28	0.058(3)	0.072(3)	0.105 (4)	-0.024(2)	0.012(2)	-0.042(3)
C29	0.047(2)	0.047(2)	0.069 (2)	-0.0249(19)	0.0118(18)	-0.0095(19)
C30	0.057(2)	0.043(2)	0.069(2)	-0.026(2)	0.0072 (19)	-0.0100(18)
C31	0.058 (2)	0.039 (2)	0.057(2)	-0.0277(19)	0.0127(18)	-0.0125(17)
C32	0.050(2)	0.038(2)	0.074(3)	-0.0247(18)	0.0155(19)	-0.0167(18)
C33	0.066 (3)	0.076 (3)	0.099 (4)	-0.024(3)	0.005 (3)	0.001 (3)
C34	0.059(2)	0.048(2)	0.069 (3)	-0.028(2)	0.014 (2)	-0.016(2)
C35	0.064 (2)	0.057 (3)	0.079 (3)	-0.034(2)	0.023(2)	-0.023(2)
C36	0.069(3)	0.060 (3)	0.068 (3)	-0.033(2)	0.011(2)	-0.015(2)
C37	0.067 (3)	0.061 (3)	0.055 (3)	-0.023(2)	0.007(2)	-0.006(2)
C38	0.092 (4)	0.106 (4)	0.069 (3)	-0.041(3)	0.008 (3)	-0.012(3)
C39	0.108 (5)	0.130 (6)	0.054(3)	-0.035(4)	0.015 (3)	-0.002(3)
C40	0.089(4)	0.076 (4)	0.094(4)	-0.023(3)	0.020(3)	0.013(3)
C41	0.106(4)	0.088(4)	0.091 (4)	-0.053(3)	0.027(3)	0.001(3)
C42	0.085(3)	0.087(4)	0.072(3)	-0.042(3)	0.025(3)	-0.019(3)
N1	0.003(2)	0.056(2)	0.072(3)	-0.0328(18)	0.0229(18)	-0.0271(18)
N2	0.003(2)	0.020(2) 0.049(2)	0.002(2) 0.089(2)	-0.0322(18)	$0.022^{\circ}(18)$	-0.0242(17)
N3	0.002(2)	0.0433(18)	0.003(2) 0.072(2)	-0.0322(16)	0.0236(16)	-0.0238(15)
N4	0.0623(19)	0.0468 (19)	0.065(2)	-0.0313(17)	0.0236(16)	-0.0196(15)
N5	0.0025(17)	0.048(2)	0.002(2) 0.101(3)	-0.0282(18)	0.0176(19)	-0.0173(19)
N6	0.050(2) 0.058(2)	0.0465(19)	0.101(3) 0.104(3)	-0.0307(18)	0.0243(19)	-0.0248(18)
N7	0.050(2) 0.0534(19)	0.0418(18)	0.082(2)	-0.0264(16)	0.0213(19) 0.0183(16)	-0.0238(16)
N8	0.065(2)	0.055(2)	0.002(2)	-0.0396(18)	0.0288(17)	-0.0303(17)
01	0.002(2)	0.000(2)	0.070(2)	-0.0395(15)	0.0205(15)	-0.0235(14)
02	0.0021(17) 0.0660(17)	0.0498(17)	0.0777(18)	-0.0317(14)	0.0203(13) 0.0192(14)	-0.0235(11)
04	0.0617(17)	0.0434(17)	0.096(2)	-0.0289(14)	0.0228(15)	-0.0224(15)
05	0.117(3)	0.094(2)	0.078(2)	-0.076(2)	0.0206(19)	-0.0272(18)
03	0.075(2)	0.089(3)	0.164(4)	-0.037(2)	0.050(2)	0.000(3)
06	0.0564(18)	0.007(3)	0.120 (3)	-0.0218(18)	0.0247(18)	-0.054(2)
S1	0.0587 (6)	0.0450 (6)	0.0840(7)	-0.0289(5)	0.0226(5)	-0.0203(5)
	(~)					

					supporting information	
<u>S2</u>	0.0546 (6)	0.0436 (5)	0.0817 (7)	-0.0264 (5)	0.0176 (5)	-0.0201 (5)
Geome	etric parameters (2	Å, °)				
C1—0)3	1.423 (7)		C22—H22C	().9600
C1—H	H1A	0.9600		C23—O6	1	1.362 (5)
C1—H	H1B	0.9600		C23—C28	1	1.369 (7)
C1—H	H1C	0.9600		C23—C24	1	1.387 (7)
C2—C	C3	1.371 (7)		C24—C25	1	1.353 (6)
C2—C)3	1.375 (5)		C24—H24	(0.9300
C2—C	C7	1.380 (7)		C25—C26	1	1.384 (6)
С3—С	C4	1.376 (6)		С25—Н25	(0.9300
C3—H	43	0.9300		C26—C27	1	1.353 (6)
C4—C	C5	1.382 (6)		C26—C29	1	1.471 (6)
C4—H	1 4	0.9300		C27—C28	1	1.382 (6)
C5—C	26	1.385 (6)		С27—Н27	(0.9300
C5—C	28	1.470 (5)		C28—H28	(0.9300
C6—C	C7	1.392 (6)		C29—N5	1	1.305 (5)
C6—H	16	0.9300		C29—S2	1	1.732 (4)
C7—F	H7	0.9300		C30—N6	1	1.284 (5)
C8—N	N1	1.307 (5)		C30—N7	1	1.384 (5)
C8—S	51	1.734 (4)		C30—S2	1	.724 (4)
C9—N	J2	1.302 (5)		C31—O4	1	1.228 (4)
C9—N	N3	1.378 (5)		C31—N7	1	1.353 (5)
C9—S	51	1.715 (4)		C31—C32	1	1.514 (5)
C10—	-01	1.198 (4)		C32—N8	1	.437 (5)
C10—	-N3	1.378 (5)		C_{32} — C_{33}	1	1.516 (7)
C10—	-C11	1.507 (5)		C32—H32	().9800
C11—	-N4	1 445 (5)		C33—H33A	() 9600
C11—	C12	1.118 (0)		C33—H33B	() 9600
C11—	H11	0.9800		C33—H33C	() 9600
C12—	-H12A	0.9600		$C_{34} - 05$	1	225 (5)
C12—	-H12B	0.9600		C34—N8	1	1.223(5)
C12	-H12C	0.9600		C_{34} C_{35}	1	481 (6)
C12	-02	1 227 (4)		C35 - C36	1	1 303 (6)
C13—	-N4	1 349 (5)		C35—H35	() 9300
C13—	-C14	1.5 (5)		$C_{36} - C_{37}$	1	450 (6)
C14	-C15	1.330 (5)		С36—Н36	(9300
C14	-H14	0.9300		C37 - C38	1	374 (7)
C15_	-C16	1 452 (6)		C_{37} C_{42}	1	1.389 (7)
C15	H15	0.9300		C_{38} C_{39}	1	404 (8)
C16	C17	1 383 (7)		C38_H38) 9300
C16	-C17 -C21	1.305 (7)		C39-C40	1	377 (9)
C17_	-C18	1 364 (7)		C39—H39	(9300
C17	-H17	1.304 (7)		C40-C41	1	342 (9)
C18_	-C19	1 345 (8)		C40 - H40	() 9300
C18_	-H18	0 0300		C41 - C42	1	373 (7)
C19_	-C20	1 350 (8)		C41—H41)	9300
~-/	~	1.550(0)		UT 1171	(

C19—H19	0.9300	C42—H42	0.9300
C20—C21	1.391 (7)	N1—N2	1.381 (5)
C20—H20	0.9300	N3—H3A	0.8600
C21—H21	0.9300	N4—H4A	0.8600
C22—O6	1.430 (8)	N5—N6	1.376 (5)
C22—H22A	0.9600	N7—H7A	0.8600
C22—H22B	0.9600	N8—H8	0.8600
C3—C2—O3	124.8 (4)	C27—C26—C29	122.2 (4)
C3—C2—C7	121.4 (4)	C25—C26—C29	120.2 (4)
O3—C2—C7	113.8 (4)	C26—C27—C28	122.4 (4)
C2—C3—C4	118.7 (4)	C26—C27—H27	118.8
С2—С3—Н3	120.7	C28—C27—H27	118.8
С4—С3—Н3	120.7	C23—C28—C27	118.9 (5)
C3—C4—C5	122.2 (4)	C23—C28—H28	120.6
C3—C4—H4	118.9	C27—C28—H28	120.6
С5—С4—Н4	118.9	N5-C29-C26	122.5 (3)
C4-C5-C6	118.0 (4)	N5-C29-S2	113.4(3)
C4—C5—C8	120.6 (4)	C26—C29—S2	124.0(3)
C6-C5-C8	121.4 (4)	N6-C30-N7	1202(4)
C_{5} C_{6} C_{7}	120.9(4)	N6-C30-S2	115.0(3)
C5—C6—H6	119.5	N7 - C30 - S2	1247(3)
C7—C6—H6	119.5	04-031-N7	122.7(3) 122.2(4)
$C_{2} - C_{7} - C_{6}$	118.8 (4)	04-031-032	122.2(1) 123.6(3)
$C_{2} - C_{7} - H_{7}$	120.6	N7 - C31 - C32	1125.0(3) 1141(3)
С6—С7—Н7	120.0	N8 - C32 - C31	1120(3)
$N_1 - C_8 - C_5$	120.0 122.2(4)	N8 - C32 - C33	112.0(3) 110.8(3)
N1 - C8 - S1	122.2(4) 1143(3)	$C_{31} - C_{32} - C_{33}$	108.2(4)
C_{5} C_{8} S_{1}	114.5(3) 123 5 (3)	N8_C32_H32	108.2 (4)
$N_{2}^{-}C_{9}^{-}N_{3}^{-}$	125.5(3) 1199(3)	$C_{31} - C_{32} - H_{32}$	108.6
$N_2 = C_2 = N_3$	115.9(3)	C_{33} C_{32} H_{32}	108.6
N3-C9-S1	113.2(3) 124.8(3)	05-034-8	100.0 122.2(4)
01 - C10 - N3	127.5(3)	05 - C34 - C35	122.2(4) 122.8(4)
01 - C10 - C11	122.3(3) 125.7(4)	N8-C34-C35	122.0(4)
N3-C10-C11	125.7(4) 111.7(3)	$C_{36} - C_{35} - C_{34}$	113.0(4) 122.4(4)
N4-C11-C10	111.7(3) 112.7(3)	C36-C35-H35	122.4 (4)
N4-C11-C12	112.7(3) 110.7(4)	C34-C35-H35	118.8
C_{10} C_{11} C_{12}	110.7(4) 100.0(3)	$C_{35} = C_{35} = 1155$	127.8 (5)
NA C11 H11	109.0 (3)	$C_{35} = C_{36} = C_{37}$	127.8 (5)
C10-C11-H11	108.1	C37 - C36 - H36	116.1
C12-C11-H11	108.1	$C_{38} - C_{37} - C_{42}$	110.1 117.4(4)
$O_2 C_{13} N_4$	121 6 (3)	$C_{38}^{38} = C_{37}^{37} = C_{42}^{36}$	117.4(4) 120.0(5)
02 - C13 - C14	121.0(3) 122.8(3)	$C_{30} = C_{37} = C_{30}$	120.0(3) 122.5(4)
N4-C13-C14	122.0(3) 1154(3)	$C_{72} = C_{37} = C_{30}$	122.3 (T) 120 1 (6)
$C_{15} = C_{13} = C_{14}$	110.7(3)	C_{37} C_{38} U_{28}	120.1 (0)
$C_{13} = C_{14} = C_{13}$	120.3	C_{30} C_{30} C_{130} C_{130}	117.7
$C_{13} = C_{14} =$	120.5	$C_{39} - C_{30} - C_{30}$	119.9 120 7 (6)
$C_{13} = C_{14} = \Pi_{14}$	120.3 127.4(4)	$C_{40} = C_{39} = C_{30}$	120.7(0)
	127.4(4)	U40—U37—D37	119./

C14—C15—H15	116.3	С38—С39—Н39	119.7
C16—C15—H15	116.3	C41—C40—C39	119.0 (5)
C17—C16—C21	117.2 (4)	C41—C40—H40	120.5
C17—C16—C15	123.3 (4)	С39—С40—Н40	120.5
C21—C16—C15	119.4 (4)	C40—C41—C42	121.1 (6)
C18—C17—C16	120.2 (5)	C40—C41—H41	119.4
C18—C17—H17	119.9	C42—C41—H41	119.4
С16—С17—Н17	119.9	C41—C42—C37	121.7 (5)
C19—C18—C17	122.5 (6)	C41—C42—H42	119.2
C19—C18—H18	118.7	C37—C42—H42	119.2
C17—C18—H18	118.7	C8—N1—N2	112.0 (3)
C18—C19—C20	118.8 (5)	C9—N2—N1	112.1 (3)
C18—C19—H19	120.6	C9—N3—C10	124.9 (3)
С20—С19—Н19	120.6	C9—N3—H3A	117.6
C19—C20—C21	120.6 (5)	C10—N3—H3A	117.6
С19—С20—Н20	119.7	C13—N4—C11	120.7 (3)
C21—C20—H20	119.7	C13—N4—H4A	119.7
C16—C21—C20	120.5 (5)	C11—N4—H4A	119.7
C16—C21—H21	119.7	C29—N5—N6	112.9 (3)
C20—C21—H21	119.7	C30—N6—N5	112.2 (3)
O6—C23—C28	125.5 (5)	C31—N7—C30	126.0 (3)
O6—C23—C24	114.7 (4)	C31—N7—H7A	117.0
C28—C23—C24	119.7 (4)	C30—N7—H7A	117.0
C25—C24—C23	119.5 (4)	C34—N8—C32	122.6 (3)
C25—C24—H24	120.2	C34—N8—H8	118.7
C23—C24—H24	120.2	C32—N8—H8	118.7
C24—C25—C26	121.9 (4)	C2—O3—C1	117.5 (5)
C24—C25—H25	119.0	C23—O6—C22	117.9 (4)
C26—C25—H25	119.0	C9—S1—C8	86.3 (2)
C27—C26—C25	117.5 (4)	C30—S2—C29	86.49 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N3—H3 <i>A</i> …O4	0.86	2.10	2.960 (4)	177
N4—H4A····N6 ⁱ	0.86	2.17	3.016 (5)	168
N7—H7A····O1 ⁱⁱ	0.86	2.09	2.944 (4)	171
N8—H8…N2	0.86	2.20	3.036 (5)	165

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.